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Figure 1: We present the first single-network approach for whole-body pose estimation, with real-time performance inde-

pendent of the number of people in the image. Our work builds upon the current state-of-the-art OpenPose [9], boosting

considerably its run-time performance while simultaneously improving slightly on the keypoint accuracy.

Abstract

We present the first single-network approach for

2D whole-body pose estimation, which entails simultaneous

localization of body, face, hands, and feet keypoints. Due to

the bottom-up formulation, our method maintains constant

real-time performance regardless of the number of people

in the image. The network is trained in a single stage us-

ing multi-task learning, through an improved architecture

which can handle scale differences between body/foot and

face/hand keypoints. Our approach considerably improves

upon OpenPose [9], the only work so far capable of whole-

body pose estimation, both in terms of speed and global ac-

curacy. Unlike [9], our method does not need to run an ad-

ditional network for each hand and face candidate, making

it substantially faster for multi-person scenarios. This work

directly results in a reduction of computational complex-

ity for applications that require 2D whole-body information

(e.g., VR/AR, re-targeting). In addition, it yields higher ac-

curacy, especially for occluded, blurry, and low resolution

faces and hands. For code, trained models, and validation

benchmarks, visit our project page1.

1https://github.com/CMU-Perceptual-Computing-Lab/

openpose_train

1. Introduction

Human keypoint estimation has been an open problem

for decades in the research community. Initially, efforts

were focused on facial alignment (i.e., face keypoint detec-

tion) [5, 52, 55, 72, 68, 74], and later evolved into single and

multi-person human pose estimation in-the-wild, including

body and foot keypoints [4, 7, 10, 13, 15]. A more recent

and challenging problem has targeted hand keypoint detec-

tion [58, 61, 76]. Therefore, the next logical step is the

integration of all of these keypoint detection tasks within

the same algorithm, leading to “whole-body” or “full-body”

(body, face, hand, and foot) pose estimation [1, 9].

There are several applications that can immediately take

advantage of whole-body keypoint detection, including

augmented reality, virtual reality, medical applications, and

sports analytics. Whole-body keypoint detection can also

provide more subtle cues for re-targeting, 3D human key-

point and mesh reconstruction [6, 11, 28, 42, 66], person

re-identification, tracking, and action recognition [22, 35,

50, 49]. Despite these needs, the only existing method

providing whole-body pose estimation is the prior version

of OpenPose [9], which follows a multi-stage approach.

First, all body poses are obtained from an input image in

a bottom-up fashion [10] and then additional face and hand
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keypoint detectors are run for each detected person [58]. As

a multi-network approach, it directly uses the existing body,

face, and hand keypoint detection algorithms. However, it

suffers from the issue of early commitment: there is no re-

course to recovery if the body-only detector fails, especially

during partial visibility when only the face or hand are vis-

ible in the image. In addition, its run-time is proportional

to the number of people in the image, making whole-body

pose estimation prohibitively expensive for multi-person

and real-time applications. A single-stage method, estimat-

ing whole-body poses of multiple people in a single pass,

would be more attractive as it would yield a fixed inference

run-time, independent of the number of people in the scene.

Unfortunately, there is an inherent scale difference be-

tween body/foot and face/hand keypoints. The former re-

quire a large receptive field to learn the complex interac-

tions across people (contact, occlusion, limb articulation),

while the latter require higher image resolution. Since the

foot pose is highly dependent on that of the body, unlike

face and hands, its desirable scale is consistent with that of

the body. Moreover, the scale issue has two critical conse-

quences. First, datasets with full-body annotations in-the-

wild do not currently exist, since the characteristics of each

set of keypoints result in different kinds of datasets. Body

datasets predominantly contain images with multiple peo-

ple, usually resulting in fairly low face and hand resolu-

tion, while face and hand datasets mostly contain images

with a single, cropped face or hand. Secondly, the architec-

ture design of a single-network model must differ from that

of the state-of-the-art keypoint detectors in order to offer

high-resolution and a larger receptive field, while simulta-

neously improving the inference run-time of multi-network

approaches.

