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Abstract

We propose a novel idea for depth estimation from multi-

view image-pose pairs, where the model has capability to

leverage information from previous latent-space encodings

of the scene. This model uses pairs of images and poses,

which are passed through an encoder–decoder model for

disparity estimation. The novelty lies in soft-constraining

the bottleneck layer by a nonparametric Gaussian process

prior. We propose a pose-kernel structure that encourages

similar poses to have resembling latent spaces. The flexi-

bility of the Gaussian process (GP) prior provides adapt-

ing memory for fusing information from previous views.

We train the encoder–decoder and the GP hyperparameters

jointly end-to-end. In addition to a batch method, we derive

a lightweight estimation scheme that circumvents standard

pitfalls in scaling Gaussian process inference, and demon-

strate how our scheme can run in real-time on smart de-

vices.

1. Introduction

Multi-view stereo (MVS) refers to the problem of recon-

structing 3D scene structure from multiple images with

known camera poses and internal parameters. For example,

estimation of depth maps from multiple video frames cap-

tured by a moving monocular video camera [34] is a variant

of MVS when the motion is known. Other variants of the

problem include depth estimation using conventional two-

view stereo rigs [15] and image-based 3D modelling from

image collections [8, 27]. MVS reconstructions have vari-

ous applications. For instance, image-based 3D models can

be used for measurement and visualization of large envi-

ronments to aid design and planning [1], and depth estima-

tion from stereo rigs or monocular videos benefits percep-

tion and simultaneous localization and mapping (SLAM) in

the context of autonomous machines.

In this paper, we focus on depth map estimation for video

frames captured by a monocular camera, whose motion is

unconstrained but known. In practice, the motion could

(a) Reference frames

(b) Multi-view depth-estimation w/o GP

(c) Multi-view depth-estimation with GP

Figure 1. An example sequence of depth estimation results, where

introducing information sharing in the latent space helps improv-

ing the depth maps by making them more stable and edges sharper.

be estimated using visual-inertial odometry techniques (see,

e.g., [29]), which are capable of providing high-precision

camera poses in real-time with very small drift and are also

commonly available in standard mobile platforms (e.g., AR-

Core on Android and ARKit on iOS).

Depth estimation from multiple video frames under

varying and arbitrary motion is more challenging than depth

estimation using a rigid two-view stereo rig, but there can be

potential benefits in using a moving monocular camera in-

stead of a fixed rig. Firstly, in small mobile devices the base-

line between the two cameras of the rig can not be large and

this limits the range of depth measurements. With a mov-

ing monocular camera the motion usually provides a larger

baseline than the size of the device and thus measurement

accuracy for distant regions can be improved. Secondly,

when the camera is translating and rotating in a given space,

it typically observes the same scene regions from multiple

continuously varying viewpoints, and it would be beneficial
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to be able to effectively fuse all this information for more

robust and stable depth estimation.

In this work, we propose a new approach that com-

bines a disparity estimation network, which has an encoder–

decoder architecture and plane-sweep cost volume input as

in [34], and a Gaussian process (GP, [24]) prior, which soft-

constrains the bottleneck layer of the network to fuse in-

formation from video frames having similar poses. This

is achieved by proposing a pose-kernel structure which en-

courages similar poses to have resembling latent space rep-

resentations. The motivation behind the proposed approach

is to efficiently improve fusion of information from overlap-

ping views independently of their separation in time. That

is, our pose-kernel can implicitly fuse information from all

frames, which have overlapping fields of view, and with-

out making the prediction of individual depth maps more

time-consuming or without spending additional effort in the

cost volume computation. In contrast to hard and heuristic

view selection rules that are often applied in similar context

[34, 36] our approach allows soft fusion of information via

the latent representation. Our approach can be applied ei-

ther in batch mode, where the fused result utilizes all avail-

able frames, or in online mode, where only previous frames

affect the prediction of the current frame.

