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Abstract

Visual place recognition is fundamental for many vi-

sion based applications. Sparse feature and deep learn-

ing based methods have been successful and dominant over

the decade. However, most of them do not explicitly lever-

age high-level semantic information to deal with challeng-

ing scenarios where they may fail. This paper proposes a

novel visual place recognition algorithm, termed TextPlace,

based on scene texts in the wild. Since scene texts are high-

level information invariant to illumination changes and very

distinct for different places when considering spatial corre-

lation, it is beneficial for visual place recognition tasks un-

der extreme appearance changes and perceptual aliasing. It

also takes spatial-temporal dependence between scene texts

into account for topological localization. Extensive experi-

ments show that TextPlace achieves state-of-the-art perfor-

mance, verifying the effectiveness of using high-level scene

texts for robust visual place recognition in urban areas.

1. Introduction

Visual place recognition (VPR) is one of the fundamental

elements of many computer vision and robotics applications

and has attracted considerable attention over the decades

[15]. Its goal is to recognize revisited places accurately by

using visual information.

Most of the established visual place recognition systems

rely on local visual features and the so-called Bag of Vi-

sual Words (BoVWs) technique [20, 27]. Some of them

have shown impressive place recognition performance for

large-scale environments by using a single image matching

[4, 5]. However, for long-term operation, their performance

may degrade due to extreme appearance variations caused

by day-night cycles, weather and seasonal conditions. For

example, as shown in Fig. 1, the visual appearance of a

∗Corresponding author

lebara

bargain

lebara

bargain

hill evasvero

Figure 1: Place recognition with scene texts. Top: Same place

with different visual appearance at day and night. Bottom: Dif-

ferent places with strong perceptual aliasing. Note scene texts are

consistent for the same place and distinct for different ones.

same place can be very different at day and night (top),

while different places may look visually similar with strong

perceptual aliasing (bottom). Therefore, sparse local feature

based place recognition approaches may be fragile when en-

countering a large appearance variation due to illumination

and season changes. To overcome these problems, sequence

based methods [17, 19] use global image descriptors and a

sequence of images for matching. Current state-of-the-art

VPR systems mainly rely on deep learning techniques [2, 7]

to learn a latent representation for place recognition in chal-

lenging scenarios. However, most of them do not explicitly

leverage high-level semantic information.

Human is remarkably good at the visual place recogni-

tion task. One of the reasons is that human can make full use

of high-level semantic information for scene understanding

and place recognition. Texts, as one of main types of high-

level semantics and the fruit of human’s wisdom, have been

long used for reading maps, giving directions and finding

destinations. However, they have not been fully exploited

for visual place recognition research although scene texts

pervasively exist in man-made environments and urban ar-

eas, e.g., road signs, street names and shop signage. Revisit

the example in Fig. 1. It can be seen that the scene texts can
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be powerful to deal with the challenging perceptual prob-

lems since they are consistent for a same place (top) and

distinct for different ones (bottom).

In this paper, we explore how to leverage high-level tex-

tual information for visual place recognition and topologi-

cal localization. A novel visual place recognition system,

termed TextPlace, is proposed. Given scene texts detected

in the wild, TextPlace represents places by textual descrip-

tors and builds topological maps to encapsulate spatial co-

herence of the texts. Our main contribution is threefold.

First, to the best of our knowledge, TextPlace is the first vi-

sual place recognition system which mainly uses scene texts

as descriptors to deal with place recognition in challeng-

ing scenarios, e.g., serious illumination changes, perceptual

aliasing, dynamic occlusion and variant viewpoints. Sec-

ond, we develop a whole pipeline on using high-level tex-

tual information for topological metric localization. Last,

we demonstrate the first time that texts can be effectively

utilized to tackle visual place recognition and topological

localization in the aforementioned challenging scenarios.

The rest of this paper is organized as follows. Section 2

reviews related work, followed by algorithm description on

TextPlace in Section 3. Experimental results are given in

Section 4. Conclusion is drawn in Section 5.

