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Abstract

Given an outfit, what small changes would most im-

prove its fashionability? This question presents an intrigu-

ing new vision challenge. We introduce Fashion++, an ap-

proach that proposes minimal adjustments to a full-body

clothing outfit that will have maximal impact on its fash-

ionability. Our model consists of a deep image genera-

tion neural network that learns to synthesize clothing con-

ditioned on learned per-garment encodings. The latent en-

codings are explicitly factorized according to shape and tex-

ture, thereby allowing direct edits for both fit/presentation

and color/patterns/material, respectively. We show how to

bootstrap Web photos to automatically train a fashionabil-

ity model, and develop an activation maximization-style ap-

proach to transform the input image into its more fashion-

able self. The edits suggested range from swapping in a new

garment to tweaking its color, how it is worn (e.g., rolling up

sleeves), or its fit (e.g., making pants baggier). Experiments

demonstrate that Fashion++ provides successful edits, both

according to automated metrics and human opinion.

1. Introduction

“Before you leave the house, look in the mirror and take

one thing off.” – Coco Chanel

The elegant Coco Chanel’s famous words advocate for

making small changes with large impact on fashionability.

Whether removing an accessory, selecting a blouse with a

higher neckline, tucking in a shirt, or swapping to pants a

shade darker, often small adjustments can make an existing

outfit noticeably more stylish. This strategy has practical

value for consumers and designers alike. For everyday con-

sumers, recommendations for how to edit an outfit would

allow them to tweak their look to be more polished, rather

than start from scratch or buy an entirely new wardrobe.

For fashion designers, envisioning novel enhancements to

familiar looks could inspire new garment creations.

Motivated by these observations, we introduce a new

computer vision challenge: minimal edits for outfit improve-

ment. To minimally edit an outfit, an algorithm must pro-

∗ Authors contributed equally.

Figure 1: Minimal outfit edits suggest minor changes to an existing

outfit in order to improve its fashionability. For example, changes

might entail (left) removing an accessory; (middle) changing to a

blouse with higher neckline; (right) tucking in a shirt.

pose alterations to the garments/accessories that are slight,

yet visibly improve the overall fashionability. A “minimal”

edit need not strictly minimize the amount of change; rather,

it incrementally adjusts an outfit as opposed to starting from

scratch. It can be recommendations on which garment to

put on, take off, or swap out, or even how to wear the same

garment in a better way. See Figure 1.

This goal presents several technical challenges. First,

there is the question of training. A natural supervised ap-

proach might curate pairs of images showing better and

worse versions of each outfit to teach the system the differ-

ence; however, such data is not only very costly to procure,

it also becomes out of date as trends evolve. Secondly, even

with such ideal pairs of images, the model needs to distin-

guish very subtle differences between positives and nega-

tives (sometimes just a small fraction of pixels as in Fig. 1),

which is difficult for an image-based model. It must rea-

son about the parts (garments, accessories) within the origi-

nal outfit and how their synergy changes with any candidate

tweak. Finally, the notion of minimal edits implies that ad-

justments may be sub-garment level, and the inherent prop-

erties of the person wearing the clothes—e.g., their pose,

body shape—should not be altered.

Limited prior work explores how to recommend a gar-

ment for an unfinished outfit [9, 13, 31, 44] (e.g., the fill-

in-the-blank task). Not only is their goal different from

ours, but they focus on clean per-garment catalog photos,

and their recommendations are restricted to retrieved gar-

ments from a dataset. However, we observe that in the fash-
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ion domain, the problem demands going beyond seeking an

existing garment to add—to also inferring which garments

are detrimental and should be taken off, and how to adjust

the presentation and details of each garment (e.g., cuff the

jeans above the ankle) within a complete outfit to improve

its style.

We introduce a novel image generation approach called

Fashion++ to address the above challenges. The main idea

is an activation maximization [33] method that operates on

localized encodings from a deep image generation network.

Given an original outfit, we map its composing pieces (e.g.,

bag, blouse, boots) to their respective codes. Then we use a

discriminative fashionability model as an editing module to

gradually update the encoding(s) in the direction that max-

imizes the outfit’s score, thereby improving its style. The

update trajectory offers a spectrum of edits, starting from

the least changed and moving towards the most fashionable,

from which users can choose a preferred end point. We

show how to bootstrap Web photos of fashionable outfits,

together with automatically created “negative” alterations,

to train the fashionability model. 1 To account for both the

pattern/colors and shape/fit of the garments, we factorize

each garment’s encoding to texture and shape components,

allowing the editing module to control where and what to

change (e.g., tweaking a shirt’s color while keeping its cut

vs. changing the neckline or tucking it in).

