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Abstract

We propose a fast second-order method that can be used

as a drop-in replacement for current deep learning solvers.

Compared to stochastic gradient descent (SGD), it only re-

quires two additional forward-mode automatic differentia-

tion operations per iteration, which has a computational

cost comparable to two standard forward passes and is easy

to implement. Our method addresses long-standing issues

with current second-order solvers, which invert an approxi-

mate Hessian matrix every iteration exactly or by conjugate-

gradient methods, procedures that are much slower than a

SGD step. Instead, we propose to keep a single estimate of

the gradient projected by the inverse Hessian matrix, and

update it once per iteration with just two passes over the

network. This estimate has the same size and is similar

to the momentum variable that is commonly used in SGD.

No estimate of the Hessian is maintained. We first validate

our method, called CURVEBALL, on small problems with

known solutions (noisy Rosenbrock function and degener-

ate 2-layer linear networks), where current deep learning

solvers struggle. We then train several large models on CI-

FAR and ImageNet, including ResNet and VGG-f networks,

where we demonstrate faster convergence with no hyperpa-

rameter tuning. We also show our optimiser’s generality by

testing on a large set of randomly-generated architectures.

1. Introduction

Stochastic Gradient Descent (SGD) and back-

propagation (17) are the algorithmic backbone of

current deep network training. The success of deep learning

demonstrates the power of this combination, which has been

successfully applied on various tasks with large datasets and

very deep networks (12).

Yet, while SGD has many advantages, speed of conver-

gence (in terms of number of iterations) is not necessarily

one of them. While individual SGD iterations are very quick

to compute and lead to rapid progress at the beginning of the

optimisation, it soon reaches a slower phase where further

improvements are achieved slowly. This can be attributed to

entering regions of the parameter space where the objective

function is poorly scaled. In such cases, rapid progress would

require vastly different step sizes for different directions in

parameter space, which SGD cannot deliver.

Second-order methods, such as Newton’s method and

its variants, eliminate this issue by rescaling the gradient

according to the local curvature of the objective function.

For a scalar loss in R, this rescaling takes the form H−1J
where H is the Hessian matrix (second-order derivatives)

or an approximation of the local curvature in the objective

space, and J is the gradient of the objective. They can in

fact achieve local scale-invariance (37, p. 27), and make

provably better progress in the regions where gradient de-

scent stalls. While they are unmatched in other domains,

there are several obstacles to their application to deep mod-

els. First, it is impractical to invert or even store the Hessian,

since it grows quadratically with the number of parameters,

and there are typically millions of them. Second, any Hes-

sian estimate is necessarily noisy and ill-conditioned due

to stochastic sampling, to which classic inversion methods

such as conjugate-gradient are not robust.

In this paper, we propose a new algorithm that can over-

come these difficulties and make second order optimisation

practical for deep learning. We show in particular how to

avoid the storage of any estimate of the Hessian matrix or

its inverse. Instead, we treat the computation of the Newton

update, H−1J , as solving a linear system that itself can be

solved via gradient descent. The cost of solving this system

is amortized over time by interleaving its steps with the pa-

rameter update steps. Our proposed method adds little over-

head, since a Hessian-vector product can be implemented for

modern networks with just two steps of automatic differenti-

ation. Interestingly, we show that our method is equivalent

to momentum SGD (also known as the heavy-ball method)

with a single additional term, accounting for curvature. For

this reason we named our method CURVEBALL. Unlike

other proposals, the total memory footprint is as small as

that of momentum SGD.

This paper is structured as follows. We introduce relevant

technical background in sec. 2, and present our method in
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sec. 3. We evaluate our method and show experimental

results in sec. 4. Related work is discussed in sec. 5. Finally

we summarise our findings in sec. 6.

2. Background

In order to make the description of our method self-

contained, we succinctly summarise a few standard concepts

in optimisation. Our goal is to find the optimal parameters

of a model (e.g. a neural network) φ : Rp → R
o, with p pa-

rameters w ∈ R
p and o outputs (the notation does not show

the dependency on the training data, which is subsumed in φ
for compactness). The quality of the outputs is evaluated by

a loss function L : Ro → R, so finding w is reduced to the

optimisation problem: 1

w∗ = argmin
w

L(φ(w)) = argmin
w

f(w). (1)

Perhaps the simplest algorithm to find an optimum (or at

least a stationary point) of eq. 1 is gradient descent (GD).