To overcome the dataset problem, we resort to multi-task

learning (MTL), a classic machine learning technique [19,

36, 73] where related learning tasks are solved simultane-

ously by exploiting commonalities and differences across

them. Previously, MTL has been successful in training a

combined body-foot keypoint detector [9]. Nevertheless, it

does not generalize to whole-body estimation because of

the underlying scale problem. Therefore, the major contri-

butions of this paper are summarized as follows:

• Novelty: We present an MTL approach combined

with an improved architecture design to train a unified

model for various keypoint detection tasks each with

different scale characteristics. This results in the first

single-network approach for whole-body multi-person

pose estimation.

• Speed: At test time, our single-network approach pro-

vides a constant real-time inference regardless of the

number of people detected, and it is approximately n
times faster than the state-of-the-art (OpenPose [9]) for

images with n people. In addition, it is trained in a sin-

gle stage, rather than requiring independent network

training for each individual task. This reduces the total

training time approximately by one-half.

• Accuracy: Our approach also yields higher accuracy

than that of the previous OpenPose, especially for face

and hand keypoint detection, generalizing better to oc-

cluded, blurry, and low resolution faces and hands.

2. Related Work

Face Keypoint Detection: Also referred in literature as

landmark detection or face alignment, it has a long history

in computer vision and many approaches have been pro-

posed to tackle it. These approaches are broadly divisi-

ble into two categories: template fitting [5, 31, 55, 68, 75]

and regression-based methods [52, 72, 74]. Template fitting

methods build face templates to fit input images, usually

exploiting a cascade of regression functions. Regression

methods, on the other hand, are based on Convolutional

Neural Networks (CNNs) and usually apply convolutional

heatmap regression. They operate in a similar fashion to

that of body pose estimation.

Body Keypoint Estimation: With the face alignment

problem solved, efforts moved towards single-person pose

estimation. The initial approaches performed inference

over both local observations on body parts and their spa-

tial dependencies, either based on tree-structured graphi-

cal models [4, 18, 46, 51, 71] or non-tree models [15, 30,

33, 57, 63]. The popularity of CNNs and the release of

massive annotated datasets (COCO [34] and MPII [2]) im-

parted significant boost in the accuracy of single-person es-

timation [7, 12, 14, 32, 39, 62, 64, 69], and have enabled

multi-person estimation. The latter is traditionally divided

into top-down [13, 17, 20, 23, 24, 44, 48, 67] and bottom-

up [10, 38, 40, 43, 47] approaches.

Foot Keypoint Estimation: Cao et al. [9] released

the first foot dataset, with annotations on a subset of im-

ages from the COCO dataset. They also trained the first

combined body-foot keypoint detector by applying a naive

multi-task learning technique. Our method is an extension

of this work, mitigating its limitations and enabling it to

generalize to both large-scale body and foot keypoints as

well as the more subtle face and hand keypoints.

Hand Keypoint Detection: With the exciting improve-

ments in face and body estimation, recent research is tar-

geting hand keypoint detection. However, its manual an-

notation is extremely challenging and expensive due to

heavy self-occlusion [58]. As a result, large hand keypoint

datasets do not exist in-the-wild. To alleviate this problem,

early work is based on depth information [41, 56, 60, 61],

but is limited to indoor scenarios. Most of the work

in RGB-based hand estimation is focused on 3D estima-

tion [8, 25, 37, 76], primarily based on fitting complex 3D

models with strong priors. In the 2D RGB domain, Si-
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Figure 2: Overall pipeline. (a) An RGB image is taken as input. (b,c) Architecture of the whole-body pose estimation

network, consisting of multiple stages predicting refined PAFs (L) and confidence maps (S) for body, face, hand and foot. It

is trained end-to-end with a multi-task loss that combines the losses of each individual keypoint annotation task. Each Conv

