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Abstract

We present a practical backend for stereo visual SLAM

which can simultaneously discover individual rigid bod-

ies and compute their motions in dynamic environments.

While recent factor graph based state optimization algo-

rithms have shown their ability to robustly solve SLAM

problems by treating dynamic objects as outliers, the dy-

namic motions are rarely considered. In this paper, we ex-

ploit the consensus of 3D motions among the landmarks ex-

tracted from the same rigid body for clustering and estimat-

ing static and dynamic objects in a unified manner. Specif-

ically, our algorithm builds a noise-aware motion affin-

ity matrix upon landmarks, and uses agglomerative clus-

tering for distinguishing those rigid bodies. Accompanied

by a decoupled factor graph optimization for revising their

shape and trajectory, we obtain an iterative scheme to up-

date both cluster assignments and motion estimation recip-

rocally. Evaluations on both synthetic scenes and KITTI

demonstrate the capability of our approach, and further ex-

periments considering online efficiency also show the effec-

tiveness of our method for simultaneous tracking of ego-

motion and multiple objects.

1. Introduction

Perceiving and modeling surrounding environments are

the foundation of navigating modern Autonomous Things

(AuT), which is achieved via Simultaneous Localization

and Mapping (SLAM) formulated with onboard sensors.

With the booming demand of service robots and self-driving

cars, SLAM technology is now facing more challenging

scenarios, e.g., low-cost sensors which introduce consider-

able noise when running in complicated dynamic scenes.

Recent advanced visual SLAM approaches applicable

for dynamic scenes can be divided into two categories con-

∗corresponding author.

sidering their treatment of dynamic components: exclu-

sion [1, 7, 24, 5] or segmentation [36, 37, 4, 44]. While

the first category chooses to exclude these components to

ensure robust camera ego-motion tracking, the latter cate-

gory inclines to further segment these components into mul-

tiple instances (i.e. rigid bodies). Although it is tolerable to

discard minor movements in an almost static environment,

most scenarios including autonomous driving and multi-

robot collaborating [34] require explicit motion information

of the surroundings to help with decision making and scene

understanding. In these cases, segmentation approaches are

preferred over exclusion solutions.

Existing segmentation based dynamic SLAM systems

detect and model dynamics through either semantics from

deep learning [37, 4] or motion consistency [22, 36]. Deep

neural networks have shown their effectiveness for object

detection and semantic segmentation [19, 8] in the past few

years. But the problems applying them to SLAM systems

are two-fold: First, they can only detect movable a-priori

dynamic categories (e.g. cars or people) but cannot recog-

nize arbitrary moving instances. Second, the performance

of such models heavily depends on the amount of available

computing resources, which brings deployment issues in re-

stricted platforms (e.g. embedded computing devices).

From another perspective, methods exploiting motion

consistency for segmentation [27, 22, 36, 44] achieve ac-

ceptable performance without such problems. These solu-

tions aim to find inconsistencies in landmark observations

between adjacent frames. Current methods discover these

inconsistencies by identifying outliers apparently violating

predefined motion models and causing a high error residual.

However, these works have not sufficiently utilized the in-

formation calculated during the SLAM process, especially

tracked long-term 3D motions, which are effective for ob-

taining better segmentation considering motion consistency.

In this paper, we take a different approach to discovering

motion inconsistencies with a key observation that motions
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of the dynamic components in a scene are the essence of

landmark drifting, and thus propose to cluster their motions

according to the rigidity throughout the time for deducing

underlying rigid bodies simultaneously with the maximum-

a-posteriori (MAP) estimation in the backend. Compared to

the frontend, SLAM backend provides the convenience of

globally discovering and processing long-term scene char-

acteristics, facilitating the fusion of history information and

hence having the potential of providing more accurate mo-

tion segmentation results.

In summary, we revisit the potential of a SLAM backend,

and propose an approach which can distinguish individual

rigid bodies through their locally consistent and globally in-

consistent 3D motions. The proposed backend for stereo

cameras, namely ClusterSLAM (Alg. 1), iteratively consists

of two sub-modules for simultaneously handling cluster as-

signments and motion property estimation. The main ad-

vantages of our proposed algorithm are:

(1) In contrast to recent SLAM backends, our algo-

rithm clusters rather than excludes dynamic landmarks in

the scene, and further estimates their motions.

(2) Measurement uncertainties of keypoints are taken

into account in both clustering and estimation to improve

the accuracy of cluster assignments and motion property es-

timation.

(3) We use chunks of input frames for consensus cluster-

ing and a decoupled factor graph optimization procedure to

maintain the overall system efficiency.