2. Related Work

Visual place recognition research can be roughly catego-

rized into sparse feature, sequence and deep learning based

techniques.

2.1. Sparse Feature based Place Recognition

Sparse feature based place recognition algorithms shown

great success and was dominant a decade ago. They rely on

local features, e.g., SURF [3] and SIFT [14], and BoVW

technique. A classic method is FAB-MAP, a probabilistic

localization and mapping model based on visual appearance

[4]. Similarly, [6] uses BoVW model combining ORB fea-

tures for fast place recognition. Vector of Locally Aggre-

gated Descriptors (VLAD) [11] and DenseVLAD [28] com-

pute the sum of the residuals between each visual word and

the corresponding clustering center. However, the sparse

feature based methods may be problematic when facing dra-

matic illumination changes and dynamic scenes.

2.2. Sequence based Place Recognition

Some work has exploited sequential information for

place recognition. Milford and Wyeth [17] propose SeqS-

LAM which uses a sequence of global image descriptor for

place recognition. It was one of the first attempts to ad-

dress the problems raised by extreme perceptual changes,

through exploiting the spatial and temporal information. In

[18, 19, 29], a graph based model is used to represent the

data association between the query and map sequences in

which the cost of network flow within the graph is mini-

mized to find a match.

2.3. Deep Learning based Place Recognition

Since the high-level features learned from deep neural

networks may implicitly encapsulate some semantic infor-

mation, they can be used for place recognition in changing

environments. In NetVLAD [2], a set of local descriptors of

a single image is learned by a convolutional neural network,

and the compact form of the local descriptors is computed

similar to VLAD [11]. In [9], a three-stream siamese net-

work is trained for image retrieval. Whereas in [22], 3D

models are constructed for each cluster of images and used

to guide for image retrieval. Both in [21] and [1], they per-

form image-to-image translation from the source domain to

the target domain by using Generative Adversarial Network

(GANs) [8] so that they can conduct simpler matching in

the target domain.

2.4. Text based Localization and Place Recognition

Since scene texts, such as street signs, road markings,

billboards and shop signage, usually carry extensive dis-

criminative information, they can be considered as land-

marks for localization. Textual information is proposed for

robot navigation in [30], where a conjunction text feature is

used to encode text information as landmark for loop clo-

sure detection. Radwan et al. [23] present a global localiza-

tion approach by using multiple texts observed on a map.

Ranganathan et al. [24] pair the road markings with precise

GPS position during mapping and perform localization by

matching the detected road markings with the map. The re-

cent advance of text detection in the wild [10, 13] paves the

way for using textual information for localization and place

recognition in open, challenging environments. Next we ex-

plore how to use this high-level information in the wild for

place recognition and localization.

3. Proposed Algorithm

In this section, the proposed TextPlace algorithm is de-

scribed. Its goal is to track a camera robustly with respect

to a text augmented topological map by text based place

recognition and topological localization.

3.1. System Overview

The TextPlace system contains two major stages: 1)

Mapping stage. Given a sequence of images and their visual

odometry estimates, TextPlace builds a topological metric

map of scene texts recognized. 2) Place recognition and lo-

calization stage. A sequence of query images or a new cam-

era is localized with respect to the topological map built,

relying on scene texts and their spatial-temporal coherence

in an environment. Fig. 2 shows the system overview. The

details of the system are explained next.
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Figure 2: System overview (Top: mapping stage. Bottom: place recognition and localization stage). Scene texts are detected and recognized

on both map and query image sequences. Some of the text strings are filtered by matching with the words in a pre-defined dictionary. At the

mapping stage, a textual descriptor augmented topological map is produced. It is then used for text based place recognition and topological

localization.

3.2. Text Detection and Recognition

Different from traditional VPR methods which use

sparse or global image features, TextPlace extracts high-

level textual information from the scenes and uses it as the

primitive for place recognition. To spot the texts in the wild,

TextBoxes++ [13], a deep learning based text detection and

recognition model, is used. It can predict multiple texts ap-

pear in an image and their bounding boxes. The texts are

then recognized as a sequence of text strings by the deep

neural network model proposed in [26]. In this work, we

use a pre-trained model of TextBoxes++ to extract texts and

predict their bounding box positions.