GD updates the parameters using the iteration w ← w −
βJ(w), where β > 0 is the learning rate and J(w) ∈ R

p

is the gradient (or Jacobian) of the objective function f
with respect to the parameters w. A useful variant is to

augment GD with a momentum variable z (30), which can

be interpreted as a decaying average of past gradients:2

z ← ρz − βJ(w) (2)

w ← w + z (3)

with a momentum parameter ρ. Momentum GD, as given by

eq. 2-3, can be shown to have faster convergence than GD

for convex functions, remaining stable under higher learning

rates, and exhibits somewhat better resistance to poor scaling

of the objective function (25; 11). One important aspect is

that these advantages cost almost no additional computation

and only a modest additional memory, which explains why

it is widely used in practice.

In neural networks, GD is usually replaced by its stochas-

tic version (SGD), where at each iteration one computes the

gradient not of the model f = L(φ(w)), but of the model

ft = Lt(φt(w)) assessed on a small batch of samples, drawn

at random from the training set.

2.1. Secondorder optimisation

As mentioned in section 1, the Newton method is similar

to GD, but steers the gradient by the inverse Hessian matrix,

computing H−1J as a descent direction. However, inverting

the Hessian may be numerically unstable or the inverse may

not even exist. To address this issue, the Hessian is usually

1We omit the optional regulariser term for brevity, but this does not

materially change our derivations.
2Some sources use an alternative form with β in eq. 3 instead (equivalent

by a re-parametrisation of z),

regularized with a parameter λ > 0, obtaining what is known

as the Levenberg (24) method:

z = −(H + λI)
−1

J, (4)

w ← w + z, (5)

where H ∈ R
p×p, J ∈ R

p and I ∈ R
p×p is the identity

matrix. Note that, unlike for momentum GD (eq. 2), the new

step z is independent of the previous step. To avoid burden-

some notation, we omit the w argument in H(w) and J(w),
but they must be recomputed at each iteration. Intuitively,

the effect of eq. 4 is to rescale the step appropriately for

different directions — directions with high curvature require

small steps, while directions with low curvature require large

steps to make progress.

Note also that Levenberg’s regularization loses the scale-

invariance of the original Newton method, meaning that

rescaling the function f changes the scale of the gradient

and hence the regularised descent direction chosen by the

method. An alternative that alleviates this issue is Levenberg-

Marquardt, which replaces I in eq. 4 with diag(H). For non-

convex functions such as deep networks, these methods only

converge to a local minimum when the Hessian is positive-

semidefinite (PSD).

3. Method

3.1. Automatic differentiation and back
propagation

In order to introduce fast computations involving the

Hessian, we must take a short digression into how Jaco-

bians are computed. The Jacobian of L(φ(w)) (eq. 1) is

generally computed as J = JφJL where Jφ ∈ R
p×o and

JL ∈ R
o×1 are the Jacobians of the model and loss, respec-

tively. In practice, a Jacobian is never formed explicitly,

but Jacobian-vector products Jv are implemented with the

back-propagation algorithm. We define

←−
AD(v) = Jv (6)

as the reverse-mode automatic differentiation (RMAD) op-

eration, commonly known as back-propagation. Note that,

because the loss is a scalar function, the starting projection

vector v typically used in gradient descent is a scalar and

we set v = 1. For intermediate computations, however, it is

generally a (vectorized) tensor of gradients (see eq. 9).

A perhaps lesser known alternative is forward-mode au-

tomatic differentiation (FMAD), which computes a vector-

Jacobian product, from the other direction:

−→
AD(v′) = v′J (7)

This variant is less commonly-known in deep learning as

RMAD is appropriate to compute the derivatives of a scalar-

valued function, such as the learning objective, whereas
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Algorithm 1. CURVEBALL (proposed).

1: z0 = 0

2: for t = 0, ..., T − 1 do

3: ∆z = Ĥ(wt)zt + J(wt)
4: zt+1 = ρzt − β∆z

5: wt+1 = wt + zt+1

6: end for

Algorithm 2. Simplified Hessian-free method.

