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Abstract

Natural image matting is an important problem in com-

puter vision and graphics. It is an ill-posed problem when

only an input image is available without any external in-

formation. While the recent deep learning approaches have

shown promising results, they only estimate the alpha matte.

This paper presents a context-aware natural image matting

method for simultaneous foreground and alpha matte esti-

mation. Our method employs two encoder networks to ex-

tract essential information for matting. Particularly, we use

a matting encoder to learn local features and a context en-

coder to obtain more global context information. We con-

catenate the outputs from these two encoders and feed them

into decoder networks to simultaneously estimate the fore-

ground and alpha matte. To train this whole deep neural

network, we employ both the standard Laplacian loss and

the feature loss: the former helps to achieve high numeri-

cal performance while the latter leads to more perceptually

plausible results. We also report several data augmentation

strategies that greatly improve the network’s generalization

performance. Our qualitative and quantitative experiments

show that our method enables high-quality matting for a

single natural image.

1. Introduction

Natural image matting is the problem of estimating the

foreground image and the corresponding alpha matte from

an input image. It is a critical step of image composition,

which is widely used in image and video production. With-

out any external information, matting is a seriously ill-posed

problem. In practice, most existing matting methods take a

trimap as input; however, matting is still underconstrained

in the undefined area in the trimap.

Traditional methods solve the matting problem by in-

ferring the alpha matte information in the undefined area

from those in the defined areas [51]. For instance, the matte

values in the undefined areas can be propagated from the

known areas according to the spatial and appearance affinity

between them [2, 6, 7, 20, 26, 27, 28, 46]. Alternatively, the

undefined matte values can be computed by sampling the

color or texture distribution of the known foreground and

background areas and optimizing a carefully defined met-

ric, such as the likelihood of the foreground, background,

and alpha values [11, 18, 19, 49, 50]. While these methods

provide promising results and some of them are incorpo-

rated into commercial tools, single natural image matting

is still a challenging problem as these methods rely on the

distinctive appearance of the foreground and background ar-

eas, such as their local or global color distribution.

Our research is inspired by the recent deep learning ap-

proaches to image matting. These deep matting approaches,

such as [4, 33, 52] take an input image and the corre-

sponding user-provided trimap as input and output an alpha

map. They are shown robust for many challenging scenar-

ios. These methods, however, only output the alpha map

without the foreground or background image.

This paper presents a deep image matting method that

simultaneously estimate the alpha map and the foreground

image. Our method explores both local image and global

context information for high-quality matting. This is in-

spired by the success of non-deep learning-based matting

approaches that combines the global sampling and local

propagation strategies [2, 6, 7, 20, 19]. Specifically, we de-

signed a two-encoder-two-decoder fully convolutional neu-

ral network for context-aware simultaneous foreground im-

age and alpha map estimation. The matting encoder learns

to extract the local features while the context encoder learns

more global features. We concatenate the features from

these two encoders and feed them to an alpha decoder and a

foreground decoder to estimate the alpha map and the cor-

responding foreground image simultaneously.

We explore a Laplacian loss and the feature loss to train

our deep matting neural network. We found that the Lapla-

cian loss enables our network to achieve the state-of-the-art

numerical performance while the feature loss leads to more

perceptually plausible matting results. We also found that

some data augmentation methods are particularly helpful

for our neural network to generalize to real-world images

although our network is trained on a synthetic dataset pro-
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Input image Trimap Our alpha map and composition results Results from Closed-form [27]

Figure 1. Real-world image matting. Our method is able to simultaneously estimate high-quality foreground images and alpha maps from

real-world images although trained on a synthetic dataset. Our results keep final structures (the top example) while being free from the

common color bleeding problem (the bottom example).

vided by Xu et al. [52].

To our best knowledge, this paper contributes the first

deep matting method that enables simultaneous foreground

and alpha estimation. Both our qualitative and quantitative

experiments demonstrate that our method is able to generate

state-of-the-art matting results on challenging real-world

examples, as shown in Figure 1. We attribute the success of

our method to 1) the integration of local visual features and

global context information, 2) the combination of the Lapla-

cian and feature loss, and 3) various effective data augmen-

tation strategies that help generalizing our method to a wide

variety of challenging real-world images.