Layer, C, corresponds to a Convolution-PReLU sequence. (d) At test time, the most refined PAFs and confidence maps are

resized to increase the accuracy. (e) The parsing algorithm uses the PAFs to find all the whole-body parts belonging to the

same person using bipartite matching. (f) The final whole-body poses are returned for all the people in the image.

mon et al. [58] exploit multi-view bootstrapping to create

a hand keypoint dataset and train a 2D RGB-based hand de-

tector. First, a naive detector is trained on a small subset of

manually labeled annotations. Next, this detector is applied

in a 30-camera multi-view dome structure [26, 28] to ob-

tain new annotations based on 3D reconstruction. Unfortu-

nately, most of the methods have only demonstrated results

in controlled lab environments.

Whole-Body Keypoint Detection: OpenPose [9, 10,

58] is the only known work able to provide all body, face,

hand, and foot keypoints in 2D. It operates in a multi-

network fashion. First, it detects the body and foot key-

points based on [10, 64]. Then, it approximates the face

and hand bounding boxes based on the body keypoints, and

applies a keypoint detection network for each subsequent

face and hand candidate [58]. Recent work is also target-

ing 3D mesh reconstruction [28, 29], usually leveraging the

lack of 3D datasets with the existing 2D datasets and de-

tectors, or reconstructing the 3D surface of the human body

from denser 2D human annotations [1].

Multi-Task Learning: To overcome the problems of

state-of-the-art whole-body pose estimation, we aim to ap-

ply multi-task learning (MTL) to train a single whole-body

estimation model out of the four different tasks: body, face,

hand, and foot detection. MTL applied to deep learning

can be split into soft and hard parameter sharing of hid-

den layers. In soft parameter sharing, each task has its

own model, but the distance between the parameters is reg-

ularized to encourage them to be similar between mod-

els [16, 70]. Hard parameter sharing is the most commonly

used MTL approach in computer vision, applied in many

applications, such as facial alignment [73] or surface nor-

mal prediction [36]. Particularly, it has had a critical impact

on object detection, where popular approaches such as Fast

R-CNN [19] exploit MTL to merge all previously indepen-

dent object detection tasks into a single and improved detec-

tor. It considerably improved training and testing speeds as

well as detection accuracy. Analogous to Fast R-CNN, our

work brings together multiple and independent keypoint de-

tection tasks into a unified framework. See [53] for a more

detailed survey of multi-task learning literature.

3. Method

Our system follows a streamlined approach, using an

RGB image to generate a set of whole-body human key-

points for each person detected. This global pipeline is il-

lustrated in Fig. 2. The extracted keypoints contain informa-

tion from the face, torso, arms, hands, legs, and feet. The

network architecture of the proposed whole-body keypoint

detector can be based on any state-of-the-art body-only key-

point detector. For a fair comparison of our results with

previous versions of OpenPose [9, 10, 58], we reuse its Part

Affinity Field (PAF) network architecture.

3.1. PAF­based Body Pose Estimation

Here, we review the main details of the PAF-based

method. We refer the reader to [10] for a full descrip-

tion. This approach iteratively predicts Part Affinity Fields

(PAFs), which encode part-to-part associations, and detec-

tion confidence maps. Each PAF is defined as a 2D orien-

tation vector that points from one keypoint to another. The

input image I is initially analyzed by a convolutional net-

work (pre-trained on VGG-19 [59]), generating a set of fea-

ture maps F. Next, F is fed into the first stage φ(1) of the

network φ, which predicts a set of PAFs L
(1). For each

subsequent stage i, the PAFs of the previous stage L
(t−1)

are concatenated to F and refined to produce L
(t). After N
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stages, we obtain the final set of PAF channels L = L
(N).