3.3. Textual Descriptor

3.3.1 Text Filtering

Some texts in the wild can be distinct and informative when

considering their geographical correlation, such as street

names and shop signage. On the other hand, determiner

words, like demonstratives (e.g., “this”) and possessives

(e.g., “my”) provide very limited geo-information. There-

fore, TextPlace uses a pre-defined dictionary to specify

salient texts which are considered during the mapping and

localization stages. In this work, a dictionary containing

street names, shop signage and billboards is automatically

built by crawling an online map. Since these texts are rea-

sonably stable for a long period, it makes sense to maintain

a pre-defined dictionary. Note the dictionary does not need

to be comprehensive or latest thanks to the spatial-temporal

dependence introduced by the topological mapping and lo-

calization. We will discuss this later.

In practice, some text recognition results can be incorrect

due to poor image quality, unusual font styles, etc. There-

fore, it is necessary to filter out these noisy texts, with-

out considering them at the mapping stage. To this end,

we measure the Levenshtein distance [12] between a rec-

ognized text and the words in the pre-defined dictionary.

Levenshtein distance is the minimum operations, including

deletions, insertions and substitutions, to take for correcting

string A to string B. For example, the Levenshtein distance

between “sitting” and “kitten” is 3 because three operations

are needed to convert “kitten” to “sitting”: replacing “k”

with “s”, replacing “e” with “i” and inserting a “g” after

“n”. Denote |A| and |B| as the lengths of string A and B,

respectively. The Levenshtein distance d between them is

equal to dA,B(|A|, |B|) where

dA,B(i, j) =



















max(i, j) if min(i,j) = 0,

min











dA,B(i− 1, j) + 1

dA,B(i, j − 1) + 1 otherwise.

dA,B(i− 1, j − 1) + 1Ai 6=Bj

1Ai 6=Bj
means the indicator function equal to 0 when Ai is

the same as Bj and equal to 1 otherwise, and dA,B(i, j) is

the distance between the first i characeter of A and the first j

character of B. We therefore can filter out the incorrect text

recognition results whose minimum Levenshtein distances

across the whole dictionary are larger than a threshold.

3.3.2 Textual Descriptor

After the text filtering, each image frame which has some

remaining texts is represented by a textual descriptor, facili-

tating the similarity check (details in Section 3.5.2) for place

recognition. The textual descriptor Y of an image includes

the set of the N remaining text strings S = {s1,...,sN} and

their bounding box positions B = {b1,..., bN}.

3.4. Topological Mapping

In order to reflect the spatial-temporal dependence of the

detected texts in the environments, a topological metric map

is adopted in TextPlace. Specifically, each node of the topo-
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logical map represents an image, containing its textual de-

scriptor and camera pose. The edge between two neighbor

nodes denotes a relative transformation estimated by visual

odometry, which can be accumulated to estimate the cam-

era pose. Once the camera moves a certain distance, termed

as displacement between nodes, a new node is added in the

map. The mechanism of this topological metric map mod-

els the spatial coherence of the scene texts and forms dis-

tinct combinations of textual descriptors in a graph for place

recognition.

3.5. Place Recognition

Once a topological metric map is built, we can perform

place recognition and topological localization with respect

to it. Similar to the mapping stage, each image frame is also

processed with the text detection, recognition and filtering

as described in Section 3.2 and 3.3.

The place recognition is formulated as how to best as-

sociate a query frame with a map node (representing an

image) in the topological metric map, considering both the

spatial-temporal constraints and the textual descriptor.

3.5.1 Spatial-Temporal Dependence

Scene texts are usually geographically distributed with a

strong spatial correlation in the environments. For exam-

ple, three adjacent store signs can be distinct in an area.

Therefore, TextPlace utilizes a search window to confine

the map nodes to match with for each query image. The

window has an adaptive size, which depends on the uncer-

tainty of the camera pose (details in Section 3.6.2). This

significantly improves the efficiency and robustness of the

place recognition, especially for large-scale environments,

because the similarity matching can be conducted only with

the map nodes in the window instead of the whole topolog-

ical map.