2. Related Work

Image matting assumes that an image I is a linear com-

position of a foreground image F and a background image

B according to an alpha map ααα as follows [45].

I = αααF+ (1−ααα)B (1)

Given the input image I, image matting aims to recover

F, B and ααα. Most of existing matting methods require a

user-provided trimap that specifies known foreground and

background areas, as well as an undefined area. In this

way, matting is reduced to solving for the foreground, back-

ground, and alpha values in the undefined area. Given only

the input image I and the trimap, matting is a seriously ill-

posed problem. A rich literature exists for matting. These

methods infer the matte information for the undefined area

from the known foreground and background according to

the trimap. They either propagate the matte information

from the neighboring foreground or background areas to the

unknown areas [2, 6, 7, 20, 26, 27, 28, 46], or more glob-

ally sample the appearance information of the known fore-

ground and background and use them to optimize for the

matting in the unknown area [11, 18, 19, 49, 50]. There are

also methods that combine the local propagation strategy

and the global sampling strategy to achieve more reliable

results [2, 6, 7, 20, 19]. Wang and Cohen provided a good

survey on these traditional image matting algorithms [51].

Our design of a double-encoder-double-decoder network to

learn to estimate local and global context information is in-

spired by these hybrid methods.

Our work is most relevant to the recent deep learning ap-

proaches to image matting. Shen et al. trained a dedicated

deep convolutional neural network for portrait matting [43].

Their method first employs a deep neural network to gener-

ate the trimap of a portrait image and then feeds it to an off-

the-shelf matting method, namely the Closed-form Matting

algorithm [27], to obtain the final matting result. Cho et al.

developed a deep matting method that takes the matting re-

sults from the Closed-form Matting algorithm [27] and the

KNN Matting algorithm [6] as input, and refine it using a

deep neural network [8, 9]. Xu et al. developed a large-scale

synthetic image matting dataset and used it to train a two-

stage deep neural network for alpha matting. Their method

produced high-quality matting results for both synthetic and

real-world images [52]. Lutz et al. explores generative ad-

versarial networks to achieve high-quality natural image

matting [33]. In their recent work, Chen et al. addressed a

difficult case of image matting, transparent object matting.

By considering transparent object matting as a refractive

flow estimation problem, they developed a two-stage neural

network to estimate the refractive flow from only one input

image for transparent object matting [4]. While these meth-

ods are able to estimate high-quality alpha maps, they do not

generate the foreground component. Our work builds upon

these deep learning methods and simultaneously estimate

the foreground image and the alpha map, thus providing a
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Figure 2. The architecture of our matting network. We design a two-encoder-two-decoder network. The matting encoder and the context

encoder capture both visual features and more global context information. The features from these two encoders are concatenated and feed

to the foreground and the alpha decoder to output the foreground image and the alpha map of the input image simultaneously.

complete solution to image matting. Our network learns to

extract both local visual features and global context infor-

mation to obtain high-quality image matting.

3. Context-Aware Image Matting

Our method takes an image I and a user-specified trimap

T as input and aims to estimate the foreground F and the

corresponding alpha map ααα, thus providing a full solution

to matting. With the foreground and the alpha map, we can

directly compute the background according to Equation 1.

We design a context-aware two-encoder-two-decoder

deep neural network to simultaneously estimate the fore-

ground and the alpha map, as shown in Figure 2. The out-

puts of the two encoders are concatenated and fed to the

two decoder to generate the foreground and the alpha map,

respectively. The two-encoder design of the network is in-

spired by the success of traditional matting algorithms that

combine the local propagation and global sampling strate-

gies for robust image matting [2, 6, 19, 20]. Specifically,

the matting encoder is designed to learn to extract local fea-

tures that are required to capture final image structures, such

as hairs, while the context encoder learns to estimate more

global context information that is helpful to disambiguate

the foreground and background when they are similar to

each other locally. Below we describe the encoders and de-

coders in more detail.