Then, F and L are concatenated and fed into a network ρ,

which predicts the keypoint confidence maps S, i.e.,

L
(1) = φ(1) (F) , (1)

L
(t) = φ(t)

(

F,L(t−1)
)

, ∀ 2 ≤ t ≤ N, (2)

L = L
(N), (3)

S = ρ (F,L) . (4)

An ℓ2 loss function is applied at the end of each

stage, which compares the estimated predictions and the

groundtruth maps (S∗) and fields (L∗) for each pixel (p)

on each confidence map (c) and PAF (f ) channel:

fL =
F
∑

f=1

∑

p

(

Wi(p) · ‖Lf (p)− L
∗

f (p)‖
2
2

)

, (5)

fS =

C
∑

c=1

∑

p

(

Wi(p) · ‖Sc(p)− S
∗

c(p)‖
2
2

)

, (6)

where C and F are the number of stages for confidence map

and PAF prediction, and W is a binary mask with Wi(p)=0

when an annotation is missing at a pixel p for a particular

confidence map or PAF channel i. Non-maximum suppres-

sion is performed on the confidence maps to obtain a dis-

crete set of body part candidate locations. Finally, bipartite

graph matching [65] is used to assemble the connections

that share the same part detection candidates into full-body

poses for each person in the image.

3.2. Whole­Body Pose Estimation

We want whole-body pose estimation to be accurate but

also fast. Training an individual PAF-based network to pre-

dict each individual set of keypoints would achieve the first

goal, but would also be computationally inefficient. Instead,

we extend the body-only PAF framework to whole-body

pose estimation, making various modifications to the train-

ing approach and network architecture.

Multi-task learning training: We modify the definition

of the keypoint confidence maps S as the concatenation of

the confidence maps: body SB , face SF , hand SH , and

foot SO. Analogously, the set of PAFs at stage t, L(t), is

defined as the concatenation of the PAFs: body L
(t)
B , face

L
(t)
F , hand L

(t)
H , and foot L

(t)
O . An interconnection between

the different annotation tasks must be created in order to

allow the different set of keypoints of the same person to

be assembled together. For instance, we join the body and

foot keypoints through the ankle keypoint, which is anno-

tated in both datasets. Analogously, the wrists connect the

body and hand keypoints, while the eyes relate body and

face. The rest of the pipeline (non-maximum suppression

over confidence maps and bipartite matching to assemble

(a) (b) (c)

Figure 3: Different kinds of datasets for each set of key-

points present different properties (number of people, oc-

clusion, person scale, etc.). We show typical examples from

the hand (left), body (center), and face (right) datasets.

full people) is left intact. As opposed to having a dedicated

network for each keypoint annotation task, all the keypoints

are now defined within the same model architecture. This

is an extreme version of hard parameter sharing, in which

only the final layer is task-specific.

Balanced dataset-based probability ratio: If we had

a whole-body dataset, we could train a combined model

following the body-only training approach. Unfortunately,

each available dataset only contains annotations for a subset

of keypoints. To overcome the lack of a combined dataset,

we follow the probability ratio idea of the single-network

body-foot detector of Cao et al. [9], which was trained from

body-only and body-foot datasets. Batches of images are

randomly picked from each available dataset, and the losses

for the confidence map and PAF channels associated to non-

labeled keypoints are masked out. I.e., their binary mask

Wi(p) is set to 0. Abusing notation, the probability ratio P d

is defined as the probability of picking the next annotated

batch of images from the dataset d. This probability is dis-

tributed across the different datasets depending on the num-

ber of images in each dataset. When applied to keypoints

with similar scale properties (e.g., body and foot [9]), it re-

sults in a robust keypoint detector. However, it does not con-

verge when applied to whole-body estimation, which now

includes face and hand keypoints. Additionally, the accu-

racy of the body and foot detectors is considerably reduced.

Solving the face and hand convergence problem would be

then possible through a deeper analysis of the properties and

differences of each set of keypoints.