After optimizing the edit, our approach provides its out-

put in two formats: 1) retrieved garment(s) from an inven-

tory that would best achieve its recommendations and 2) a

rendering of the same person in the newly adjusted look,

generated from the edited outfit’s encodings. Both outputs

aim to provide actionable advice for small but high-impact

changes for an existing outfit.

We validate our approach using the Chictopia

dataset [24] and, through both automated metrics and

user studies, demonstrate that it can successfully generate

minimal outfit edits, better than several baselines. Fash-

ion++ offers a unique new tool for data-driven fashion

advice and design—a novel image generation pipeline

relevant for a real-world application.

2. Related Work

Recognition for fashion. Most prior fashion work ad-

dresses recognition problems, like matching street-to-

shop [18,20,26,46], searching for products interactively [8,

22, 56], and recognizing garments [27].

Fashion image synthesis. Synthesis methods explore ways

to map specified garments to new poses or people. This in-

cludes generating a clothed person conditioned on a product

1Fashionability refers to the stylishness of an outfit, the extent to which

it agrees with current trends. As we will see in Sec. 3.2, our model de-

fines fashionability by popular clothing choices people wear in Web pho-

tos, which can evolve naturally over time with changing trends.

image [10, 47, 52] (and vice versa [53]), or conditioned on

textual descriptions (e.g., “a woman dressed in sleeveless

white clothes”) [37, 61], as well as methods for swapping

clothes between people [36, 55] or synthesizing a clothed

person in unseen poses [2, 3, 23, 28, 35, 40, 57]. Whereas

these problems render people in a target garment or body

pose, we use image synthesis as a communication tool to

make suggestions to minimally edit outfits.

Image manipulation, translation, and style transfer are

also popular ways to edit images. There is a large base of

literature for generating realistic images conditioned on se-

mantic label maps [16, 48, 58–60], edge maps [38, 51], or

3D models [25, 50], using generative adversarial networks

(GANs) [7]. Related ideas are explored in interactive im-

age search, where users specify visual attributes to alter in

their query [8, 22, 56]. Style transfer methods [4–6, 14] of-

fer another way to edit images that turn photographs into

artwork. Unlike previous work that conditions on segment

maps, maps are generated in our case; as a result, we en-

able sub-object shape changes that alter regions’ footprints,

which generalizes fashion image synthesis. Most impor-

tantly, all these works aim to edit images according to hu-

man specified input, whereas we aim to automatically sug-

gest where and how to edit to improve the input.

Compatibility and fashionability. Fashionability refers to

the popularity or stylishness of clothing items, while com-

patibility refers to how well-coordinated individual gar-

ments are. Prior work recommends garments retrieved from

a database that go well together [9,11–13,15,17,43–45], or

even garments generated from GANs [39]. Some also rec-

ommend interchangeable items [9, 31, 44] that are equally

compatible, or forecast future fashion trends [1]. We ad-

dress a new and different problem: instead of recommend-

ing compatible garments from scratch, our approach tweaks

an existing outfit to make it more compatible/fashionable.

It can suggest removals, revise a garment, optimize fash-

ionability, and identify where to edit—none of which is

handled by existing methods. Using online “likes” as a

proxy for fashionability, the system in [41] suggests—in

words—garments or scenery a user should change to im-

prove fashionability; however, it conditions on meta-data

rather than images, and suggests coarse properties specified

in words (e.g., Navy and Bags, Black Casual) that often dic-

tate changing to an entirely new outfit.

Activation maximization. Activation maximization [33]

is a gradient based approach that optimizes an image to

highly activate a target neuron in a neural network. It is

widely used for visualizing what a network has learned [29,

34, 42, 49, 54], and recently to synthesize images [19, 32].

In particular, [19] also generates clothing images, but they

generate single-garment products rather than full body out-

fits. In addition, they optimize images to match purchase

history, not to improve fashionability.
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Figure 2: Overview of our Fashion++ framework. We first obtain latent features from texture and shape encoders Et and Es. Our editing

module F++ operates on the latent texture feature t and shape feature s. After an edit, the shape generator Gs first decodes the updated

shape feature s++ back to a 2D segmentation mask m
++, and then we use it to region-wise broadcast the updated texture feature t++ into

a 2D feature map u
++. This feature map and the updated segmentation mask are passed to the texture generator Gt to generate the final

updated outfit x++. See Supp. for architecture details.