1: for t = 0, ..., T − 1 do

2: z0 = −J(wt)
3: for r = 0, ..., R− 1 (or convergence) do

4: zr+1 = CG(zr, Ĥ(wt)zr, J(wt))
5: end for

6: wt+1 = wt + zR
7: end for

FMAD is more appropriate for vector-valued functions of a

scalar argument. However, we will show later that FMAD is

relevant in calculations involving the Hessian.

The only difference between RMAD and FMAD is the

direction of associativity of the multiplication: FMAD prop-

agates gradients in the forward direction, while RMAD (or

back-propagation) does it in the backward direction. For

example, for the composition of functions a ◦ b ◦ c,

−→
ADa◦b◦c(v) = ((vJa) Jb) Jc (8)
←−
ADa◦b◦c(v

′) = Ja (Jb (Jcv
′)) (9)

Because of this, both operations have similar computational

overhead, and can be implemented similarly.

3.2. Fast Hessianvector products

Since the Hessian of learning objectives involving deep

networks is not necessarily positive semi-definite (PSD),

it is common to use a surrogate matrix with this property,

which prevents second-order methods from being attracted to

saddle-points ((8) discusses this problem). One of the most

widely used is the Gauss-Newton matrix (3; 37, p. 254):

Ĥ = JφHLJ
T
φ , (10)

where HL is the Hessian of the loss function. When HL is

PSD, which is the case for all convex losses (e.g. logistic

loss, Lp distance), the resulting Ĥ is PSD by construction.

For the method that we propose, and indeed for any method

that implicitly inverts the Hessian (or its approximation),

only computing Hessian-vector products Ĥv is required. As

such, eq. 10 takes a very convenient form:

Ĥv = Jφ
(

HL

(

JT
φ v

))

(11)

=
←−
ADφ

(

HL

(−→
ADφ(v)

))

. (12)

The cost of eq. 12 is thus equivalent to that of two back-

propagation operations. The intermediate matrix-vector

product HLu has negligible cost: for example, for the

squared-distance loss, HL = 2I ⇒ HLu = 2u. Sim-

ilarly, for the multinomial logistic loss we have HL =
diag(p) − ppT ⇒ HLu = p ⊙ u − p(pTu), where p is

the vector of predictions from a softmax layer and ⊙ is the

element-wise product. These products thus require only

element-wise operations.

We remark that this builds on a classic result (29), how-

ever with two major differences. First, their method com-

putes products with the exact Hessian H , while we use the

Gauss-Newton matrix Ĥ , to be robust to saddle-points. Sec-

ond, we leverage modern automatic differentiation tools,

while they rely on a symbolic manipulation technique which

requires new equations to be derived for each model change.

3.3. Fast secondorder optimisation

This section presents our main contribution: a method that

minimizes a second-order Taylor expansion of the objective

(like the Newton variants from section 2.1), but at a much

reduced computational and memory cost, suitable for very

large-scale problems. The result of taking a step z away

from a starting point w can be modelled with a second-order

Taylor expansion of the objective f :

f(w+z) ≃ f̂(w, z) = f(w)+zTJ(w)+ 1
2z

TH(w)z (13)

Most second-order methods seek the update z that minimizes

f̂ , by ignoring the higher-order terms:

z = argmin
z′

f̂(z′) = argmin
z′

1
2z

′T Ĥz′ + z′TJ (14)

In general, a step z is found by minimizing eq. 14, either via

explicit inversion Ĥ−1J (22; 3) or the conjugate-gradient

(CG) method (20). The later approach, called the Hessian-

free method (also Truncated Newton or Newton-CG (37,

p. 168)) is the most economical in terms of memory, since

it only needs access to Hessian-vector products (section

3.2). A high-level view is illustrated in Algorithm 2, where

CG stands for one step of conjugate-gradient (a stopping

condition, line search and some intermediate variables were

omitted for clarity). Note that for every update of w (outer

loop), Algorithm 2 must perform several steps of CG (inner

loop) to find a single search direction z.

We propose a number of changes in order to eliminate

this costly inner loop. The first is to reuse the previous

search direction z to warm-start the inner iterations, instead
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of resetting z each time (Algorithm 2, line 2). If z does not

change abruptly, then this should help reduce the number of

CG iterations, by starting closer to the solution. The second

change is to use this fact to dramatically reduce the inner

loop iterations to just one (R = 1). A different interpretation

is that we now interleave the updates of the search direction

z and parameters w (Algorithm 1, lines 4 and 5), instead of

nesting them (Algorithm 2, lines 4 and 6).