Dataset-based augmentation: There is an inherent

scale difference between body/foot and face/hand key-

points, which results in different kinds of datasets for each

set of keypoints. Body datasets predominately contain im-

ages with multiple people and low face and hand resolu-

tion; face datasets focus on images with a single person or

cropped face; whereas hand datasets usually contain im-

ages with a single full-body person. Fig. 3 shows typical

examples from each dataset. To solve this problem, aug-

mentation parameters are varied for each set of keypoints.

For instance, the minimum possible scale for face datasets
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is reduced during data augmentation to expose our model

to small faces, to simulate reality of the ‘wild’ environ-

ments. Oppositely, the maximum scale for hand datasets

is increased so that full-sized hands appear more frequently,

allowing the network to generalize to high resolution hands.

Overfitting: Using the above ideas, the face and hand

detectors converge and allow us to build an initial whole-

body pose detector. However, we observe a large degree of

over-fitting on some validation sets, particularly in the face

and lab-recorded datasets. Even though the initial proba-

bility ratio P d is evenly distributed depending on the num-

ber of images in each dataset, the data complexity of these

datasets is lower than the complexity of the challenging

multi-person and in-the-wild datasets. In addition, the range

of possible facial gestures is much smaller than the number

of possible body and hand poses. Thus, the probability ra-

tio of picking a batch from one of the face and lab-recorded

datasets must be additionally reduced. Empirically, we fine-

tune the probability ratios between datasets so that the vali-

dation accuracy on each converges at the same pace.

High false positive rate: Face, hand, and foot keypoints

present a high false positive rate producing a “ghosting” ef-

fect on their respective confidence map and PAF channels.

Visually, this means that these channels are outputting a

non-zero value in regions that do not contain people. To

mitigate this issue, their binary mask Wi(p) is re-enabled

in the COCO dataset for image regions with no people.

Furthermore, we complement training with an additional

dataset consisting of COCO images without any people.

Further refinement: Face and hand datasets do not nec-

essarily annotate all the people that appear in each image.

We apply Mask R-CNN [23] to mask out the regions of the

image with non-labeled people. In addition, the pixel lo-

calization precision of the face and hand keypoint detec-

tors remains low. To moderately improve it, we reduce

the radius of the Gaussian distribution used to generate the

groundtruth of their confidence map channels.

Shallow whole-body detector: At this point, we can

build a working whole-body pose detector. The inference

run-time of this refined detector matches that of running

body-foot in [9]. However, it still suffers from two main

issues. On the one hand, the body and foot accuracy consid-

erably decreases compared to its standalone analog (i.e., the

body-foot detector from Cao et al. [9]). The complexity of

the network output has increased from predicting 25 to 135

keypoints (and their corresponding PAFs). The network has

to compress about 5 times more information with the same

number of parameters, reducing the accuracy of each in-

dividual part. On the other hand, face and hand detection

accuracy appear relatively similar to that of Cao et al. [9] in

the benchmarks, but the qualitative results show that their

pixel localization precision remains low. This is due to the

reuse of same network as that used in body-only pose esti-

mation which has low input resolution. Face and hand de-

tection requires a network with higher resolution to provide

results with high pixel localization precision. This initial

detector is defined as “Shallow whole-body” in Sec. 4.

Improved network architecture: To match the accu-

racy of the body-only detector and solve the resolution issue

of face and hand, the whole-body network architecture must

diverge from that of Cao et al. [9]. It must still maintain a

large receptive field for accurate body detection but also of-

fer high-resolution maps for precise face and hand keypoint

detection. Additionally, its inference run-time should re-

main similar to or improve upon that of its analogous multi-

stage whole-body detector. Our final model architecture,

refined for whole-body estimation and shown in Fig. 2, dif-

fers from the original baseline in the following details:

• The network input resolution is increased to consider-

ably improve face and hand precision. Unfortunately,

this implicitly reduces the effective receptive field (fur-

ther reducing body accuracy).

• The number of convolutional blocks in each PAF stage

is increased to recover the effective receptive field that

was previously reduced.

• The width of each convolutional layer in the last PAF

stage is increased to improve the overall accuracy, en-

abling our model to match the body accuracy of the

standalone body detector.