The contributions of this paper are as follows. (i) We

propose a novel approach for multi-view stereo that passes

information from previously reconstructed depth maps

through a probabilistic prior in the latent space; (ii) For the

non-parametric latent-space prior we propose a pose-kernel

approach for encoding prior knowledge about effects of the

relative camera pose between observation frames; (iii) We

show that the CNN encoder–decoder structure and the GP

hyperparameters can be trained jointly; (iv) We extend our

method to an online scheme capable of running in real-time

in smartphones/tablets.

To our knowledge this is the first paper to utilize GP pri-

ors for multi-view information fusion and also the first at-

tempt at scalable online MVS on smartdevices.

2. Related work

MVS approaches can be categorized based on their out-

put representations as follows: (a) volumetric reconstruc-

tion methods [18, 17, 13], (b) point cloud reconstruction

methods [9, 37], and (c) depth map based methods [36].

In many cases, point cloud and depth map representations

are finally converted to a triangular surface mesh for re-

finement [9, 19]. Volumetric voxel based approaches have

shown good performance with small objects but are diffi-

cult to apply for large scenes due to their high memory load.

Point cloud based approaches provide accurate reconstruc-

tions for textured scenes and objects but scenes with tex-

tureless surfaces and repeating patterns are challenging. In

this work, we focus on multi-view depth estimation since

depth map based approaches are flexible and suitable for

most use cases.

There has recently been plenty of progress in learning-

based depth estimation approaches. Inspired by classical

MVS methods [3], most attempts on learned MVS use

plane-sweeping approaches to first compute a matching cost

volume from nearby images and then regard depth estima-

tion as a regression or multi-class classification problem,

which is addressed by deep neural networks [11, 34, 36].

DeepTAM [39] computes the sum of absolute difference

of patches between warped image pairs and use an adap-

tive narrow band strategy to increase the density of sampled

planes. DeepMVS [11] proposed a patch matching network

to extract features to aid in the comparison of patches. For

feature aggregation, it considers both an intra-volume fea-

ture aggregation network and inter-volume aggregation net-

work. MVDepthNet [34] computes the absolute difference

directly without a supporting window to generate the cost

volume, as the pixel-wise cost matching enable the volume

to preserve detail information. MVSNet [36] proposes a

variance-based cost metric and employ a 3D CNN to obtain

a smooth cost volume automatically. DPSNet [12] concate-

nate warped features and use a series of 3D convolutions to

learn the cost volume generation.

It is important to note that none of the aforementioned

learning based MVS approaches has been demonstrated on

a mobile platform. Indeed, most of the methods are heavy

and it takes several seconds or even more to evaluate a sin-

gle depth map with a powerful desktop GPU [11, 36]. The

most light-weight model is [34], and therefore we use it as

a baseline upon which we add our complementary contri-

butions. The monocular depth estimation system in [34]

uses a view selection rule, which selects frames that have

enough angle or translation difference and then uses the se-

lected frames for computing the cost volume. However, this

kind of view selection can not use information from similar

views in the more distant past, since the future motion is

unknown and all past frames can not be stored. In contrast,

our approach allows to utilize all past information in a com-

putationally efficient manner. Also, our contribution is not

competing with the various network architectures proposed

recently [11, 39, 36, 34, 10] but complementary: The tem-

poral coupling of latent representations has not been pro-

posed earlier and could be combined also with other net-

work architectures than [34], which we use in our experi-

ments.

Another area of related work is depth map fusion which

aims to integrate multiple depth maps into a unified scene

representation and needs to deal with inconsistencies and

redundancies in the process. For example, [21] defines three

types of visibility relationships between predicted depth

maps, determining the validity of estimation by detect-

ing occlusions and free-space violations. Also, volumetric
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approaches are widely used for fusion and reconstruction

[22, 23]. Again, our method is complementary: it shares

information implicitly in the latent space, and can be com-

bined with a depth map fusion post-processing stage.