3. Approach

Minimal editing suggests changes to an existing outfit

such that it remains similar but noticeably more fashion-

able. To address this newly proposed task, there are three

desired objectives: (1) training must be scalable in terms

of supervision and adaptability to changing trends; (2) the

model could capture subtle visual differences and the com-

plex synergy between garments that affects fashionability;

and (3) edits should be localized, doing as little as swap-

ping one garment or modifying its properties, while keeping

fashion-irrelevant factors unchanged.

In the following, we first present our image generation

framework, which decomposes outfit images into their gar-

ment regions and factorizes shape/fit and texture, in support

of the latter two objectives (Sec. 3.1). Then we present our

training data source and discuss how it facilitates the first

two objectives (Sec. 3.2). Finally, we introduce our activa-

tion maximization-based outfit editing procedure and show

how it recommends garments (Sec. 3.3).

3.1. Fashion++ Outfit Generation Framework

The coordination of all composing pieces defines an out-

fit’s look. To control which parts (shirt, skirt, pants) and

aspects (neckline, sleeve length, color, pattern) to change—

and also keep identity and other fashion-irrelevant factors

unchanged—we want to explicitly model their spatial lo-

cality. Furthermore, to perform minimal edits, we need to

control pieces’ texture as well as their shape. Texture often

decides an outfit’s theme (style): denim with solid patterns

gives more casual looks, while leather with red colors gives

more street-style looks. With the same materials, colors,

and patterns of garments, how they are worn (e.g., tucked in

or pulled out) and the fit (e.g., skinny vs. baggy pants) and

cut (e.g., a V-neck vs. turtleneck) of a garment will comple-

ment a person’s silhouette in different ways. Accounting for

all these factors, we devise an image generation framework

that both gives control over individual pieces (garments, ac-

cessories, body parts) and also factorizes shape (fit and cut)

from texture (color, patterns, materials).

Our system has the following structure at test time: it

first maps an outfit image x
(q) and its associated semantic

segmentation map m
(q) to a texture feature t(q) and a shape

feature s
(q). Our editing module, F++, then gradually up-

dates t
(q) and s

(q) into t
++ and s

++ to improve fashion-

ability. Finally, based on t
++ and s

++, the system gener-

ates the output image(s) of the edited outfit x++. Fig. 2

overviews our system. Superscripts (q) and ++ denote

variables before and after editing, respectively. We omit

the superscript when clear from context. We next describe

how our system maps an outfit into latent features.

Texture feature. An input image x ∈ X ⊆ R
H×W×C is

a real full-body photo of a clothed person. It is accompa-

nied by a region map m ∈ M ⊆ Z
H×W assigning each

pixel to a region for a clothing piece or body part. We use

n = 18 unique region labels defined in Chictopia10k [24]:

face, hair, shirt, pants, dress, hats, etc. We first feed x into a

learned texture encoder Et : X → V that outputs a feature

map v ∈ V ⊆ R
W×H×dt . Let ri be the region associated

with label i. We average pool v in ri to obtain the texture

feature ti = F i
pool(v,m) ∈ R

dt , ∀i. The whole outfit’s tex-

ture feature is represented as t := [t0; . . . ; tn−1] ∈ R
n·dt .

See Fig. 2 top left.

Shape feature. We also develop a shape encoding that al-

lows per-region shape control separate from texture con-

trol. Specifically, we construct a binary segmentation map

mi ∈ MB ∈ {0, 1}H×W for each region ri, and use a

shared shape encoder Es : MB → S to encode each mi

into a shape feature si ∈ S ∈ R
ds . The whole outfit’s shape

feature is represented as s := [s0; . . . ; sn−1] ∈ R
n·ds . See

Fig. 2 bottom left.

Image generation. To generate an image, we first use a

shape generator Gs that takes in whole-body shape feature s

and generates an image-sized region map m̂ ∈ M . We then
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perform region-wise broadcasting, which broadcasts ti to

all locations with label i based on m̂, and obtain the texture

feature map u = Fbroad(t, m̂) ∈ R
H×W×dt .2 Finally, we

channel-wise concatenate u and m̂ to construct the input to

a texture generator Gt, which generates the final outfit im-

age. This generation process is summarized in Fig. 2 (right).