Matting encoder. We adopt the modified version of the

Xception 65 architecture [10] from the deeplab v3+[5] and

set the down-sampling factor as 4 by setting the entroy

flow’s block2 and block3’s stride as 1. This modi-

fication enables the middle flow to have a big spatial

resolution. While traditional classification models [10, 21,

24, 41, 44] more aggressively compromise the spatial res-

olution to have a large valid receptive field, we use such a

smaller down-sampling factor to retain sufficient spatial in-

formation that is important for the task of matting to capture

fine image structures. Meanwhile, there is a trade-off be-

tween the computation/memory cost and spatial resolution.

We empirically find that the down-sampling factor of 4 can

get good matting results and cost a relatively small amount

of computation and memory. We use skip connections to

use features from the earlier layers as shown in Figure 2.

Context encoder. We also adopt the Xception 65 architec-

ture [10] from [5]. Compared to the matting encoder, we use

a much larger down-sampling factor of 16 to capture more

global contextual information. We bilinearly upsample the

final features by a factor of 4 so that the context features

are of the same size as the local matting features from the

matting encoder.

Alpha decoder and foreground decoder have the same

network architecture. Specifically, we first bilinearly up-

sample the concatenated features from the encoders by a

factor of 2 and then combine them with the intermediate

features from the context encoder using a skip connection

as shown in Figure 2. This is followed by two 3 × 3 con-

volutional layers with 64 channels. We repeat this process

twice so that each decoder outputs the foreground image

and the alpha map with the same size as the input image.

3.1. Loss functions

We compute the loss over both the alpha map and the

foreground image. We explore a range of loss functions to
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train our network. Below we describe them one by one.

We use a Laplacian loss [35] to measure the difference

between the predicated alpha map ααα and its ground truth α̂αα.

Lα
lap =

5∑

i=1

2i−1‖Li(α̂αα)− Li(ααα)‖1, (2)

where Li(ααα) indicates the ith level of the Laplacian pyra-

mid of the alpha map. This loss function measures the dif-

ferences of two Laplacian pyramid representations and cap-

tures the local and global difference. We scale the contribu-

tion of a Laplacian level according to its spatial size.

We also use the feature loss to measure the perceptual

quality of the alpha map. The feature loss, based on the

differences between the high-level features extracted from

a pre-trained convolutional neural network, has been shown

effective in generating perceptually high-quality images in

many image enhancement and synthesis tasks [14, 25, 35,

36, 40, 53, 55]. However, it is difficult to directly mea-

sure the perceptual quality of an alpha map. Our solution

is to composite the ground-truth foreground image onto the

black background using the alpha map and then measure the

perceptual quality of the composition result as follows.

Lα
F =

∑

layer

‖φlayer(α̂αα ∗ F̂)− φlayer(ααα ∗ F̂)‖2
2
, (3)

where F̂ indicates the ground truth foreground and φlayer

indicates the features output by the layer in a pre-trained

VGG16 network [44]. Our method uses [conv1 2,

conv2 2, conv3 3, conv4 3] to compute the features.

We follow the same setting to calculate the feature loss

for the predicated foreground image. Here the feature loss

Lc
F is computed on the composition result using the ground-

truth alpha map with the foreground image as follows.

Lc
F =

∑

layer

‖φlayer(α̂αα ∗ F̂)− φlayer(α̂αα ∗ F)‖2
2
, (4)

We also use the standard ℓ1 loss for the predicted fore-

ground F. We only calculate the loss where the foreground

is visible, in other words, the ground truth alpha matte is

bigger than 0,

Lc
1
= ‖✶(α̂αα > 0) ∗ (F̂ − F)‖1, (5)

where ✶ is an indicator function that takes 1 if the statement

is true and 0 otherwise.

Finally, we apply the standard ℓ2 regularization loss to all

the convolutional layers. We will examine these loss func-

tions in our experiments (Section 4).

3.2. Training

We initialize our neural network with pre-trained mod-

els from [5]. We use TensorFlow to train our neural net-

work. Similar to [5], we use the “poly” learning rate policy

Figure 3. Image patch selection. The alpha map is illustrated using

the color map, with yellow and blue indicating the foreground and

background, respectively. The patches are selected to cover the

unknown region but with relatively small overlaps among them.

to train our network, where lr = lrinit(1−
iter

max iter
)power

with lrinit = 7 × 10−4 and power = 0.9. We use a mini-

batch size of 6 and train the neural network for 1 million

iterations for models (1-3) in Table 1. We fine-tune models

(4-9) based on the pretrained model (3) with 105 iterations

with lrinit = 10−4.