Finally, regarding the technical and methodological as-

pects of our work, we combine both deep neural networks

and Gaussian process (GP) models. GPs are a probabilistic

machine learning paradigm for encoding flexible priors over

functions [24]. They have not been much used in this area

of geometric computer vision. Though, GPs have been used

in other latent variable modelling tasks in vision, where un-

certainty quantification [14] plays a crucial role—including

variational autoencoders with GP priors [4, 2] and GP based

latent variable models for multi-view and view-invariant fa-

cial expression recognition [5, 6]. In [2] GPs are applied to

face image modelling, where the GP kernel accounts for the

pose, and in [33] they are used for 3D people tracking. The

motivation for our work is in recent advances in real-time

inference using GPs [26, 30] that make them applicable to

online inference in smartphones.

3. Methods

Our multi-view stereo approach consist of two orthogonal

parts. The first (vertical data flow in Fig. 2) is an CNN-

powered MVS approach where the input frames are warped

into a cost volume and then passed through an encoder–

decoder model to produce the disparity (reciprocal of depth)

map. The second part (horizontal data flow in Fig. 2) is for

coupling each of the independent disparity prediction tasks,

by passing information about the latent space (bottleneck

layer encodings) over the camera trajectory. We will first go

through the setup in the former (Sec. 3.1), and then focus on

the latter (Secs. 3.2–3.4).

3.1. Network architecture

For the encoder and decoder, we build upon the straight-

forward model in [34]. Our framework only includes one

encoder–decoder without change of architecture, so we can

compare the results directly to check the impacts of Gaus-

sian process prior. The output of the encoder–decoder is

the continuous inverse depth (disparity) prediction. For

each image-pose pair, we compute a cost volume of size

D×H×W and concatenate the reference RGB image as

the input for the encoder. In this paper, we use an image

size of 320×256, and D = 64 depth planes uniformly sam-

pled in inverse depth from 0.5 m to 50 m. To compute the

cost volume, we warp the neighbour frame via the fronto-

parallel planes at fixed depths to the reference frame using

the planar homography:

H = K
(

R+ t
(

0 0 1

di

))

K−1, (1)

where K is the known intrinsics matrix and the relative pose

(R, t) is given in terms of a rotation matrix and translation
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Figure 2. Illustrative sketch of our MVS approach. The camera

poses and input frames are illustrated in the top rows. The cur-

rent and previous (or a sequence of previous) frames are used for

composing a cost volume, which is then passed through and en-

coder network. The novelty in our method is in doing Gaussian

process inference on the latent-space encodings such that the GP

prior is defined to be smooth in pose-difference. The GP predic-

tion is finally passed through a decoder network which outputs

disparity maps (bottom). This is the logic of the online variant of

our method (the latent space graph is a directed graph / Markov

chain). The batch variant could be illustrated in similar fashion,

but with links between all latent nodes zi.

vector with respect to the neighbour frame. di denotes the

depth value of the ith virtual plane. The absolute intensity

difference between the warped neighbour frame and the ref-

erence frame is calculated as the cost for each pixel at every

depth plane: V (di) =
∑

R,G,B Ĩdi
− Ir, where Ĩdi

denotes

the warped image via the depth plane at di and Ir denotes

the reference frame.

In the encoder, there are five convolutional layers (a 7×7
filter for the first layer, a 5×5 filter for the second, and 3×3
filters for others). After encoding, we get a latent-space rep-

resentation y of size 512×8×10, which will be transformed

by the GP model. Then decoder will take the transformed

latent representation z as the input to generate a 1×H×W
prediction. There are four skip connections between the en-

coder and decoder and the inverse depth maps are predicted

at four scales. All convolutional layers are followed by

batch normalization and a ReLU function. The prediction

layers using sigmoid function scaled by two to constrain the

range of the predictions. To support arbitrary length of in-
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(b) Pose-kernel in batch mode
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(c) Pose-kernel in chain mode (online)