Hence, the generators Gt and Gs learn to reconstruct outfit

images conditioned on garment shapes and textures.

Training. Although jointly training the whole system is

possible, we found a decoupled strategy to be effective. Our

insight is that if we assume a fixed semantic region map,

the generation problem is reduced to an extensively studied

image translation problem, and we can benefit from recent

advances in this area. In addition, if we separate the shape

encoding and generation from the whole system, it reduces

to an auto-encoder, which is also easy to train.

Specifically, for the image translation part (Texture++

in Fig. 2), we adapt from conditional generative adversar-

ial networks (cGANs) that take in segmentation label maps

and associated feature maps to generate photo-realistic im-

ages [48, 60]. We combine the texture encoder Et and

texture generator Gt with a discriminator D to formulate

a cGAN. An image x̂ is generated by Gt(m,u), where

u = F(Et(x),m), and F is the combined operations of

F i
pool, ∀i and Fbroad. The discriminator D aims to distin-

guish real images from generated ones. Et, Gt and D are

learned simultaneously with a minimax adversarial game

objective:

Gt
∗, Et

∗=argmin
Gt,Et

max
D

LGAN(Gt,D,Et)+LFM(Gt,Et,D),

(1)

where LGAN is defined as:

E(m,x)

(
logD(m,x) + log

(
1−D

(
m, Gt (m,u)

)))
(2)

for all training images x, and LFM denotes feature matching

loss.

For the shape deformation part of our model (Shape++ in

Fig. 2), we formulate a shape encoder and generator with a

region-wise Variational Autoencoder (VAE) [21]. The VAE

assumes the data is generated by a directed graphical model

p(m|s) and the encoder learns an approximation qEs
(s|m)

to the posterior distribution p(s|m). The prior over the en-

coded feature is set to be Gaussian with zero mean and iden-

tity covariance, p(s) = N (0, I). The objective of our VAE

is to minimize the Kullback-Leibler (KL) divergence be-

tween qEs
(s|m) and p(s), and the ℓ1 reconstruction loss:

DKL

(
qEs

(s|m)‖p(s)
)
+ Em

∥∥m−Gs

(
Es(m)

)∥∥
1
. (3)

Note that simply passing in the 2D region label map as

the shape encoding s would be insufficient for image edit-

ing. The vast search space of all possible masks is too

2Note that u has uniform features for a region, since it is average-

pooled, while v is not.

,

( ),neg =

,

( ),pos =

Figure 3: Forming training examples: A fashionable Web photo

is the positive (left). We overwrite some garment’s features with

those from another distant outfit to create the negative (right).

(Here only two of n garment regions are shown for simplicity.)

difficult to model, and, during editing, mask alterations

could often yield unrealistic or uninterpretable “fooling”

images [34, 42]. In contrast, our VAE design learns the

probability distribution of the outfit shapes, and hence can

generate unseen shapes corresponding to variants of fea-

tures from the learned distribution. This facilitates mean-

ingful shape edits.

Having defined the underlying image generation archi-

tecture, we next introduce our editing module for revising

an input’s features (encodings) to improve fashionability.

3.2. Learning Fashionability from Web Photos

Our editing module (Sec. 3.3) requires a discriminative

model of fashionability, which prompts the question: how

can we train a fashionability classifier for minimal edits?

Perhaps the ideal training set would consist of pairs of im-

ages in which each pair shows the same person in slightly

different outfits, one of them judged to be more fashionable

than the other. However, such a collection is not only im-

practical to curate at scale, it would also become out of date

as soon as styles evolve. An alternative approach is to treat

a collection of images from a specific group (e.g., celebri-

ties) as positive exemplars and another group (e.g., everyday

pedestrians) as negatives. However, we found such a collec-

tion suffers from conflating identity and style, and thus the

classifier finds fashion-irrelevant properties discriminative

between the two groups.

Instead, we propose to bootstrap less fashionable pho-

tos automatically from Web photos of fashionable outfits.

The main idea is to create “negative” outfits from fashion-

ista photos. We start with a Chictopia full-body outfit photo

(a “positive”), select one of its pieces to alter, and replace it

with a piece from a different outfit. To increase the proba-

bility that the replacement piece degrades fashionability, we

extract it from an outfit that is most dissimilar to the original

one, as measured by Euclidean distance on CNN features.