2. Related Work

Visual SLAM in dynamic environment. As introduced

in the previous section, exclusion and segmentation ap-

proaches are two main techniques for visual SLAM. Many

exclusion solutions [2, 24] utilize externally computed in-

formation such as optical flow to prune outlier observa-

tions in order to achieve more accurate ego-motion esti-

mation, while others [1, 7, 30] instead choose to add ro-

bust M-estimator into the MAP optimization framework

to automatically down-weight noisy observations. Con-

trarily, segmentation methods like [26, 23, 12] use tracked

sparse features to perform motion consistency analysis and

motion segmentation; dense approaches taking RGBD in-

put [36, 37, 4, 44] combine the registration residual of dense

model alignment and the geometric features for enhanced

segmentation and tracking. More techniques for dynamic

SLAM are summarized in [38].

Multibody motion segmentation. Previous methods for

motion segmentation are mainly based on subspace factor-

ization techniques [9, 28], statistical modeling and sam-

pling [15, 3, 45], epipolar/trilinear constraints [42, 41], ob-

ject/scene flow [27, 2, 20, 43], energy minimization [47,

23, 21], and deep learning based instance-level detec-

tion [19, 12, 4, 14] (i.e. tracking-by-detection). Our strategy

for segmenting multiple instances is different from previous

approaches: Instead, we found that after the noise-aware

refinement of the 3D trajectories of landmarks, the consis-

tency of motion can be extracted and grouped in an unsu-

pervised way to present landmark-wise associations, thus

deducing their underlying rigid bodies. Furthermore, such

detection may reciprocally contribute to a finer estimation

of the landmark trajectories. This strategy is not sufficiently

exploited in recent segmentation modules.

Clustering approaches. We refer readers to a recent

review [46] on clustering approaches, which divides cluster

algorithms into several categories. Since it is difficult to find

an effective way of representing a single dynamic landmark

by a feature vector, most approaches except those hierarchy

based are not directly applicable to the motion clustering

problem. Based on the property of relative stationarity be-

tween landmarks, our clustering approach calculates pair-

wise motion inconsistency to form a motion distance matrix,

and utilizes a bottom-up hierarchy-based algorithm [17, 39]

to achieve the clustering in O(n2 log n) time. We will also

show in Sec. 4.4-B that the chosen clustering method is su-

perior to alternative methods.

3. ClusterSLAM

As a SLAM backend illustrated in Alg. 1, the goal of

our approach is to obtain the position and the cluster as-

signment of these landmarks, as well as the motion of each

cluster. We use two major modules (clustering and SLAM)

in an iterative scheme to solve for and refine these variables

simultaneously.

In the clustering module (Sec. 3.1), we establish a mo-

tion distance matrix (Sec. 3.1.1) to describe the incon-

sistency of motions of these landmarks pairwisely, and

choose a hierarchical agglomerative clustering approach

(Sec. 3.1.2) to merge them into clusters. Considering the

computational complexity of such a matrix in long se-

quences, we partition input frames into short-term chunks

and use a consensus clustering (Sec. 3.1.3) to conclude the

long-term assignment of a landmark.

In the SLAM module (Sec. 3.2), we aim at solving the

position of these landmarks simultaneously with the move-

ment of these clusters. We first use a noise-aware point

cloud registration and integration approach to initiate its

shape (Sec. 3.2.1) for optimization, and then refine these

positions and motions through a decoupled factor graph op-

timization method (Sec. 3.2.2), so that the previous motion

distance matrix can be updated to continue the iteration.

As the basis of our algorithm, the stereo keypoint cor-

responding to the i-th landmark at frame t (i, t ∈ N
∗) is

denoted as xi
t = (uL, vL, uR) where (uL, vL) are the coor-

dinates on the left image and uR is the horizontal coordinate

in the right image. X
×,i
t ∈ R

3 and Σ×,i
t ∈ R

3×3 respec-

tively represent the local 3D coordinates and uncertainty of
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the i-th landmark within the coordinate system× at frame t.
The back-projection function f : xi

t → X
c,i
t w.r.t. the stereo

camera model projects the observation into the camera lo-

cal coordinate system c. In order to consider the pixel errors

of these keypoint extraction methods [30, 11], we introduce

the stereo noise model [18], where the extraction error of

xi
t reflected on X

c,i
t can be calculated as Σc,i

t = JfΣ
i
tJ

⊤
f ,

where Jf is the Jacobian matrix of the back-projection func-

tion f , and Σi
t is the covariance of xi

t assigned w.r.t. the key-

point extraction error in its image coordinates. For transfor-

mations and poses, we define P
q
t ∈ SE(3) for the pose of

cluster q (q ∈ N
∗) at frame t and Pc

t for the pose of the

stereo camera. We assign all static landmarks to a single

static cluster with q = 0, hence ∀t,P0
t ≡ I. For simplicity

of subsequent equations, we denote relative transformation

as Tab
t = (Pa

t )
′ ·Pb

t (P′ being the inverse of P) for coordi-

nate transformations and R ∈ SO(3) the rotation part of T.

For details of how the frontend generates correspondences

between landmarks (i.e. tracklets of feature points, the input

of Alg. 1) on the input frames, we refer readers to Sec. 4.1

for our implementation details w.r.t. the evaluation datasets.