Figure 3. (a) A continuous camera trajectory on the left with associated camera frames. In (b)–(c), the a priori pose-kernel covariance

structures are shown as matrices (colormap: 0 γ
2). The kernel encodes information about how much similarity (or correlation) we

expect certain views to have in their latent space. See, e.g., the correlation between poses 1–4 and 9. In (b) this correlation is propagated

over the entire track, while in (c) the long-range effects are suppressed. The small coordinate xyz-axes illustrate camera orientations.

puts, when there are more than one neighbour frame, we

compute the cost volume with each neighbour image sep-

arately and then average the cost volumes before passing

them to the encoder–decoder network.

During training, with a sequence of N input frames, we

predict N depth maps by using the previous frame as the

neighbour frame (except for the first frame that use the next

frame as the neighbour frame), and use the mean of the L1

errors (at four scales) of all frames as the overall loss for

training the model.

3.2. Pose­kernel Gaussian process prior

We seek to define a probabilistic prior on the latent space

that would account for a priori knowledge that poses with

close or overlapping field of view should produce more sim-

ilar latent space encodings than poses far away from each

other or poses with the camera pointing in opposite direc-

tions. This knowledge is to be encoded by a covariance

function (kernel), and for this we need to define a distance

measure or metric to define ‘closeness’ in pose-space.

To measure the distance between camera poses, we build

upon the work by Mazzotti et al. [20] which considers

measures of rigid body poses. We extend this work to be

suitable for computer vision applications. Specifically, we

propose the following pose-distance measure between two

camera poses Pi and Pj :

D[Pi, Pj ] =

√

‖ti − tj‖2 +
2

3
tr(I−R⊤

i Rj), (2)

where the poses are defined as P = {t,R} residing in R
3×

SO(3), I is an identity matrix, and ‘tr’ denotes the matrix

trace operator.

We define a covariance (kernel) function for the latent

space bottleneck layer in Fig. 2. We design the prior for

the latent space processes such that they are stationary and

both mean square continuous and once differentiable (see

[24], Ch. 4) in pose-distance. This design choice is moti-

vated by the fact that we expect the latent functions to model

more structural than purely visual features, and that the we

want the latent space to behave in a continuous and rela-

tively smooth fashion. Choosing the covariance function

structure from the so-called Matérn class [24] fulfils these

requirements:

κ(P, P ′) = γ2

(

1+

√
3D[P, P ′]

ℓ

)

exp

(

−
√
3D[P, P ′]

ℓ

)

.

(3)

This kernel encodes two arbitrary camera poses P and P ′

to ‘nearness’ or similarity in latent space values subject to

the distance (in the sense of Eq. 2) of the camera poses.

The tunable (learnable) hyperparameters γ2 and ℓ define the

characteristic magnitude and length-scale of the processes.

Fig. 3 shows an example camera pose track and associated

covariance matrix evaluated from Eq. (3) with unit hyper-

parameters.

In order to share the temporal information between

frames in the sequence, we assign independent GP priors

to all values in zi, and consider the encoder outputs yi to be

noise-corrupted versions of the ‘ideal’ latent space encod-

ings (see Fig. 2). This inference problem can be stated as

the following GP regression model:

zj(t) ∼ GP(0, κ(P [t], P [t′])),

yj,i = zj(ti) + εj,i, εj,i ∼ N(0, σ2),
(4)

where zj(t), j = 1, 2, . . . , (512×8×10), are the values of

the latent function z at time t. The noise variance σ2 is a

parameter of the likelihood model, and thus the third and

final free parameter to be learned.
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REFERENCE GROUND-TRUTH OURS (BATCH) MVDEPTHNET DEEPMVS MVSNET COLMAP

Figure 4. Qualitative comparisons on the SUN3D and 7SCENES.

3.3. Latent­state batch estimation

We first consider a batch solution for solving the inference

problem in Eq. (4) for an unordered set of image-pose pairs.