Unfortunately, this change loses all theoretical guarantees,

which were proved assuming that the starting point of the

CG iterations is always z0 = −J(wt) (37, p. 124). This

loss of guarantee was verified in practice, as we found the

resulting algorithm extremely unstable. Our third change is

then to replace CG with gradient descent, which has no such

dependency. Differentiating eq. 14 w.r.t. z yields:

△z = J
f̂(z) = Ĥz + J (15)

Applying these changes to the Hessian-free method (Al-

gorithm 2) results in Algorithm 1. We also introduced an

optional factor ρ that decays z each step (Algorithm 1, line

4). The practical reason for its inclusion is to gradually for-

get stale updates, made necessary by the non-linearity of f .

More formally, this change is exactly equivalent to adding a

regularization term (1−ρ) ‖z‖
2
, which vanishes when ρ ≃ 1

(as usually recommended for momentum parameters (12)).

Surprisingly, despite being derived from a second-order

method, we can contrast Algorithm 1 to momentum GD

(eq. 2-3) and see that they are almost equivalent, except

for an extra curvature term Ĥ(w)z. Due to the addition of

curvature to momentum GD, which is also known as the

heavy-ball method, we name our algorithm CURVEBALL.

Implementation. Using the fast Hessian-vector products

from section 3.2, it is easy to implement eq. 15, including a

regularization term λI (section 2.1). We can further improve

eq. 15 by grouping the operations to minimize the number

of automatic differentiation (back-propagation) steps:

△z =
(

JφHLJ
T
φ + λI

)

z + JφJL (16)

= Jφ
(

HLJ
T
φ z + JL

)

+ λz (17)

In this way, the total number of passes over the model is two:

we compute Jφv and JT
φ v′ products, implemented respec-

tively as one RMAD (back-propagation) and one FMAD

operation (section 3.1).

Automatic ρ and β hyper-parameters in closed form.

Our proposed method introduces a few hyper-parameters,

which just like with SGD, would require tuning for different

settings. Ideally, we would like to have no tuning at all. For-

tunately, the quadratic minimization interpretation in eq. 14

allows us to draw on standard results in optimisation. At any

given step, the optimal ρ and β can be obtained by solving a

2× 2 linear system (22, sec. 7):

[

β
−ρ

]

=

[

∆T
z Ĥ∆z zT Ĥ∆z

zT Ĥ∆z zT Ĥz

]−1 [
JT∆z

JT z

]

(18)

Note that, in calculating the proposed update (eq. 16), the

quantities ∆z , JT
φ z and JL have already been computed

and can now be reused. Together with the fact that Ĥ =
JφHLJ

T
φ , this means that the elements of the above 2 × 2

matrix can be computed with only one additional forward

pass. A detailed proof can be found in Appendix A.1.

Automatic λ hyper-parameter rescaling. The regulariza-

tion term λI (eq. 4) can be interpreted as a trust-region (37,

p. 68). When the second-order approximation holds well,

λ can be small, corresponding to an unregularized Hessian

and a large trust-region. Conversely, a poor fit requires a

correspondingly large λ. We can measure the difference

(or ratio) between the objective change predicted by the

quadratic fit (f̂ ) and the real objective change (f ), by com-

puting γ = (f(w + z)− f(w)) /f̂(z). This requires one

additional evaluation of the objective for f(w + z), but oth-

erwise relies only on previously computed quantities. This

makes it a very attractive estimate of the trust region, with

γ = 1 corresponding to a perfect approximation. Follow-

ing (37, p. 69), we evaluate γ every 5 iterations, decreasing

λ by a factor of 0.999 when γ > 3/2, and increasing by the

inverse factor when γ < 1/2. We noted that our algorithm

is not very sensitive to the initial λ. In experiments using

batch-normalization (section 4), we simply initialize it to

one, otherwise setting it to 10. We show the evolution of

automatically tuned hyper-parameters in Appendix B.2.