We implement the garment swap by overwriting the encod-

ing zi := [ti; si] for garment i with the target’s. See Fig. 3.

We use this data to train a 3-layer multilayer perceptron

(MLP) fashionability classifier f . It is trained to map the

encoding z := [t; s] for an image x to its binary fashion-
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ability label y ∈ {0, 1}.

The benefit of this training strategy is threefold: First,

it makes curating data easy, and also refreshes easily as

styles evolve—by downloading new positives. Second, by

training the fashionability classifier on these decomposed

(to garments) and factorized (shape vs. texture) encodings,

a simple MLP effectively captures the subtle visual prop-

erties and complex garment synergies (see Supp. for ab-

lation study). Finally, we stress that our approach learns

from full-body outfit photos being worn by people on the

street, as opposed to clean catalog photos of individual gar-

ments [9,11,39,43–45]. This has the advantages of allowing

us to learn aspects of fit and presentation (e.g., tuck in, roll

up) that are absent in catalog data, as well as the chance

to capture organic styles based on what outfits people put

together in the wild.

3.3. Editing an Outfit

With the encoders Et, Es, generators Gt, Gs and editing

module F++ in hand, we now explain how our approach

performs a minimal edit. Given test image x
(q), Fashion++

returns its edited version(s):

x
++ := G

(
F++

(
E
(
x
(q)

)))
, (4)

where G and E represent the models for both shape and tex-

ture. When an inventory of discrete garments is available,

our approach also returns the nearest real garment g++
i for

region i that could be used to achieve that change, as we will

show in results. Both outputs—the rendered outfit and the

nearest real garment—are complementary ways to provide

actionable advice to a user.

Computing an edit. The main steps are: calculating the

desired edit, and generating the edited image. To calculate

an edit, we take an activation maximization approach: we

iteratively alter the outfit’s feature such that it increases the

activation of the fashionable label according to f .

Formally, let z(0) := {t0, s0, . . . , tn−1, sn−1} be the set

of all features in an outfit, and z̃
(0) ⊆ z

(0) be a subset of

features corresponding to the target regions or aspects that

are being edited (e.g., shirt region, shape of skirt, texture of

pants). We update the outfit’s representation as:

z̃
(k+1) := z̃

(k)+λ
∂pf

(
y = 1|z(k)

)

∂z̃(k)
, k = 0, . . . ,K−1 (5)

where z̃(k) denotes the features after k updates, z(k) denotes

substituting only the target features in z
(0) with z̃

(k) while

keeping other features unchanged, pf (y = 1|z(k)) denotes

the probability of fashionability according to classifier f ,

and λ denotes the update step size. Each gradient step in

Eqn (5) yields an incremental adjustment to the input out-

fit. Fig. 4 shows the process of taking 10 gradient steps

with step size 0.1 (see Sec. 4 for details). By presenting this

Figure 4: As Fashion++ iteratively edits the outfit, the fashionabil-

ity improves and eventually saturates as the outfit becomes fash-

ionable enough. (Metrics defined in Sec. 4.1. Dots show average

result for all test images.)

spectrum of edits to the user, one may choose a preferred

end point (i.e., his/her preferred tradeoff in the “minimal-

ity” of change vs. maximality of fashionability). Finally, as

above, z(K) gives the updated t
++
i ; s++

i , ∀i.
To further force updates to stay close to the original,

one could add a proximity objective, ‖z(k) − z
(0)‖, as

in other editing work [25, 58]. However, balancing this

smoothness term with other terms (users’ constraints in

their cases, fashionability in ours) is tricky (e.g., [25] reports

non-convergence). We found our gradient step approach to

be at least as effective to achieve gradual edits.

Optimizing where to edit. A garment for region i is repre-

sented as the concatenation of its texture and shape features:

z
(0)
i := [ti; si]. Our approach optimizes the garment that

ought to be edited by cycling though all garments to find

the one with most impact:

i∗ = argmax
i=0,...,n−1

∥∥∥∥
∂pf (y = 1|z(0))

∂zi(0)

∥∥∥∥ . (6)

By instructing the target z̃(0) to be zi∗
(0), we can simulta-

neously optimize where and how to change an outfit.

Rendering the edited image. Then we generate the Fash-

ion++ image output by conditioning our image generators

Gt, Gs on these edits:

x
++ = Gt(m

++,u++), (7)

where u
++ refers to the broadcasted map of the edited tex-

ture components t
++, and m

++ = Gs(s
++) refers to the

VAE generated mask for the edited shape components s++.