• The previous solutions considerably increase the over-

all accuracy of our approach but also harm the train-

ing and testing speed. The number of PAF stages is

reduced to partially overcome this issue, which only

results in a moderate reduction in overall accuracy.

This improved model highly outperforms Cao et al. [9]

in speed, being approximately n times faster for an image

with n people in it. Additionally, it also slightly improves

its global accuracy (Secs. 4.3, 4.4 and 4.5). This network is

denoted as “Deep whole-body” in Sec. 4.

4. Evaluation

4.1. Experimental Setup

Datasets: We train and evaluate our method on different

benchmarks for each set of keypoints: (1) COCO keypoint

dataset [34] for multi-person body estimation; (2) Open-

Pose foot dataset [9], which is a subset of 15k annota-

tions out of the COCO keypoint dataset; (3) OpenPose

hand dataset [58], which combines a subset of 1k hand in-

stances manually annotated from MPII [2] as well as a set

of 15k samples automatically annotated on the Dome or

Panoptic Studio [27]; (4) our custom face dataset, consist-

ing of a combination of the CMU Multi-PIE Face [21], Face

Recognition Grand Challenge (FRGC) [45], and i-bug [54]

datasets; (5) the Monocular Total Capture dataset [66],

6986



the only available 2D whole-body dataset which has been

recorded in the same Panoptic Studio used for the hand

dataset. Following the standard COCO multi-person met-

rics, we report mean Average Precision (AP) and mean Av-

erage Recall (AR) for all sets of keypoints.

Training: All models are trained using 4-GPU ma-

chines, with a batch size of 10 images, Adam optimiza-

tion, and an initial learning rate of 5e-5. We also decrease

the learning rate by a factor of 2 after 200k, 300k, and

every additional 60k iterations. We apply random crop-

ping, rotation (±45o), flipping (50%), and scale (in the

range [1/3, 1.5]) augmentation. The scale is modified to

[2/3, 4.5] and [0.5, 4.0] for Dome and MPII hand datasets,

respectively. The input resolution of the network is set to

480×480 pixels. Similar to [9], we maintain VGG-19 as

the backbone. The probability of picking an image from

each dataset is 76.5% for COCO, 5% each for foot and MPII

datasets, 0.33% for each face dataset, 0.5% for Dome hand,

5% for MPII hand, 5% for whole-body data, and 2% for

picking an image with no people in it.

Evaluation: We report both single-scale (image resized

to a height of 480 pixels while maintaining the aspect ra-

tio) and multi-scale results (results averaged from images

resized to a height of 960, 720, 480, and 240 pixels).

4.2. Ablation Experiments

Increasing the network resolution is crucial for accurate

hand and face detection. Nevertheless, it directly results in

slower training and testing speeds. We aim to maximize

the accuracy while preserving a reasonable run-time perfor-

mance. Thus, we explore multiple models tuned to maintain

the same inference run-time. The final model is selected as

the one maximizing the body AP. Table 1 shows the results

on the COCO [34] validation set. The most efficient con-

figuration is achieved by increasing the number of convolu-

tional blocks and their width, while reducing the number of

stages in order to preserve the speed.

4.3. Body and Foot Keypoint Detection Accuracy

Once the optimal model has been selected, it is trained

for whole-body estimation. Table 2 show the accuracy re-

sults on the COCO validation set for our 3 different models,

as well as the results reported by Cao et al. [9]. The new

deeper architecture slightly increases the accuracy of Open-

Pose when trained for whole-body estimation. It can also

be applied to body-foot estimation, achieving a 1.1% im-

provement in accuracy compared to that of Cao et al. [9].