Training dataset. We train our network using the matting

dataset shared by Xu et al. [52]. This dataset contains 431

training images with the corresponding alpha maps and the

foreground images. We create the training samples in a sim-

ilar way to Xu et al. Specifically, we composite the fore-

ground image onto a randomly selected background image

from MS-COCO dataset [30]. We down-sample the fore-

ground image gradually by a factor of 0.9 until the short

side is 600 pixels. If the source image’s short side is less

than 600 pixels, we first scale it up to 780. In total, we gen-

erate 1957 scaled foreground image. Then we select image

patches that contain unknown regions in the trimap. Spe-

cially, we slide windows of size 600 × 600 on the full im-

age with a stride of 5 pixels to get a large amount of can-

didate windows and remove patches where less than 10%

pixels are unknown. Furthermore, since many patches over-

lap with each other significantly, we employ non-maximum

suppression(NMS) to remove overlapping patches. Specifi-

cally, we set the NMS threshold as 0.3 and only keep the top

30 image patches with the highest unknown pixel percent-

ages in each image. Figure 3 shows an example of selected

image patches. In total, we obtain 9,507 600 × 600 fore-

ground image patches. Finally, we create training samples

of size 225 × 225 by randomly cropping the composited

image with the following data augmentation operators.

Data augmentation. Following Xu et al. [52], our training

samples are obtained by compositing a foreground image

and a background image using an alpha map. As reported

in many papers [1, 13, 17, 22, 23, 31, 32, 37, 47], many sub-
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(a) No augmentation (b) Re-JPEGing (c) Gaussian Blur

Figure 4. Data augmentation. In the composited image without any

data augmentation (a), the foreground image contains some JPEG

artifacts while the background is smooth, which produces a bias

that will compromises the training of the network. Re-JPEGing

introduces the artifacts to the foreground and the background to

reduce the bias while Gaussian Blur does so by smoothing the

high-frequency artifacts.

tle artifacts, such as misaligned JPEG blocks, compression

quantization artifacts, and resampling artifacts, can some-

times affect their methods a lot despite that the images look

plausible to the human eyes. Some splice detection methods

[1, 22, 23, 32, 37, 47] even build their algorithms based on

such an observation. Directly training the network on the

composited images without special augmentation may suf-

fer from a similar problem and thus compromises the gen-

eralization capability of the trained network.

Therefore, besides the resizing augmentation used in Xu

et al. [52], we follow the post processing steps in the image

splice detection methods [12, 23, 34] and use re-JPEGing

and Gaussian blur to augment our training samples. These

operators introduce subtle artifacts that are not visually no-

ticeable but can make the network less bias to the small dif-

ference between the foreground and the background. As

shown in Figure 4, the original background is smoother than

the original foreground image. Therefore, it is possible that

the network relies on this bias to differentiate the foreground

from the background. Re-JPEGing and Gaussian blur can

relieve this problem by introducing artifacts or remove these

artifacts. For re-JPEGing, we keep 70% quality of the com-

posited images. For Gaussian blur, we on-the-fly generate

a Gaussian kernel with standard deviation in the range of

[0, 3] and the kernel size in the range of [3, 5], and apply

it to the composited image. We also randomly resize the

composited image with a rate of between 0.5 and 1.

Besides, we also use some standard data augmentation

operators. Specifically, we employ the gamma transforms to

increase the color diversity. The gamma value is randomly

selected from [0.2, 2]. We randomly flip the images hori-

zontally. The trimap for each image is automatically gen-

erated by randomly dilating its corresponding ground truth

alpha map in the range of [4, 25].