Convergence proofs. In addition to the usual absence of

strong guarantees for non-convex problems, which applies

in our setting (deep neural networks), there is an added

difficulty due to the recursive nature of our algorithm (the

interleaved w and z steps). Our method is a variant of the

heavy-ball method (18; 10) (by adding a curvature term),

which until very recently had resisted establishing global

convergence rates that improve on gradient descent without

momentum ((19), table 1), and even then only for strongly

convex or quadratic functions.

For this reason, we present proofs for two more tractable

cases (Appendix A). The first is the global linear convergence

of our method for convex quadratic functions, which allows

a direct inspection of the region of convergence as well as

its rate (Theorem A.1). The second establishes that, for

convex non-quadratic functions, CURVEBALL’s steps are

always in a descent direction, when using the automatic

hyper-parameter tuning of eq. 18 (Theorem A.2). We note
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Figure 1. Degenerate optimisation problems with known solu-

tions. Top: Trajectories on the Stochastic Rosenbrock function for

different solvers (higher function values have darker shades). Bot-

tom: Evolution of the loss per iterations for the same trajectories.

Table 1. Optimiser comparison on small degenerate datasets.

For each optimiser, we report the mean±std of the number of to

iterates reach the solution. The limits of the uniform distribution

used in the stochastic Rosenbrock function (eq. 19) are U [λ1, λ2].

Rosenbrock Raihimi

Deterministic U [0, 1] U [0, 3] & Recht

SGD + momentum 370 ± 40 846 ± 217 4069 ± 565 95 ± 2
Adam (13) 799 ± 160.5 1290 ± 476 2750 ± 257 95 ± 5

Lev.-Marquardt (24) 16 ± 4 14 ± 3 17 ± 4 9 ± 4
BFGS (37, p. 136) 19 ± 4 44 ± 21 63 ± 29 43 ± 21

Exact Hessian 14 ± 1 10 ± 3 17 ± 4 9 ± 0.5

CURVEBALL (ours) 13 ± 0.5 12 ± 1 13 ± 1 35 ± 11

that due to the Gauss-Newton approximation and the trust

region (eq. 4) this is always verified in practice.

Similarly to momentum SGD, our main claim as to the

method’s suitability for non-convex deep network optimi-

sation is necessarily empirical, based on the extensive ex-

periments in section 4, which show strong performance on

several large-scale problems with no hyper-parameter tuning.

4. Experiments

Degenerate problems with known solutions. While the

main purpose of our optimizer is its application to large-

scale deep learning architectures, we begin by applying it

to problems of limited complexity, with the goal of explor-

ing the strengths and weaknesses of our approach in an

interpretable domain. We perform a comparison with two

popular first order solvers — SGD with momentum and

Adam (13)3, as well as with more traditional methods such

as Levenberg-Marquardt, BFGS (37, p. 136) (with cubic

line-search) and Newton’s method with the exact Hessian.

The first problem we consider is the search for the minimum

of the two-dimensional Rosenbrock test function, which has

the useful benefit of enabling us to visualise the trajectories

found by each optimiser. Specifically, we use the stochastic

variant of this function (40),R : R2 → R:

R(u, v) = (1− u)2 + 100ǫi(v − u2)2, (19)

where at each evaluation of the function, a noise sample

ǫi is drawn from a uniform distribution U [λ1, λ2] with

λ1, λ2 ∈ R (we can recover the deterministic Rosenbrock

function with λ1 = λ2 = 1). To assess robustness to noise,

we compare each optimiser on the deterministic formulation

and two stochastic variants (with differing noise regimes).

We also consider a second problem of interest, recently intro-

duced by (31). It consists of fitting a deep network with only

two linear layers to a dataset where sample inputs x are re-

lated to sample outputs y by the relation y = Ax, where A is

an ill-conditioned matrix (with condition number ǫ = 105).

The results are shown in Table 1. We use a grid-search to

determine the best hyper-parameters for both SGD and Adam

(reported in Appendix B.1). We report the number of iterates

taken to reach the solution, with a tolerance of τ = 10−4.

Statistics are computed over 100 runs of each optimiser. We

observe that first-order methods perform poorly in all cases,

and moreover show a very high variance of results. The

Newton method with an exact Hessian4 generally performs

best, followed closely by Levenberg-Marquardt (LM), how-

ever they are impractical for larger-scale problems. Our

method delivers comparable (and sometimes better) perfor-

mance despite avoiding a costly Hessian inversion. On the

other hand, the performance of BFGS, which approximates

the Hessian with a buffer of parameter updates, seems to

correlate negatively with the level of noise.