Because the likelihood is Gaussian and all the GPs share the

same poses at which the covariance function is evaluated,

we may solve all the 512×8×10 GP regression problems

with one matrix inversion. This is due to the posterior co-

variance only being a function of the input poses, not values

of learnt representations of images (i.e., y does not appear

in the posterior variance terms in Eq. 5). The posterior mean

and covariance will be given by [24]:

E[Z | {(Pi,yi)}Ni=1
]=C (C+ σ2 I)−1 Y,

V[Z | {(Pi,yi)}Ni=1
]= diag(C−C (C+ σ2 I)−1 C),

(5)

where Z = (z1 z2 . . . zN )⊤ are stacked latent space encod-

ings, Y = (y1 y2 . . . yN )⊤ are outputs from the encoder,

and the covariance matrix Ci,j = κ(Pi, Pj) (see Fig. 3b

for an example). The posterior mean E[zi | {(Pi,yi)}Ni=1
]

is then passed through the decoder to output the predicted

disparity map.

This batch scheme considers all the inter-connected

poses in the sequence, making it powerful. The down-

side is that the matrix C grows with the number of input

frames/poses, N , and the inference requires inverting the

matrix—which scales cubically in the matrix size. This

scheme is thus applicable only to sequences with up to some

hundreds of frames.

3.4. Online estimation

In the case that the image-pose pairs have a natural

ordering—as in a real-time application context—we may

relax our model to a directed graph (i.e., Markov chain,

see Fig. 2 for the chain). In this case the GP inference

problem can be solved in state-space form (see [26, 25])

with a constant computational and memory complexity per

pose/frame. The inference can be solved exactly without

approximations by the following procedure [26].

For state-space GP inference, the covariance function

(GP prior) is converted into a dynamical model. The initial

(prior) state is chosen as the steady-state corresponding to

the Matérn covariance function (Eq. 3): z0 ∼ N(µ0,Σ0),
where µ0 = 0 and Σ0 = diag(γ2, 3γ2/ℓ2). We jointly

infer the posterior of all the independent GPs, such that

the mean µi is a matrix of size 2×(512·8·10), where the

columns are the time-marginal means for the independent

GPs and the two-dimensional state comes from the Matérn

model being once mean square differentiable. The covari-

ance matrix is shared between all the independent GPs,

Σi ∈ R
2×2. This makes the inference fast.

Following the derivation in [26], we define an evolution

operator (which has the behaviour of the Matérn)

Φi = exp

[(

0 1

−3/ℓ2 −2
√
3/ℓ

)

∆Pi

]

, (6)

where the pose difference ∆Pi = D[Pi, Pi−1] is the pose-

distance between consecutive poses. This gives us the pre-

dictive latent space values zi |y1:i−1 ∼ N(µ̄i, Σ̄i), where

the mean and covariance are propagated by:

µ̄i = Φi µi−1, Σ̄i = Φi Σi−1 Φ
⊤
i +Qi, (7)

where Qi = Σ0 −Φi Σ0 Φ
⊤
i . The posterior mean and co-

variance is then given by conditioning on the encoder output
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REFERENCE GROUND-TRUTH OURS (BATCH) MVDEPTHNET DEEPMVS MVSNET COLMAP

Figure 5. Qualitative comparisons on the ETH3D dataset.

yi of the current step:

µi = µ̄i + ki (y
⊤
i − h⊤

µ̄i), Σi = Σ̄i − ki h
⊤Σ̄i, (8)

where ki=Σ̄i h/(h
⊤Σ̄i h+σ2) and the observation model

h=(1 0)⊤. The posterior latent space encodings zi |y1:i ∼
N(µi,Σi) conditioned on all image-pose pairs up till the

current are then passed through the decoder to produce the

disparity prediction. Due to overloaded notation (the state-

space model tracks both the latent space values and their

derivatives), it is actually h⊤
µi that is passed to the decoder.