Interestingly, adding face and hand keypoints to the same

model results in a considerable decrease of the body de-

tection accuracy by about 5% for the shallow model when

compared to that of [9]. Intuitively, this is due to the fact

that we are trying to fit nearly six times as many keypoints

into the same network. The original model might not have

Method
AP AR APs ARs

PAF CM

1s, 10b, 256w 1s, 10b, 256w 65.8 70.3 56.1 61.1

2s, 8b, 128-288w 1s, 8b, 256w 66.1 70.5 56.7 61.9

2s, 10b, 128-256w 1s, 10b, 256w 66.1 70.7 57.0 62.0

3s, 8b, 96-256w 1s, 8b, 192w 66.4 70.9 56.9 61.9

4s, 8b, 96-256w 1s, 8b, 224w 65.7 70.2 56.3 61.4

5s, 8b, 64-256w 1s, 5b, 256w 65.5 70.1 56.7 61.8

Table 1: Self-comparison on the body COCO validation

set. All models have been tuned to have the same inference

run-time. ‘APs’ and ‘ARs’ refer to the single-scale results.

‘PAF’ represents the Part Affinity Field network configura-

tion and ‘CM’ the confidence map configuration. ‘s’ refers

to the number of stages of refinement, ‘b’ to the number of

convolutional blocks per stage, ‘w’ to the number of output

channels (or width) of each convolutional layer. All other

settings follow Sec. 4.1.

enough capacity to handle the additional complexity intro-

duced by the new keypoints. However, this gap is smaller

than 1% for the improved architecture (deep body-foot vs.

deep whole-body). The additional depth helps the network

generalize to a higher number of output keypoints.

Method Body AP Foot AP

Body-foot OpenPose (multi-scale) [9] 65.3 77.9

Shallow whole-body (ours, multi-scale) 60.9 70.2

Deep body-foot (ours, multi-scale) 66.4 76.8

Deep whole-body (ours, multi-scale) 65.6 76.2

Table 2: Accuracy results on the COCO validation set.

‘Shallow’ refers to the network architecture with the same

depth and input resolution as that of OpenPose, while

‘Deep’ refers to our improved architecture. ‘Body-foot’

refers to the network that simply predicts body and foot

keypoints, following the default OpenPose output, while

‘Whole-body’ refers to our novel single-network model.

4.4. Face Keypoint Detection Accuracy

In order to evaluate the accuracy of face alignment, tra-

ditional approaches have used the Probability of Correct

Keypoint (PCK) metric, which checks the probability that

a predicted keypoint is within a distance threshold of its

true location. However, it does not generalize to a multi-

person setting. In order to evaluate our work, we reuse the

mean Average Precision (AP) and Recall (AR), following

the COCO multi-person metric. We train our whole-body

algorithm with the same face datasets that OpenPose [9]

used: Multi-PIE [21], FRGC [45], and i-bug [54]. We cre-

ate a custom validation set by selecting a small subset of

images from each dataset. We show the results in Table 3.

We can see that both our method and [9] greatly over-fit on
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the Multi-PIE and FRGC datasets. These datasets consist

of images annotated in controlled lab environments, and all

faces appear frontal and with no occlusion, similar to the

last image in Fig. 3. However, their accuracy is consider-

ably lower in the in-the-wild i-bug dataset, where our ap-

proach is about 2% more accurate.

Method
Face AR

FRGC M-Pie i-bug

OpenPose [9] 98.3 96.3 52.4

Shallow Whole-body (ours, single-scale) 98.4 90.6 50.6

Deep Whole-body (ours, single-scale) 98.4 93.2 54.5

Table 3: Accuracy results on our custom CMU Multi-PIE

and FRGC validation sets. All the people in each image are

not necessarily labeled on i-bug. Thus, those samples might

be considered erroneous “false positives” and affect the AP

results. However, AR is only affected by the annotated sam-

ples, so it is used as the main metric for i-bug.