4. Experiments

We experiment with our methods on the synthetic

Composition-1K dataset and a real-world matting image

Table 1. Alpha map results on the Composition-1K testing set.
Methods SAD MSE(103) Grad Conn

Shared Matting[16] 128.9 91 126.5 135.3

Learning Based Matting [54] 113.9 48 91.6 122.2

Comprehensive Sampling [42] 143.8 71 102.2 142.7

Global Matting [19] 133.6 68 97.6 133.3

Closed-Form Matting [27] 168.1 91 126.9 167.9

KNN Matting [6] 175.4 103 124.1 176.4

DCNN Matting [8] 161.4 87 115.1 161.9

Three-layer Graph [29] 106.4 66 70.0 -

Deep Matting [52] 50.4 14 31.0 50.8

Information-flow Matting [2] 75.4 66 63.0 -

AlphaGan-Best1 [33] 52.4 30 38.0 -

(1) ME + Ldeepmatting 49.1 13.4 26.7 49.8

(2) ME + Lα
lap 43.9 11.8 20.6 41.6

(3) ME + CE + Lα
lap 35.8 8.2 17.3 33.2

(4) ME + CE + Lα
lap

+ Lα
F 38.8 9.0 19.0 36.0

(5) ME + CE + Lα
lap

+ Lα
F

+

DA
71.3 23.6 38.8 72.0

(6) ME + CE + Lα
lap

+ Lα
F

+

Lc
1

+ Lc
F

38.0 8.8 16.9 35.4

(7) ME + CE + Lα
lap

+ Lα
F

+

Lc
1

+ Lc
F

+ DA
84.1 29.1 39.2 -

(8) ME + CE + Lα
lap

+ Lα
F

+

Lc
1

+ Lc
F

+ DA - ReJPEGing
55.1 15.5 24.6 54.7

(9) ME + CE + Lα
lap

+ Lα
F

+

Lc
1

+ Lc
F

+ DA - GaussianBlur
69.1 23.5 39.6 69.1

dataset, both of which are provided by Xu et al. [52]. As

discussed in Section 3.2, our neural networks are all trained

on the synthetic Composition-1K training set. We evaluate

our models and compare to the state of the art methods on

the Composition-1K testing set and the real-world matting

image set. Specifically, the Composition-1K testing dataset

contains 1000 composited images. They were generated by

compositing 50 unique foreground images onto each of the

20 images from the PASCAL VOC 2012 dataset [15]. We

used the code provided by Xu et al. [52] to generate these

testing images. The real world image dataset contains 31

real world images pulled from the internet [52]. We con-

duct our user study on the real world images.

Since not all the methods produce both the foreground

images and the alpha maps as the final matting results, we

compare our methods to the state of the art on the alpha

maps and the foreground images separately. Besides, we

also report our user study and our ablation studies to more

thoroughly evaluate our methods.

4.1. Evaluation on alpha maps

We compare our methods to both the state of the

art non-deep learning methods, including Shared Mat-

ting [16], Learning Based Matting [54], Comprehensive

Sampling [42], Global Matting [19], Closed-form Mat-

ting [27], KNN Matting [6], Three-layer Graph [29],

Information-flow Matting [2], and recent deep learning mat-

ting approaches, including DCNN Matting [8], Deep Mat-

ting [52] and AlphaGan [33]. Table 1 reports the results

on these methods as well as ours on the Composition-1K

dataset. The results of the comparing methods are obtained
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Table 2. The foreground result on the Composition-1k dataset.

Methods SAD MSE(103)

Global Matting [19] 220.39 36.29

Closed-Form Matting [27] 254.15 40.89

KNN Matting [6] 281.92 36.29

(6) ME + CE + Lα
lap + Lα

F + Lc
1 + Lc

F 61.72 3.24

(7) ME + CE + Lα
lap + Lα

F + Lc
1 + Lc

F

+ DA
94.41 8.67

(8) ME + CE + Lα
lap + Lα

F + Lc
1 + Lc

F

+ DA - ReJPEGing
73.79 4.96

(9) ME + CE + Lα
lap + Lα

F + Lc
1 + Lc

F

+ DA - GaussianBlur
85.8 7.10

Table 3. Parameter numbers of our models and their performance

on the Composition-1K dataset.
Methods # of Parameters SAD MSE(103) Grad Conn

ME (model 2) 54.0 M 43.9 11.8 20.6 41.6

ME (deeper model 2) 117.0 M 43.7 11.0 21.2 42.6

ME + CE (model 3) 107.5 M 35.8 8.2 17.3 33.2

Table 4. Comparison of visual quality on the real-world dataset.