Fig. 1 shows example trajectories. The slow, oscillating

behaviour of first-order methods is noticeable, as well as

the impact of noise on the BFGS steps. On the other hand,

CURVEBALL, Newton and LM converge in few iterations.

3We also experimented with RMSProp (35), AdaGrad (9) and

AdaDelta (41), but found that these methods consistently underperformed

Adam and SGD on these “toy” problems.
4When the Hessian contains negative eigenvalues, their absolute values

are used (8).
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Figure 2. Comparison with the different optimisers for various datasets and networks. Training error is shown, as it is the quantity being

optimised. CURVEBALL performs well under a variety of realistic settings, including large-scale datasets (ImageNet), batch-normalisation,

and severely over-parameterised models (ResNet). Its hyper-parameters are the same except for the top-center panel (no batch-norm).

CIFAR. We now turn to the task of training deep networks

on more realistic datasets. Classic second-order methods

are not used in such scenarios, due to the large number of

parameters and stochastic sampling. We start with a basic

5-layer convolutional neural network (CNN).5 We train this

network for 20 epochs on CIFAR-10, with and without batch-

normalisation (which is known to improve conditioning (15))

using for every experiment a mini-batch size of 128. To

assess optimiser performance on larger models, we also train

a much larger ResNet-18 model (12). As baselines, we

picked SGD (with momentum) and Adam, which we found

to outperform the competing first-order optimisers. Their

learning rates are chosen from the set 10−k, k ∈ N with a

grid search for the basic CNN, while for the ResNet SGD

uses the schedule recommended by the authors (12). We

focus on the training error, since it is the quantity being

optimised by eq. 1 (validation error is discussed below). The

results can be seen in Fig. 2 (top row). We observe that in

each setting, CURVEBALL outperforms its competitors, in a

manner that is robust to normalisation and model type.

ImageNet. To assess the practicality of our method at

larger scales, we apply it to the classification task on the

large-scale ImageNet dataset. We report results of training

5The basic CNN has 5 × 5 filters and ReLU activations, and 3 × 3
max-pooling layers (with stride 2) after each of the first 3 convolutions. The

number of output channels are, respectively, (32, 32, 64, 64, 10).

on both a medium-scale setting using a subset formed from

the images of 100 randomly sampled classes as well as the

large-scale setting, by training on the full dataset. Both ex-

periments use the VGG-f architecture with mini-batch size

of 256 and follow the settings described by (6). The results

are depicted in Fig. 2. We see that our method provides com-

pelling performance against popular first order solvers in

both cases, and that interestingly, its margin of improvement

grows with the scale of the dataset.

Random architecture results. It can be argued that stan-

dard architectures are biased to favour SGD, since it was

used in the architecture searches, and architectures in which

it failed to optimise were discarded (12). It would be useful

to assess the optimisers’ ability to generalise across archi-

tectures, testing how well they perform regardless of the

network model. We make an attempt in this direction by

comparing the optimisers on 50 deep CNN architectures

that are generated randomly (see Appendix B.3 for details).

In addition to being more architecture-agnostic, this makes

any hand-tuning of hyper-parameters infeasible, which we

believe to be a fair requirement for a dependable optimiser.

The results on CIFAR10 are shown in figure 3 (left), as the

median across all runs (thick lines) and 25th-75th percentiles

(shaded regions). CURVEBALL consistently outperforms

first-order methods, with the bulk of the achieved errors

below those of SGD and Adam.
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Table 2. Best error in percentage (train./val.) for different mod-

els and optimisation methods. CURVEBALL λ uses automatic λ

rescaling (sec. 3.3). Numbers in bracket show validation error with

dropout regularisation (rate 0.3). The first three columns are trained

on CIFAR-10, while the fourth is trained on ImageNet-100.