The full edit operation is outlined in Fig. 2.

In this way, our algorithm automatically updates the la-

tent encodings to improve fashionability, then passes its re-

vised code to the image generator to create the appropriate

image. An edit could affect as few as one or as many as n
garments, and we can control whether edits are permitted

for shape or texture or both. This is useful, for example,

if we wish to insist that the garments look about the same,

but be edited to have different tailoring or presentation (e.g.,

roll up sleeves)—shape changes only.
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Retrieving a real garment matching the edit. Finally, we

return the garment(s) g++
i that optimally achieves the edited

outfit. Let I denote an inventory of garments. The best

matching garments to retrieve from I are:

gi
++ := argmin

gi∈I

∥∥zgi − zi
++

∥∥, (8)

for i = 0, . . . , n − 1, where zgi denotes the garment’s fea-

ture. This is obtained by passing the real inventory garment

image for gi to the texture and shape feature encoders Et

and Es, and concatenating their respective results.

4. Experiments

We now validate that Fashion++ (i) makes slight yet no-

ticeable improvements better than baseline methods in both

quantitative evaluation (Sec. 4.1) and user studies (Sec. 4.2);

(ii) effectively communicates to users through image gener-

ation (Sec. 4.2); and (iii) supports all possible edits from

swapping, adding, removing garments to adjusting outfit

presentations via qualitative examples (Sec. 4.3).

Experiment setup. We use the Chictopia10k [24] dataset

for all experiments. We use 15, 930 images to train the gen-

erators, and 12, 744 to train the fashionability classifier. We

use the procedure described in Sec. 3.2 to prepare positive

and negative examples for training the fashionability clas-

sifier. We evaluate on 3, 240 such unfashionable examples.

We stress that all test examples are from real world outfits,

bootstrapped by swapping features (not pixels) of pieces

from different outfits. This allows testing on real data while

also having ground truth (see below). We use the region

maps provided with Chictopia10k for all methods, though

automated semantic segmentation could be used. Model ar-

chitectures and training details are in Supp.

Baselines. Since our work is the first to consider the mini-

mal edit problem, we develop several baselines for compar-

ison: SIMILARITY-ONLY, which selects the nearest neigh-

bor garment in the database I (Chictopia10k) to main-

tain the least amount of change; FASHION-ONLY, which

changes to the piece that gives the highest fashionability

score as predicted by our classifier, using the database I
as candidates; RANDOM SAMPLING, which changes to a

randomly sampled garment. Since all unfashionable outfits

are generated by swapping out a garment, we instruct all

methods to update that garment. We additionally run results

where we automatically determine the garment to change,

denoted auto-Fashion++.

4.1. Quantitative comparison

Minimal edits change an outfit by improving its fashion-

ability while not changing it too much. Thus, we evaluate

performance simultaneously by fashionability improvement

and amount of change. We evaluate the former by how
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(b) Human subject study B.

Figure 5: For both automatic (a) and human (b) evaluation, Fash-

ion++ best balances improving fashionability while remaining

similar. In (b), both axes are the raw Likert scale; we negate the

x-axis so that its polarity agrees to the left.

much the edit gets closer to the ground-truth (GT) outfit.

Since each unfashionable outfit is generated by swapping

to a garment (we will call it original) from another outfit,

and the garment before the swap (we will call it GT) is just

one possibility for a fashionable outfit, we form a set of GT

garments per test image, representing the multiple ways to

improve it (see Supp. for details). The fashion improve-

ment metric is the ratio of the original piece’s distance to

the GT versus the edited piece’s distance to the GT. Values

less than one mean no improvement. The amount of change

metric scores the edited garment’s distance to the original

garment, normalized by subtracting SIMILARITY ONLY’s

number. All distances are Euclidean distance in the genera-

tors’ encoded space. All methods return the garment in the

inventory nearest to their predicted encoding.

Fig. 5a shows the results.3 SIMILARITY-ONLY changes

the outfit the least, as expected, but it does not improve

fashionability. FASHION-ONLY improves fashionability the

most, but also changes the outfit significantly. RANDOM

neither improves fashionability nor remains similar. Our

Fashion++ improves fashionability nearly as well as the

FASHION-ONLY baseline, while remaining as similar to the

original outfit as SIMILARITY-ONLY. Auto-Fashion++ per-

forms similarly to Fashion++. These results support our

claim that Fashion++ makes slight yet noticeable improve-

ments.