4. Experiments

We train our model with the same data as in DeMoN [32].

The training data set includes short sequences from real-

world data sets SUN3D [35], RGBD [31], MVS (includes

CITYWALL and ACHTECK-TURM [7]), and a synthesized

data set SCENES11 [32]. There are 92,558 training samples

and each training sample consists of a three-view sequence

with ground-truth depth maps and camera poses. The res-

olution of the input images is 320×256. All data in our

training set are also used in the training set of MVDepth-

Net, but the size of our training set is much smaller, so the

improvement of the performance should not be explained

by our training set. We load the MVDepthNet pretrained

model as the starting point of training. We jointly train the

encoder, decoder, and the GP hyperparameters on a desk-

top worstation (NVIDIA GTX 1080 Ti, i7-7820X CPU, and

63 GB memory) using the Adam solver [16] with β1 = 0.9
and β2 = 0.999, and a learning rate of 10−4. The model

was implemented in PyTorch and trained with 46k iterations

with a mini-batch size of four. During training, we use the

batch GP scheme (Sec. 3.3). After training, the GP hyper-

parameters were γ2 = 13.82, ℓ = 1.098, and σ2 = 1.443.

4.1. Evaluation

We evaluate our method on four sequences picked ran-

domly from the indoor data set 7SCENES [28] (office-

01, office-04,redkitchen-01, redkitchen-02). The 7SCENES

data set can be regarded as an ideal evaluation data

set as none of models are trained with 7SCENES, the

results can reveal the generalization abilities of mod-

els. Moreover, sequences in 7SCENES generally con-

tain different viewpoints in the same room, so there

are many neighbour views that share similar scenes,

which is applicable for studying the impact of our fusion

scheme. Four sequences from SUN3D (mit 46 6lounge,

mit dorm mcc eflr6, mit 32 g725, mit w85g) and two se-

quences from ETH3D (kicker, office) are in evaluation of

predicted depth maps. Altogether, there are 951 views in

the evaluation set.

We use four common error metrics: (i) L1, (ii) L1-

rel, (iii) L1-inv, and (iv) sc-inv. The three L1 metrics

are mean absolute difference, mean absolute relative dif-

ference, and mean absolute difference in inverse depth,

respectively. They are given as L1 = 1

n

∑

i |di − d̂i|,
L1-rel = 1

n

∑

i
|di−d̂i|/d̂i, and L1-inv = 1

n

∑

i |d−1

i − d̂−1

i |,
where di (meters) is the predicted depth value, d̂i (me-

ters) is the ground-truth value, n is the number of pix-

els for which the depth is available. The scale-invariant

metric is sc-inv = ( 1n
∑

i z
2

i − 1/n2(
∑

i zi)
2)1/2, where

zi = log di − log d̂i. L1-rel normalizes the error, L1-inv

puts more importance to close-range depth values, and sc-

inv is a scale-invariant metric.

We compare our method with three state-of-the-art

CNN-based MVS methods (MVSNet [36], DeepMVS [11],

and MVDepthNet [34]), and one traditional MVS method
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Table 1. Comparison results between COLMAP, MVSNet, DeepMVS, MVDepthNet, and

our method. We outperform other methods in most of the data sets and error metrics (smaller

better).

COLMAP MVSNet DeepMVS MVDepthNet Ours (online) Ours (batch)