Model Basic Basic + BN ResNet-18 VGG-f

CURVEBALL λ 14.1 / 19.9 7.6 / 16.3 0.7 / 15.3 (13.5) 10.3 / 33.5

CURVEBALL 15.3 / 19.3 9.4 / 15.8 1.3 / 16.1 12.7 / 33.8

SGD 18.9 / 21.1 10.0 / 16.1 2.1 / 12.8 19.2 / 39.8

Adam 15.7 / 19.7 9.6 / 16.1 1.4 / 14.0 13.2 / 35.9

Comparison to other second-order methods. We used

the public implementation of the second-order KFAC (22)

method and tested their proposed scenario of a 4-layer MLP

(with output sizes 128-64-32-10) with hyperbolic tangent

activations for MNIST classification. We show results in

Fig. 2 (bottom row, right) with the best learning rate for each

method. On this problem our method performs comparably

to first order solvers, while KFAC makes less progress until

it has stabilised its Fisher matrix estimation.

A major advantage of our method is its minimal imple-

mentation based on standard deep learning tools, allowing us

to easily use improvements such as batch-normalisation. To

highlight this fact, in Fig. 3 (right) we show again the basic

CIFAR setting, this time comparing CURVEBALL with and

without batch-norm with KFAC, for which such an addition

would be relatively non-trivial to implement. This shows

that the combination of our method and batch-norm is more

powerful than each in isolation, similarly to what happens

with first-order methods (Fig. 2).

Wall-clock time. To provide an estimate of the relative ef-

ficiency of each model, Fig. 3 shows wall clock time on the

basic CIFAR-10 model (without batch-norm). Importantly,

we observe that our method is competitive with first-order

solvers, while not requiring any tuning. Moreover, our pro-

totype implementation includes FMAD operations which

have not received the same degree of optimisation as RMAD

(back-propagation), and could further benefit from careful

engineering. We also experimented with a Hessian-free op-

timiser (based on conjugate gradients) (20). We show a

comparison in logarithmic time in Appendix B.4. Due to the

costly CG operation, which requires several passes through

the network, it is an order of magnitude slower than the

first-order methods and our own second-order method. This

validates our initial motivation of designing a Hessian-free

method without the inner CG loop (Section 3.3).

Overfitting and validation error While the focus of this

work is optimisation, it is also of interest to compare the

validation errors attained by the trained models – these are

reported in Table 2. We observe that models trained with

the proposed method exhibit better training and validation

error on most models, with the exception of ResNet where

overfitting plays a more significant role. However, we note

that this could be addressed with better regularisation, and

we show one such example, by also reporting the validation

error with a dropout rate of 0.3 in brackets.

5. Related work

While second order methods have proved to be highly

effective tools for optimising deterministic functions (24; 37,

p. 164) their application to stochastic optimisation, and in

particular to deep neural networks remains an active area

of research. Many methods have been developed to im-

prove stochastic optimisation with curvature information

to avoid slow progress in ill-conditioned regions (8), while

avoiding the cost of storing and inverting a Hessian matrix.

A popular approach is to construct updates from a buffer

of parameter gradients and their first-and-second-order mo-

ments at previous iterates (e.g. AdaGrad (9), AdaDelta (41),

RMSProp (35) or Adam (13)). These solvers benefit from

needing no additional function evaluations beyond tradi-

tional mini-batch stochastic gradient descent. Typically they

set adaptive learning rates by making use of empirical esti-

mates of the curvature with a diagonal approximation to the

Hessian (e.g. (41)) or a rescaled diagonal Gauss-Newton ap-

proximation (e.g. (9)). While the diagonal structure reduces

computation, their overall efficiency remains limited and in

many cases can be matched by a well tuned SGD solver (36).

Second-order solvers take a different approach, invest-

ing more computation per iteration in the hope of achieving

higher quality updates. Trust-region methods (7) and cubic

regularization (26; 5) are canonical examples. To achieve

this higher quality, they invert the Hessian matrix H , or a

tractable approximation such as the Gauss-Newton approx-

imation (20; 23; 3) (described in section 2), or other regu-

larized (8) or subsampled versions of the Hessian (16; 38).

Another line of work belonging to the trust-region family (7),

which has proven effective for tasks such as classification, in-

troduces second order information with natural gradients (2).

While it implements a trajectory on a Riemannian manifold

derived from a Kullback-Leibler (KL) divergence, in prac-

tice it amounts to replacing the Hessian H in the modified

gradient formula H−1J with the Fisher matrix F . Since

the seminal work of (2) several authors have studied vari-

ations of this idea. TONGA (32) relies on the empirical

Fisher matrix where the previous expectation over the model

predictive distribution is replaced by the sample predictive

distribution. The works of (28) and (21) established a link

between Gauss-Newton methods and the natural gradient.