Fig. 4 shows that by controlling the amount of change

(number of gradient steps) made by Fashion++, one can

choose whether to change less (while still being more fash-

ionable than SIMILARITY-ONLY) or improve fashionability

more (while still changing less than FASHION-ONLY).

4.2. Human perceptual study

Next we ask humans to judge the quality of Fashion++’s

edits, how it compares with baselines, and whether they

know what actions to take to improve outfits based on

3We plot ours with K = 6 for clarity and since fashionability typically

saturates soon after. Results for all K values are in Fig. 4 and Sec. 4.2.
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the edits. We perform three human subject test protocols;

please see Supp. for all three user interfaces. We randomly

sample 100 unfashionable test outfits and post tasks on Me-

chanical Turk (MTurk). Each sample is answered by 7 peo-

ple, and in total 282 Turkers answered.

Protocol A. Fashion++ can show users a spectrum of ed-

its (e.g., Fig. 4) from which to choose the desired ver-

sion. While preference will naturally vary among users, we

are interested in knowing to what extent a given degree of

change is preferred and why. To this end, we show Turk-

ers an original outfit and edits from K = 1 to 10, and ask

them to: (i) Select all edits that are more fashionable than

the original. (ii) Choose which edit offers the best balance

in improving the fashionability without changing too much.

(iii) Explain why the option selected in (ii) is best.

For (i), we found that the more we change an out-

fit (increasing K), the more often human judges think

the changed outfit becomes fashionable, with 92% of the

changed outfits judged as more fashionable when K = 10.

Furthermore, when we apply Fashion++ to an already fash-

ionable outfit, 84% of the time the human judges find the

changed outfit to be similarly or more fashionable, meaning

Fashion++ “does no harm” in most cases (see Supp.). For

(ii), no specific K dominates. The top selected K = 2 is

preferred 18% of the time, and K = 1 to 6 are each pre-

ferred at least 10% of the time. This suggests that results

for K ≤ 6 are similarly representative, so we use K = 6
for remaining user studies. For (iii), a common reason for

a preferred edit is being more attractive, catchy, or interest-

ing. See Supp. for detailed results breaking down K for (i)

(ii) and more Turkers’ verbal explanations for (iii).

Protocol B. Next we ask human judges to compare Fash-

ion++ to the baselines defined above. We give workers a

pair of images at once: one is the original outfit and the

other is edited by a method (Fashion++ or a baseline). They

are asked to express their agreement with two statements on

a five point Likert scale: (i) The changed outfit is more fash-

ionable than the original. (ii) The changed outfit remains

similar to the original. We do this survey for all methods.

We report the median of the 7 responses for each pair.

Fig. 5b shows the result. It aligns very well with our

quantitative evaluation in Fig. 5a: FASHION-ONLY is rated

as improving fashionability the most, but it also changes

outfits as much as RANDOM. SIMILARITY-ONLY is rated

as remaining most similar. Fashion++ changes more than

SIMILARITY-ONLY but less than all others, while improv-

ing fashionability nearly as much as FASHION-ONLY. This

strongly reinforces that Fashion++ makes edits that are

slight yet improve fashionability.

Protocol C. Finally, it is important that no matter how

good the image’s exact pixel quality is, humans can get ac-

tionable information from the suggested edits to improve

Unfashionable (i) Fashion++ (ii) Fashion-only (iv) Random(iii) Sim.-only

x(q) x++        g++ x++        g++ x++        g++ x++

Figure 6: Minimal edit comparisons with baselines. Rows are in-

stances, columns are results for methods: For all but RANDOM

(iv), we show both the rendered (left) and retrieved (right) results.

Retrieved garments g++

i
are in bounding boxes. Best on pdf.

outfits. We thus ask Turkers how “actionable” our edit is

on a five point Likert scale, and to verbally describe the

edit. 72% of the time human judges find our images ac-

tionable, rating the clarity of the actionable information as

4.16 ± 0.41/5. (4 for agree and 5 for strongly agree). See

Supp. for Turkers’ verbal descriptions of our edits.

4.3. Minimal edit examples

Now we show example outfit edits. We first compare

side-by-side with the baselines, and then show variants of

Fashion++ to demonstrate its flexibility. For all examples,

we show outfits both before and after editing as recon-

structed by our generator.