3.5.2 Similarity Matching

We define a similarity function to match the textual descrip-

tor of a query image with the map images within the search

window. Fig. 3 gives an example on how to compute each

similarity term. It mainly considers the following two met-

rics.

Levenshtein distance Denote the textual descriptors of a

query and its ith map node in the search window as Yq and

Y i
m, respectively. The normalized total Levenshtein dis-

tance D(Yq, Y
i
m) between their sets of text strings can be

computed as

D(Yq, Y
i
m) =

1

N

N
∑

k=1

max(Lk − dik, 0)

Lk

(1)

Intersection over Union

Bounding Box Area

   Query 
Image

Map 
Image

borge

burger shop

shop

S H O P

0 1 2 3 4

S 1 0 1 2 3

H 2 1 0 0 2

O 3 2 1 0 1

P 4 3 2 1 0

B U R G E R

0 1 2 3 4 5 6

B 1 0 1 2 3 4 5

O 2 1 1 2 3 4 5

R 3 2 2 1 2 3 4

G 4 3 3 2 1 2 3

E 5 4 4 3 2 1 2

Figure 3: An example on similarity measurement. Left: IoU mea-

surement. Right: Grids showing Levenshtein distance measure-

ment between two pairs of query and map strings. The bottom

right cell (green) is the final Levenshtein distance for each case.

where N is the number of text strings in the query descriptor

Yq , Lk is the length of the kth text string in Yq , and dik is the

minimum Levenshtein distance between this kth string and

all the strings in Y i
m.

IoU Once the Levenshtein distance between a pair of query

and map text strings is below an association threshold,

the Intersection-over-Union (IoU) of their corresponding

bounding boxes is computed. The mean IoU between Yq

and Y i
m is defined as

U(Yq, Y
i
m) =

1

N

N
∑

k=1

Ak ∩Ai
k

Ak ∪Ai
k

(2)

where Ak is the bounding box area of the kth text string in

Yq , Ai
k is the bounding box area of its matched string in Y i

m,

and ∩ and ∪ denote intersection and union of the two areas,

respectively.

Finally, the similarity score for the ith map node in the

search window is the weighted sum of these two metrics:

Ssim(Yq, Y
i
m) = wd ·D(Yq, Y

i
m)+wu ·U(Yq, Y

i
m) (3)

where wd and wu (wd + wu = 1) are weighting factors for

the Levenshtein distance and IoU, respectively. Therefore,

the map node whose similarity score is maximum is chosen

as the recognized match for the query image.

3.6. Topological Localization

Based on the place recognition, we can achieve topolog-

ical localization by modelling the temporal dependence of a

camera and its motion estimation. It includes 3 main mod-

ules: 1) initialization, 2) pose tracking and update and 3)

re-localization.
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Figure 4: Example of a global searching. A sliding window of

size 4 moves along the topological map, computing a set of simi-

larity scores between query and map nodes to find the best match

sequence which maximizes the sum of similarity score.

3.6.1 Initialization

Since a camera can start with an unknown initial position

with respect to the topological map, we use the place recog-

nition in the last section to initialize its location. Specifi-

cally, once a number of matches continuously having high

similarity scores, the sequence of these query images is

matched across the whole topological map as a sliding win-

dow. The camera is then initialized as the pose of the last

node of the best matched sequence in the topological map.

The search window is also set to the neighbor map nodes.

An example of global searching is given in Fig. 4.

3.6.2 Pose Tracking and Update

Once the camera’s pose is initialized on the topological

map, its location can be tracked through visual odometry

while matching with map nodes. Since visual odometry

accumulates drift over time, the uncertainty of the camera

pose increases. The size of the search window on the topo-

logical map grows accordingly as it is designed to associate

with the pose uncertainty. For matches whose similarly

scores above a threshold, TextPlace selects the map node

with the highest score. Then the pose of the chosen map

node is used to update the camera’s pose in the framework

of Extended Kalman Filter. After pose fusion, the drift is

corrected and the size of the search window shrinks.