More recently (22) introduced the KFAC optimiser which

uses a block diagonal approximation of the Fisher matrix.

This was shown to be an efficient stochastic solver in sev-
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Figure 3. (Left) Results of 50 randomly-generated architectures on CIFAR10. The median (thick lines) and 25th-75th percentiles (shaded

region) are shown. Numbers in the legend represent learning rates (fixed for CURVEBALL). (Center) Training error vs. wall clock time

(basic CIFAR-10 model). (Right) Batch-normalisation is easily combined with our method, which is not the case with KFAC and others.

eral settings, but remains computationally challenging. In

particular, it requires an order of magnitude more memory

than the parameters themselves, which may be infeasible in

some cases. In contrast, ours has the same requirements as

momentum-SGD.

Many of the methods discussed above perform an explicit

system inversion that can often prove prohibitively expen-

sive (39). Consequently, a number of works (20; 23; 42) have

sought to exploit the cheaper computation of Hessian-vector

products via automatic differentiation (29; 33), to perform

system inversions with conjugate gradients (Hessian-free

methods). Other approaches (4; 1) have resorted to rank-1

approximations of the Hessian for efficiency. While these

methods have had some success, they have only been demon-

strated on single-layer models of moderate scale compared

to the state-of-the-art in deep learning. We speculate that

the main reason they are not widely adopted is their re-

quirement of several steps (network passes) per parameter

update (34; 14), which would put them at a similar disadvan-

tage w.r.t. first-order methods as the Hessian-free method

that we tested (Appendix B.4). Perhaps more closely re-

lated to our approach, (27) uses automatic differentiation

to compute Hessian-vector products to construct adaptive,

per-parameter learning rates.

The closest method is LiSSA (1), built around the idea

of approximating the Hessian inverse with a Taylor series

expansion. This series can be implemented as the recursion

H−1
(r) = I + (I −H)H−1

(r−1), starting with H−1
(0) = I . Since

LiSSA is a type of Hessian-free method, the core of the al-

gorithm is similar to Algorithm 2: it also refines an estimate

of the Newton step iteratively, but with a different update

rule in line 4. With some simple algebraic manipulations,

we can use the Taylor recursion to write this update in a

form that is similar to ours: zr+1 = zr − Ĥzr − J . This

looks similar to our gradient-descent-based update with a

learning rate of β = 1 (Alg. 1, lines 3-4), with some key

differences. First, they reset the state of the step estimate for

every mini-batch (Alg. 2, line 2). Reusing past solutions, like

momentum-SGD, is an important factor in the performance

of our algorithm, since we only have to perform one update

per mini-batch. In contrast, (1) report a typical number of

inner-loop updates (R in Alg. 2) equal to the number of

samples (e.g. R = 10, 000 for a tested subset of MNIST).

While this is not a problem for their tested case of linear

Support Vector Machines, since each update only requires

one inner-product, the same does not apply to deep neural

networks. Second, they invert the Hessian independently for

each mini-batch, while our method aggregates the implicit

Hessian across all past mini-batches (with a forgetting factor

of ρ). Since batch sizes are orders of magnitude smaller than

the number of parameters (e.g. 256 samples vs. 60 million

parameters for the VGG-f), the Hessian matrix for a mini-

batch is a poor substitute for the Hessian of the full dataset in

these problems, and severely ill-conditioned. Finally, while

they demonstrate improved performance on convex prob-

lems with linear models, we focus on the needs of training

deep networks on large datasets (millions of samples and

parameters), on which no previous Newton method has been

able to surpass the first-order methods that are commonly

used by the deep learning community.

6. Conclusions and future work

In this work, we have proposed a practical second-order

solver that has been specifically tailored for deep-learning-

scale stochastic optimisation problems. We showed that our

optimiser can be applied to a range of datasets and reach bet-

ter training error than first order methods with the same num-

ber of iterations, with essentially no hyper-parameter tuning.

In future work, we intend to bring more improvements to the

wall-clock time of our method by engineering the FMAD op-

eration to the same standard as back-propagation, and study

optimal trust-region strategies to obtain λ in closed-form.
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