General minimal edits comparing with baselines. Fig. 6

shows examples of outfit edits by all methods as well as

the retrieved nearest garments. Both FASHION-ONLY (ii)

and RANDOM (iv) change the outfit a great deal. While

RANDOM makes outfits less fashionable, FASHION-ONLY

improves them with more stylish garments. Fashion++ (i)

also increases fashionability, and the recommended change

bears similarity (in shape and/or texture) to the initial

less-fashionable outfit. For example, the bottom two in-

stances in Fig. 6 wear the same shorts with different shirts.

FASHION-ONLY recommends changing to the same white

blouse with a red floral print for both instances, which

looks fashionable but is entirely different from the initial

shirts; Fashion++ recommends changing to a striped shirt

with a similar color palette for the first one, and chang-

ing to a sleeveless shirt with a slight blush for the second.

SIMILARITY-ONLY (iii) indeed looks similar to the initial

outfit, but stylishness also remains similar.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Sleeve Waistline

Pants Length Fit

Figure 7: Fashion++ minimal edits on only shape/fit.

(a) (b) (c) (d)

(e) (f) (g) (h)

Pattern

Tweak color Standout PieceCoherenceMonochrome

Standout Piece

Figure 8: Fashion++ minimal edits on only color/pattern.

Minimal edits changing only shapes. Fig. 7 shows exam-

ples when we instruct our model to just change the shape

(cf. Sec 3.3). Even with the exact same pieces and per-

son, adjusting the clothing proportions and fit can favor-

ably affect the style. Fig. 7 (a) shows the length of pants

changing. Notice how changing where the shorts end on

the wearer’s legs lengthens them. (b,c) show changes to

the fit of pants/skirt: wearing pieces that fit well empha-

sizes wearers’ figures. (d) wears the same jacket in a more

open fashion that gives character to the look. (e,f) roll the

sleeves up: slight as it is, it makes an outfit more energetic

(e) or dressier (f). (g,h) adjusts waistlines: every top and

bottom combination looks different when tucked tightly (g)

or bloused out a little (h), and properly adjusting this for

different ensembles gives better shapes and structures.

Minimal edits changing only textures. Fig. 8 shows ex-

amples when we instruct our model to just change the tex-

ture. (a) polishes the outfits by changing the bottom a tint

lighter. (b) changes the outfit to a monochrome set that

lengthens the silhouette. (c) swaps out the incoherent color.

(d)-(f) swap to stand-out pieces by adding bright colors

or patterns that make a statement for the outfits. (g)-(h)

are changing or removing patterns: notice how even with

the same color components, changing their proportions can

light up outfits in a drastic way.

(a) (b) (c) (d)

Figure 9: Fashion++ edits that add/remove clothing pieces.

(i) (ii)

(iii) (iv)

(a)

(ii) Andy in “Devil Wears Prada”

(i) Sam in “A Cinderella Story”

(b)

Figure 10: (a): Some failure cases of Fashion++; (b): Fashion++

on notoriously unfashionable characters.

Beyond changing existing pieces. Not only can we tweak

pieces that are already on outfits, but we can also take off

redundant pieces and even put on new pieces. Fig. 9 shows

such examples. In (a), the girl is wearing a stylish dress, but

together with somewhat unnecessary pants. (b) suggests to

add outerwear to the dress for more layers, while (c) takes

off the dark outerwear for a lighter, more energetic look. (d)

changes pants to skirt for a better figure of the entire outfit.

Failure cases. A minimal edit requires good outfit genera-

tion models, an accurate fashionability classifier, and robust

editing operations. Failure in any of these aspects can re-

sult in worse outfit changes. Fig. 10a shows some failure

examples as judged by Turkers.

Editing celebrities. Fig. 10b shows Fashion++ operating

on movie characters known to be unfashionable.

5. Conclusions

We introduced the minimal fashion edit problem. Mini-

mal edits are motivated by consumers’ need to tweak exist-

ing wardrobes and designers’ desire to use familiar clothing

as a springboard for inspiration. We introduced a novel im-

age generation framework to optimize and display minimal

edits yielding more fashionable outfits, accounting for es-

sential technical issues of locality, scalable supervision, and

flexible manipulation control. Our results are quite promis-

ing, both in terms of quantitative measures and human judge

opinions. In future work, we plan to broaden the composi-

tion of the training source, e.g., using wider social media

platforms like Instagram [30], bias an edit towards an avail-

able inventory, or generate improvements conditioned on an

individual’s preferred style or occasion.
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