3.6.3 Re-Localization

The camera may lose tracking in reality due to a long period

of severe occlusion and dynamic objects. In order to recover

from losing tracking, a re-localization mode is introduced

for the upcoming frame. Similar to the initialization step,
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Figure 5: PR curve and sample images of Street 1 dataset. It is a

day-night setting.

a sliding window is formed starting from the first succeed-

ing frame which has texts detected. A global search is then

performed to find the best local match within an enlarged

search region defined by the predicted pose from the visual

odometry. If the timeout period of re-localization expires,

the localization system will be re-initialized.

4. Experimental Result

In this section, TextPlace is evaluated by comparing with

the state-of-the-art place recognition algorithms in various

scenarios.

4.1. Baselines and Evaluation

The visual place recognition algorithms chosen as base-

lines include ToDayGAN [1], NetVLAD [2], FAB-MAP [4]

and SeqSLAM [17]. They cover the spare feature (FAB-

MAP), global feature and sequence (SeqSLAM) and the

state-of-the-art deep learning (ToDayGAN and NetVLAD)

based methods. We use the open-source implementations

of FAB-MAP1, SeqSLAM2, ToDayGan3 and NetVLAD4.

For NetVLAD, the top 1 match hypothesis is selected by

comparing cosine distance of NetVLAD descriptors. This

is different from the results in NetVLAD’s original paper

where top 5 matches are reported. Note ToDayGAN is only

compared with night-day setting since it focuses on syn-

thesizing daytime images from night ones. Similar to most

of the visual place recognition work, we use precision and

recall (PR) as the main performance measurement for eval-

uation [15].

4.2. Public Available Dataset

We evaluate our algorithm on two public available

datasets: ETH V4RL Urban Place Recognition Dataset [16]

and SYNTHIA dataset [25]. V4RL is captured for place

1https://github.com/arrenglover/openfabmap
2https://openslam-org.github.io/openseqslam.html
3https://github.com/AAnoosheh/ToDayGAN
4https://github.com/Relja/netvlad
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Figure 6: PR curve and sample images of Street 2 dataset.

recognition tasks from a flying drone or a pedestrian with a

large variation on viewpoint, while [25] is synthetic dataset

across different seasons and day-night conditions for a car

driving scenario. We denote the summer-and-night dataset

as SYNTHIA 1, and summer-and-winter dataset as SYN-

THIA 2.

4.3. Self­Collected Dataset

To evaluate the performance of TextPlace against ex-

treme perceptual changes, high dynamics and random oc-

clusions, we collected 3 pairs of map and query sequences

in outdoor streets and an indoor shopping mall, using a stan-

dard smart phone. Due to the severe illumination changes,

occlusions and high dynamics (cars, buses and pedestrians),

the visual appearance of the same place can vary dramati-

cally, making the dataset very challenging. Some sample

images are given in Fig. 1, Fig. 5 and Fig. 6. The datasets

are named Street 1, Street 2 and Mall, respectively. All the

self-collected datasets will be made publicly available5.

4.4. Performance on Precision and Recall

This section discusses the PR performance on different

settings.

Day-night setting. The PR curve and some sample images

of Street 1 dataset are shown in Fig. 5. It can be seen that

TextPlace outperforms other methods when the recall is less

than 0.9. It can achieve 100% precision when the recall is

0.7 on this day-night setting. NetVLAD also demonstrates

strong performance in this scenario. But its precision drops

below 100% while its recall is higher than 0.28. Since the

environments have serious perceptual aliasing, ToDayGAN

does not show high performance.