4.5. Hand Keypoint Detection Accuracy

Analog to face evaluation, we randomly select a subset

of images from each hand dataset for validation. We de-

note “Hand Dome” for the subset of [58] recorded in the

Panoptic Studio [27], and “Hand MPII” for the subset man-

ually annotated from MPII [3] images. The results are pre-

sented in Table 4. Both our method and the previous Open-

Pose over-fit on the Dome dataset, where usually only a sin-

gle person appears in each frame, similar to the first image

in Fig. 3. However, the manually annotated images from

MPII are more challenging for both approaches, as it rep-

resents realistic in-the-wild scenes. In such images, we can

see the clear benefit of our deeper network with respect to

Cao et al. [9] and our initial shallow model, outperforming

by about 5.5% on the Hand MPII dataset.

4.6. Run­time Comparison

In Fig. 4, we compare the inference run-time between

OpenPose and our work. Our method is 10% faster than

OpenPose for images with a single person. However, the

inference time of our single-network approach remains con-

stant, while OpenPose’s time is proportional to the number

Method
Hand AR

Dome MPII

OpenPose (single-scale) [9] 97.0 82.7

Shallow whole-body (ours, single-scale) 94.6 82.4

Deep whole-body (ours, single-scale) 97.8 88.1

Table 4: Results on our custom Hand Dome and Hand MPII

validation sets. These datasets might contain unlabeled peo-

ple (similar to i-bug), so AR is used for evaluation.

Figure 4: Inference time comparison between our work and

whole-body OpenPose [9]. While the inference time of our

proposed approach is invariant, the run-time of OpenPose

grows linearly with the number of people. OpenPose run-

time presents some oscillations because it does not run face

and hand detectors if the nose or wrist keypoints (provided

by the body network) of a person are not found. This is a

common case in images with many crowded images. This

analysis was performed on a system with a Nvidia 1080 Ti.

of people detected, in particular, it is proportional to the

number of face and hand proposals. This leads to a massive

speedup of our approach when the number of people in-

creases. For images with n people, our approach is approx-

imately n times faster than OpenPose. For crowded images,

many hands and faces are occluded, slightly reducing this

speedup. For instance, our approach is about 7 times faster

than OpenPose for typical images with 10 people in them.

5. Conclusion

In this paper, we resort to multi-task learning combined

with an improved model architecture to train the first single-

network approach for 2D whole-body estimation. Our work

brings together multiple and, currently, independent key-

point detection tasks into a unified framework. We evalu-

ate our method on multiple keypoint detection benchmarks

and compare it with the state-of-the-art, considerably out-

performing it in both training and testing speed as well as

slightly improving its accuracy. We qualitatively show in

Fig. 5 that our face and hand detectors generalize better to

in-the-wild images, benefiting from their indirect exposure

to the immense body datasets. Nevertheless, there are still

some limitations with our method. First, we observe global

failure cases when a significant part of the target person is

occluded or outside of the image boundaries. Secondly, the

accuracy of the face and especially hand keypoint detec-

tors is still limited, failing in the case of severe motion blur,

small people, and extreme gestures. Third, we qualitatively

observe that the previous version of OpenPose outperforms
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5: Qualitative comparison between our method (top) and the previous version of OpenPose [9] (bottom), performed

on a system with 2 Nvidia 1080 Ti. (a-j) show improved results and (k-o) failing cases. (a) It generalizes better to hands

wearing any kind of gloves. (b) The implicit finger information helps wrist and elbow detection. (c) Even smaller faces and

hands are detected. (d-e) Blurry and profile faces are detected. (f) More extreme hand poses are detected. (g) Faces from

low-brightness images are better detected. (h) Hands where all fingers are occluded are detected. (i-j) Cropped arms are

properly detected. (k-l) It shows difficulties when several hands are in proximity. (m-o) It seems to fail for some relatively

easy hand and face poses that are successfully detected with the previous version of OpenPose.

ours for face and hand detection when poses are simple and

no occlusion occurs. The previous method crops the bound-

ing box proposal of those bounding box candidates, resizes

them up, and feeds them into its dedicated networks. This

higher input resolution leads to an increased pixel localiza-

tion precision if the keypoint detection is successful.
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