SUN3D

L1-rel 0.8169 0.3971 0.4196 0.1147 0.1064 0.1010

L1-inv 0.5356 0.1204 0.1103 0.0610 0.0548 0.0512

sc-inv 0.8117 0.3355 0.3288 0.1320 0.1268 0.1220

L1 1.6324 0.6538 0.9923 0.2631 0.2512 0.2386

7SCENES

L1-rel 0.5923 0.2789 0.2198 0.1972 0.1706 0.1583

L1-inv 0.4160 0.1201 0.0946 0.1064 0.0931 0.0884

sc-inv 0.4553 0.2570 0.2258 0.1611 0.1490 0.1458

L1 1.0659 0.4971 0.4183 0.3807 0.3187 0.2947

ETH3D

L1-rel 0.5574 0.4706 0.4124 0.2569 0.2354 0.2291

L1-inv 0.4307 0.1901 0.3380 0.1366 0.1227 0.1066

sc-inv 0.5595 0.4555 0.4661 0.2667 0.2561 0.2517

L1 0.6440 0.9567 0.5684 0.5979 0.5417 0.5374
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Figure 6. 3D reconstruction on 7SCENES

by TSDF Fusion [38]. The results are

fused from 25 depth maps.

(COLMAP, [27]), because all these methods are available

to image sequences. For COLMAP, we use the ground-

truth poses to produce dense models directly. For MVS-

Net, 192 depth labels based on ground-truth depth are used.

For COLMAP, MVSNet, and DeepMVS, to get good re-

sults, four neighbour images are assigned for each reference

image, while MVDepthNet and our method only use one

previous frame that has enough angle difference (>15◦) or

baseline translation (>0.1 m) as the neighbour frame.

As shown in Table 1, our methods, both the online and

batch version, outperform other methods on all evaluation

sets/metrics. Compared with the original MVDepthNet, the

performance gets improved on all data sets after introduc-

ing the GP prior. These results underline, that sharing infor-

mation across different poses always seems beneficial. As

expected, the online estimation results are slightly worse

than the batch estimation, because the online method only

leverages the frames in the past. All models are trained

with similar scenes, except for MVSNet which is trained

with the DTU dataset that has much smaller scale of depth

ranges; as our test sequences have larger ranges, the depth

labels might become too sparse for the model, explaining

its failed predictions. As also noted in the original publi-

cations, running COLMAP and DeepMVS is slow (orders

of magnitude slower than the other methods). In compar-

ison to MVDepthNet, as the GP inference only adds the

cost of some comparably small matrix calculations which

is small in comparison to the network evaluations, the im-

provements come at almost no cost.

Fig. 4 and 5 show qualitative comparison results. Patch-

based methods like DeepMVS and COLMAP more easily

to suffer from textureless regions and are more noisy. Com-

pared to MVDepthNet, introducing the GP prior helps to

obtain more stable depth maps with sharper edges. Fig. 6

reveals the temporal consistency of our method and proves

that it is supplementary to traditional fusion methods.

4.2. Ablation studies

We have conducted several ablation studies for the design

choices in our method.

Number of neighbour frames. MVS methods typically

use more than two input frames to reduce the noise in the

cost volume. Our method can also use more than just a pair

of inputs. Table 2 shows the results on redkitchen-02, where

we compare our method to MVDepthNet and MVSNet. The

use of more input frames improves all methods, but does not

change the conclusions. Without the GP prior, even using

five frames is inferior to our method with only two frames.

Neighbour selection. Strict view selection rules are re-

quired in many methods to obtain good predictions, because

the cost volume breaks down if there is not enough base-

line between views. We study robustness by decreasing the

threshold of translation when selecting the neighbour frame

in the SUN3D and 7SCENES sequences. In Table 3, the er-

ror metrics increase more without using GP priors, which

signals that the GP is beneficial in cases where the camera

does not move much.

Choice of kernel function. In addition to the Matérn

kernel, we experiment with the exponential kernel [24]:

κ(P, P ′) = γ2 exp(−D[P, P ′]/ℓ). The exponential kernel

does not encode any smoothness (not differentiable), which

makes it too flexible for the task as can be read from the

error metrics in Table 4. If we ignore the pose information

in the kernel, and only use the temporal difference (TD)

instead, D[i, j] = |i − j|, the GP can be seen as a low-

pass filter. We experimented with the TD in the Matérn ker-
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Table 2. Ablation experiment: Performance comparison w.r.t. different number of input frames.