Day-day setting Three datasets are used for the day-day

setting: Street 2, Mall and the sequence 1 in V4RL. The

PR curve of Street 2 is given in Fig. 6. It can be seen that

the precision of SeqSLAM is seriously degraded due to se-

vere occlusions occurred occasionally. NetVLAD’s result is

also slightly affected. Since TextPlace relies on high-level

5Datasets available at: https://github.com/ziyanghong/dataset
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Figure 7: PR curve and sample images of Mall dataset.

texts, it can still achieve relatively high precision. Fig. 7

presents the PR results on the Mall dataset. Since the data

was collected in 2 close periods, it is less challenging. FAB-

MAP achieves competitive result with NetVLAD. Similar

to previous experiments, TextPlace’s precision drops drasti-

cally once the recall is set higher than 0.9. This is because

the threshold for the Levenshtein distance needs to be set

big to have very high recall, which introduces many mis-

matches. The sequence 1 of the V4RL dataset has similar

performance as shown in Fig. 9 (left).

Viewpoint setting. The sequence 2 of the V4RL dataset

has big changes on viewpoint and image exposure between

the query and map sequences, making it more challenging

for visual place recognition. As shown in Fig. 9 (right),

TextPlace achieves good robustness. This is because the

high-level textual information used by TextPlace remains

even with different viewpoints and image exposures. A

good example is the fifth query (column) in Fig. 8. Since

the query image is captured from a top-down view, the 2nd

floor of the store in the map image is no longer preserved.

Neither of NetVLD, SeqSLAM or FAB-MAP matches the

correct map image for this query.

Synthetic setting. SYNTHIA 1 evaluates the match be-

tween the summer and night sequences, while SYNTHIA 2

covers winter and summer sequences. Results are shown in

Fig. 10. It can be seen that TextPlace achieves comparable

performance to SeqSLAM and NetVLAD.

Discussion. The previous experimental results verify that

high-level textual information can be beneficial for visual

place recognition in urban areas, even with challenging il-

lumination changes and serious occlusions. Among all the

compared algorithms, NetVLAD achieves excellent perfor-

mance on various datasets. However, it may produce incor-

rect matching when the matched image highly resembles

to the query in terms of the environment layout and struc-

ture. The second query (column) in Fig. 8 is a good exam-

ple. TextPlace relies on the high-level texts and its spatial-

temporal dependence to handle this problem.
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Figure 8: Query and matching examples. Each column represents a query and matched images of various algorithms. Images with green

frames are correct matches, while the ones with red frames are incorrect matches. ToDayGAN is not compared for the sequences in day-day

setting.
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Figure 9: PR curve of V4RL dataset. Left: Sequence 1. Right:

Sequence 2.

4.5. Comparison of Global and Prior Methods

The prior knowledge of TextPlace is a topological pose

graph built online through VO and updated by texts, rather

than strong global prior (e.g., GPS). Although leverag-

ing spatial-temporal dependence (topological pose graph)

is one of the novelties of TextPlace, separated evaluations

on prior and global methods are provided for further com-

parison. We conducted 2 sets of experiments:

1. Adding position prior to NetVLAD, FAB-MAP and

ToDayGAN. The search spaces of these methods are

set to 10, 20 and 30 meters w.r.t the query image po-

sition. Table 1 show the results on Street 1 dataset. It

can be seen that TextPlace has highest precision except

when the recall is bigger than 0.9.

2. Adapting TextPlace to global search based method.

The VO tracking and topological graph of TextPlace
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Figure 10: PR curve of SYNTHIA dataset. Left: SYNTHIA 1.

Right: SYNTHIA 2.

are deactivated and, for each query, a global search is

performed across the whole map. As shown in Table

1, TextPlace outperforms other global methods.

4.6. Challenging Scenarios with Occlusion

Occlusion can happen frequently for vision based appli-

cations or robotics in reality, especially in urban areas where

a large amount of buses, cars, trucks and pedestrians appear

occasionally. Persistent operation under serious occlusion

is important to improve the robustness of a vision based al-

gorithm. Fig. 11 shows some challenging cases success-

fully matched by TextPlace. It can be seen that the occlu-

sions caused by the dynamic objects significantly change

the image representations of a same place at different times.

Therefore, it is demanding to request a single image based

place recognition system to work in these cases. TextPlace

resolves this problem by using high level semantic informa-
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Table 1: Precision-Recall on day-night setting (Street 1 dataset).