Methods Mean score Std

ME + CE + Llap 4.64 0.42

ME + CE + Llap + LF 4.69 0.40

ME + CE + Llap + LF + DA 5.03 0.25

either from their papers or from the recent studies [33, 52].

To evaluate these methods, we use various metrics,

including SAD, MSE, Gradient (Grad) and Connectivity

(Conn) [39]. Note that the Conn metric fails on some re-

sults, which are denoted as “-”. For the ablation analysis of

our work, we reported our results on nine versions of our

networks with different components. We use “ME”, “CE”,

“DA” to indicate the matting encoder, the context encoder,

and data augmentation, respectively.

As shown in Table 1, our two-encoder-two-decoder mod-

els (model (3-9)) generate matting results with significantly

smaller errors than the state of the art methods. To under-

stand what contributes to this improvement, we evaluated

on a baseline method (model (2)) that removes the con-

text encoder and found that this baseline model performs

much worse according to all the four metrics. Therefore,

the improvement can be mainly attribute to the use of our

two encoders to capture both local visual features for fine

structures and more global contextual information to dis-

ambiguate the locally similar foreground and background.

Besides these numerical scores, our methods produce visu-

ally more plausible results as shown in Figure 6. For exam-

ple, the last example has a strand of long hair. The results

from existing methods either miss it entirely or the hair is

broken into pieces while our methods better preserve it.

Number of parameters. We make model (2) deeper so

that its number of parameters roughly match model (3). As

shown in Table 3, while this deeper version of model (2)

improves over the original one w.r.t SAD and MSE, it per-

forms worse than our model (3) (ME + CE).

Sensitivity of trimap. Following the same process of the
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Figure 5. Sensitivity test with respect to trimap sizes.

Deep Matting work [52], we examine our method’s sensi-

tivity to the trimap size by dilating the ground-truth to a

range of sizes. As illustrated in Figure 5, our method is

stable to the trimap sizes. Note, the scores of comparing

methods were obtained from [52].

4.2. Evaluation on foreground images

As existing deep learning methods only output alpha

maps, we compare to three representative non-deep learn-

ing matting methods, namely Global Matting [19], Closed-

Form Matting [27] and KNN Matting [6], on how well fore-

ground images can be extracted from single input images

on the Composition-1K dataset. We calculate the SAD and

MSE of ααα ∗ F following the previous work [38]. As shown

in Table 2, our method reduces the error by a large margin.

4.3. Ablation study

As discussed in Section 4.1, our two-encoder structure

brings in the major performance improvement. Besides,

we found that proper loss functions and data augmentations

are also important to obtain high-quality matting results and

help generalizing to real-world images.

Loss functions. As shown in Table 1, our model (2) with

the Laplacian loss Lα
lap generates more numerically accu-

rate results than our model (1) with the loss used in Deep

Matting [52]. Our model (3) generates better result com-

pared to the model (4) with both the Laplacian loss and the

feature loss Lα
F . On the other hand, the feature loss enables

our model (4) to generate visually better results that keep

more final structures than our model (3), as shown in the

last example in Figure 6. This is consistent with many other

works on image synthesis tasks that the feature loss tends to

produce perceptually better results (often at the expense of

the numerical performance) [3, 14, 25, 35, 40, 53, 55].

When training our network with both the foreground de-

coder and the alpha decoder, color loss functions, namely

Lc
1

and Lc
F , are naturally needed. By comparing models (4)

and (6), (5) and (7) in Table 1, we can find that these color

losses can improve the alpha map estimation slightly. This

is in part because the color and the alpha decoders share
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Figure 6. Comparison of the alpha matte on the real world images dataset [52].

the same learned features, and the tasks of foreground color

estimation and alpha map estimation are relevant.

Data augmentation. As shown in Table 1, data augmen-

tations, such as ReJPEGing and Gaussian blur, can greatly

increases the errors of our methods on the Composition-1k

testing dataset. On the other hand, we found that these data

augmentations can greatly improve the generalization of our

trained networks on the real world images. As shown in

Figure 6, when trained with these data augmentation strate-

gies, our models can maintain more fine details, such as

hairs. Since these real world examples do not have ground

truth, to obtain objective scores of these results, we evaluate

the quality of composition results using our matting results.