2 frames 3 frames 5 frames

Metric / Methods MVDepthNet MVSNet Ours MVDepthNet MVSNet Ours MVDepthNet MVSNet Ours

L1-rel 0.2009 0.3159 0.1615 0.1897 0.2665 0.1460 0.1734 0.2758 0.1429

L1-inv 0.1161 0.1435 0.0979 0.1064 0.1244 0.0881 0.1028 0.1195 0.0850

sc-inv 0.1866 0.3250 0.1729 0.1809 0.2902 0.1598 0.1766 0.2809 0.1587

L1 0.4238 0.6036 0.3386 0.3922 0.5133 0.3066 0.3619 0.5116 0.2964

Table 3. Performance comparison w.r.t. thresholds of translation.

tmin = 0.1 m tmin = 0.05 m

Metric / Methods w/o GP Ours w/o GP Ours

L1-rel 0.1474 0.1238 0.1535 0.1262

L1-inv 0.0790 0.0660 0.0828 0.0669

sc-inv 0.1436 0.1315 0.1487 0.1334

L1 0.3098 0.2609 0.3242 0.2664

Table 4. Performance comparison w.r.t. different kernels.

Metric / Methods L1-rel L1-inv sc-inv L1

Matérn 0.1298 0.0683 0.1384 0.2769

Exponential 0.1376 0.0703 0.1417 0.2846

TD kernel 0.1450 0.0745 0.1457 0.3041

w/o GP 0.1538 0.0824 0.1507 0.3265

nel, which gives better results than not using a GP, but per-

formed worse than both the GPs that use the pose-distance.

4.3. Online experiments with iOS

To demonstrate the practical value of our MVS scheme, we

ported our implementation to an iOS app. The online GP

scheme and cost volume construction were implemented in

C++ with wrappers in Objective-C, while the app itself was

implemented in Swift. More specifically, the homography

warping for cost volume construction leverages OpenCV,

and the real-time GP is implemented using the Eigen ma-

trix library. The trained PyTorch model was converted to a

CoreML model through ONNX. The camera poses are cap-

tured by Apple ARKit. Fig. 7 shows a screenshot of the app

in action, where we have set the refresh rate to ∼1 Hz. Note

that the model was not trained with any iOS data, nor any

data from the environment the app was tested in.

5. Discussion and conclusion

In this paper, we proposed a novel idea for MVS that en-

ables the model to leverage multi-view information but keep

the frame structure simple and time-efficient at the same

time. Our pose-kernel measures the ‘closeness’ between

frames and encodes this prior information using a Gaussian

process in the latent space. In the experiments, we showed

that this method clearly advances the state-of-the-art. Our

proposed model consistently improves the accuracy of esti-

mated depth maps when appended to the baseline disparity

network of [34] and this holds independently of the num-

ber of views used for computing individual cost volumes.

In addition, as the proposed model fuses information in

the latent space, it is complementary with depth map fu-

sion techniques, such as [38], which can fuse information

from multiple depth maps estimated using our approach. In

fact, besides improving individual depth map predictions,

our latent-space GP prior leads to improved result also when

Figure 7. Screenshot of our disparity estimation method running

on an Apple iPad Pro (11-inch, late-2018 model). The previous

and current frames are side-by-side on the top. The predicted dis-

parity (corresponding to the current frame) is visualized on the

bottom. The pose information comes from Apple’s ARKit API.

combined with a subsequent depth map fusion stage.

One possible limitation of our method is that wrong pre-

dictions might also be propagated forward because of the

fusion in the latent space. We do not employ any outlier

rejection rules like traditional depth fusion methods. The

same applies to occlusion. Even though we recognize this

concern, we did not notice any problems in robustness while

experimenting with our online app implementation. Still,

introducing confidence measures to penalize wrong predic-

tions could improve the method in the future.

Codes and material available on the project page:

https://aaltoml.github.io/GP-MVS.
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