Prior Methods
Recall

0.2 0.4 0.6 0.8 0.9

TextPlace 1 1 1 0.96 0.91

NetVLAD-10 1 1 1 0.95 0.93

NetVLAD-20 1 1 1 0.91 0.87

NetVLAD-30 1 1 0.97 0.85 0.83

ToDayGAN-10 0.5 0.55 0.58 0.57 0.56

ToDayGAN-20 0.4 0.4 0.4 0.38 0.38

ToDayGAN-30 0.26 0.24 0.24 0.25 0.24

FAB-MAP-10 0.79 0.69 0.67 0.65 0.63

FAB-MAP-20 0.76 0.69 0.67 0.63 0.6

FAB-MAP-30 0.68 0.67 0.67 0.62 0.58

SeqSLAM 0.3 0.24 0.18 0.13 0.13

Global Methods
Recall

0.2 0.4 0.6 0.8 0.9

TextPlace (Global) 1 1 1 0.92 0.84

NetVLAD 0.98 0.94 0.8 0.76 0.74

ToDayGAN 0.31 0.24 0.13 0.12 0.12

FAB-MAP 0.4 0.42 0.34 0.34 0.34

Table 2: Precision comparison with different system parameter

settings for TextPlace on sequence 2 of V4RL dataset.

DBN (meter) SSW

LD 0.5 1 1.5 3 5 8 15 20

0 0.963 0.981 1 1 0.596 0.596 0.981 1

1 0.876 0.95 0.987 1 0.685 0.577 0.95 1

2 0.883 0.988 1 0.86 0.622 0.848 0.988 1

3 0.883 0.976 0.988 0.872 0.689 0.825 0.976 0.988

tion, i.e., scene texts, which is independent of changes on

visual appearance.

4.7. Different System Parameter Settings

In this section, we study how different system parame-

ter settings of TextPlace affect the place recognition perfor-

mance. The parameters studied here are the Levenshtein

distance threshold (LD), the displacement between nodes

(DBN) and the size of search window (SSW). The vari-

ous combinations of these parameters represent different

recalls. When testing the displacements between nodes,

the window size is fixed to 15. The displacement between

nodes is set to 1.5 meters when varying the window size.

Table 2 shows the precisions of different system parame-

ter settings on the V4RL dataset. It is clear that TextPlace’s

performance improves as the size of search window in-

creases. Meanwhile, the influence of the threshold on the

Levenshtein distance can be significantly mitigated if the

window size is large. This suggests that a large search win-

dow size is preferred. In practice, window size of 15 to 20

usually gives a reasonably decent performance. It can also

be seen that dense map nodes (small DBN) does not bring

significant benefit, which means the density of the nodes in

the topological map can be moderate.

Figure 11: Some challenging cases successfully matched by

TextPlace. For each example, left and right columns show query

and map images, respectively. Green line connects the matched

texts. Note serious occlusions might occur in both map and query.

SYNTHIA V4RL

Figure 12: Left: Result of topological localization on SYNTHIA

1. Right: Result of topological localization on V4RL Sequence

1. The blue and pink trajectories represent the map and query

trajectories, respectively. The green lines between them are the

matches between map and query nodes.

4.8. Localization Performance

Apart from performing place recognition task, TextPlace

is also adequate to topological localization. Fig. 12 shows

the results of topological localization on SYNTHIA 1 and

the sequence 1 of V4RL. It can be seen that the query im-

ages or the camera can be accurately localized with respect

to the topological map. The matches found (green links)

between the query and the map are with high precision,

correcting the drifts of visual odometry for localization. A

good example is the pose update in SYNTHIA 1 after hav-

ing no match for a long period.

5. Conclusions

In this work, we propose a novel place recognition sys-

tem and demonstrate the feasibility of utilizing high-level

semantic information, i.e., scene texts, to solve the place

recognition and topological localization problems in urban

areas. Extensive experiments on various environmental set-

tings verify that the proposed TextPlace can achieve state-

of-the-art performance against extreme changes on visual

appearance and perceptual aliasing.
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