Specifically, we composite the foreground objects in source

images onto some external background images using our

matting results and then measure the visual quality of the

composition results using the NIMA quality assessment al-

gorithm [48]. As reported in Table 4, our data augmenta-

tion algorithms are helpful. We also test our methods on the

Spectral Matting dataset [28] with the known ground truth.

This dataset is generated by photographing dolls in front of

a computer monitor displaying seven different background

images. The trimap is generated by dilating the alpha map

by 20 pixels by alpha map denoising. Our method with DA

outperforms our method without DA significantly accord-

ing to most of the metrics: 3.58 vs 4.28 (SAD), 6.64 vs 9.05

(MSE), and 2.57 vs 3.19 (Conn), and slightly reduces the

performance according to Grad: 2.04 vs 1.92.

4.4. User study

To further evaluate the quality of our results, we con-

ducted a user study. We compared our method (model (7))

with three representative methods, including Deep Matting

[52] and two state-of-the-art non-deep learning methods,

Close-form Matting [27] and Global matting [19].

Our study used all the 31 real-world images from Xu et

al. [52]. We used a similar protocol to Xu et al. [52] to

produce the results for the study. For the methods except

Deep Matting, we composite the predicted foreground and

alpha map onto a blank background image. We use the

black background or the white background randomly with

the exceptions that for certain foreground images, a partic-

ular background color is not appropriate. For example, it is

meaningless to composite the black hair onto a black back-

ground image, so for such an example, we choose to use the

white background. Since Deep Matting does not output the

foreground image, we composite the input image using the

estimated alpha map as suggested in their paper. Therefore,

the comparison between our results with those from Deep

Matting should be interpreted with a grain of salt.

Our user study recruited 42 students with different back-

grounds. None of them have previous experience with the

matting task. Therefore, we conducted a training session

for each participant before the formal study. Specifically,

each of them was shown two real-world images. For each

image, we showed two matting results from different meth-
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Figure 7. Comparison of the composite results on the real world image dataset[52].

ods without revealing which methods were used to generate

these results. We then explained the differences between

two results to the participant. This training session is help-

ful as the subtle difference in matting results was often dif-

ficult to spot for people with no prior matting experience.

In our study, we divided the 42 participants into three

groups. Each group evaluated how our results compared to

one of the three existing methods. In each trial, a partici-

pant was presented with a screen that only shows a source

image and two corresponding matting results at a time. The

participant could select which image to view by clicking

the corresponding button or using the left or right key on

the keyboard. In this way, the participant can flip between

different images to examine the quality or compare the dif-

ference. In each trial, the participant was asked to choose

a more accurate and realistic result between the two results.

Each participant conducted 31 trials so that the results for

all the 31 testing images are evaluated.

We calculated the percentage of the times that our re-

sults were preferred by the participants and then calculated

the average and the standard deviation for each group. As

reported in Table 5, more of our results are preferred by

the participants than all the comparing methods. Figure 7

shows some examples in our study. They show that our

method can better capture very fine structures like the hair

in the first example even when the hair shares a similar color

to the background. In the last example, our result not only

keeps the delicate edge of the lace, which is lost in the other

results, but also is free from the color bleeding problem

where the blue background color contaminated the result.

5. Conclusion

This paper presented a context-aware deep matting

method for simultaneously estimating the foreground and

Table 5. The user study in the real world image dataset [52].

Ours vs Mean preference rate Std

Global Matting [19] 85.48% 0.21

Closed-form Matting [27] 84.11% 0.19

Deep Matting [52] 77.67% 0.24

the alpha map from a single natural image. We developed a

two-encoder-two-decoder neural network for this task. The

two encoders were designed to capture both the local fine

structures and the more global context information to dis-

ambiguate the foreground and background with a similar

appearance. The two decoders output the foreground and

the alpha map respectively. Our experiments showed that

using the feature loss helps to obtain visually more pleas-

ant matting results while the Laplacian loss tends to op-

timize the numerical performance. Our experiments also

showed that dedicated data augmentation methods, such as

Re-JPEGING and Gaussian blurring, are helpful to gener-

alize the neural network trained on a synthetic dataset to

handle real-world challenging matting tasks.
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