3.1. Clustering Landmarks

3.1.1 Motion Distance Matrix

Distance calculation. Our clustering approach for these

extracted landmarks is based on the fact that any pair of

landmarks located on the same rigid body, even with noisy

measurements, should durably stay constant. Hence, we ex-

amine the property between landmarks by building a motion

inconsistency matrix D, with each element dij ∈ D de-

picting the inconsistency between the motions of two land-

marks i and j, calculated with the following equation:

dij =
1

2
avg
t

(

∥

∥

∥
lijt − lij∗

∥

∥

∥

2

σ
ij
t

+ log σij
t

)

+ αmax
t

yijt ,

lij∗ ,
∑

t

(
1

σij
t

· lijt )
/

∑

t

1

σij
t

, yijt =
∥

∥

∥
xi
t − x

j
t

∥

∥

∥

2

Σ
ij
t

(1)

where ‖x‖2
Σ

, x⊤Σ−1x is the squared Mahalanobis dis-

tance with a covariance matrix Σ. We use those frames

t where both landmarks i and j are observed to calculate

their distance. The first term is the 3D geometric distance

term, which depicts the consistency of pairwise 3D spatial

distance lijt ∈ R from the frame t w.r.t. their maximum-

likelihood lij∗ . This term is obtained through the form of

negative log-likelihood, and we kindly refer readers to our

supplementary material for the derivation.

Generally, the vector form l
×,ij
t = X

×,i
t − X

×,j
t ∈ R

3

instead of the scalar form lijt would provide more accurate

uncertainty estimation as Σ×,i
t +Σ×,j

t for depicting motion

consistency (× stands for any valid coordinate system), but

its scalar form lijt = ‖l×,ij
t ‖ has the property of being in-

variant to local coordinate systems. Hence, we choose to

Algorithm 1 ClusterSLAM

Input: The observation of landmarks
⋃

i,t x
i
t on different

frames t.
Output: The cluster assignments θ : i→ q (q = 0 for the

static cluster), the MAP relative position of 3D landmarks

w.r.t. their cluster
⋃

i X̂
q,i, the ego-motion of stereo cam-

era
⋃

t P
c
t , and the trajectory of each cluster

⋃

t P
q
t .

k ← 1;

repeat

/* Clustering module (Sec. 3.1). */

for all partitioned chunks m do

Build motion distance matrix Dm (Sec. 3.1.1);

Cluster on Dm and get θm(i) (Sec. 3.1.2);

Conclude θ(i) from
⋃

m θm(i) (Sec. 3.1.3);

/* SLAM module (Sec. 3.2). */

for all clusters q do

if q = 0 then b← c else b← q;

Initialize
⋃

i X̂
q,i and

⋃

t P
b
t (Sec. 3.2.1);

Optimize for
⋃

i X̂
q,i and

⋃

t P
b
t (Sec. 3.2.2);

k ← k + 1;

until the clustering converges or k exceeds limit.

use the scalar form lijt and approximate its distribution us-

ing a 1-dimensional Gaussian as lijt ∼ N
(

lij∗ , σij
t

)

, with

the variance σij
t approximated as the error propagation from

l
×,ij
t to lijt :

σij
t ≈

‖l×,ij
t ‖2

Σ
×,i
t

+ ‖l×,ij
t ‖2

Σ
×,j
t

‖l×,ij
t ‖2

, (2)

where each Mahalanobis term can be computed under any

unified coordinate system ×.

The second term of Equ. 1 is a vision based prior term,

based on the observation that we incline to group pixels

which are close in the image space into one cluster and

Σij
t = Σi

t + Σj
t . Since the 2D distance of two landmarks

in the image space is also dependent on the camera pose,

we choose to pick the maximum rather than the average

for calculating such a prior. The constant logarithm of co-

variance from this term is ignored since all extracted land-

marks are treated with equal uncertainty in the image space.

α = 4×10−4 is a balance factor to control the importance of

the prior. Combining both terms in such a noise-aware form

enables us to take the uncertainty of measurements into ac-

count when clustering. An ablation study for ignoring these

uncertainties during clustering is presented in Sec. 4.4-A.

Element rejection. If co-occurrences of a pair of land-

marks are too rare (fewer than 4 times in our implementa-

tion), the maximum-likelihood estimation is no longer con-

sidered accurate due to the insufficiency of measurements.

For such cases, we assign their corresponding dij as in-

valid. Hence, D may become a sparse matrix, but this
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does not affect the performance of our hierarchical cluster-

ing (Sec. 3.1.2).

Iterative Scheme. In Equ. 1, l and σ are refined during

multiple iterations, since the SLAM module may update the

3D position X
×,i
t and X

×,j
t of each landmark. We begin

our iteration with these variables computed under the cam-

era local coordinates c, but instead transform them into a

cluster-specific coordinates q in subsequent iterations once

the shape of such a cluster is initialized.

3.1.2 Hierarchical Agglomerative Clustering

We use hierarchical agglomerative clustering (HAC) [39]

which enables us to perform clustering on such a sparse dis-

tance matrix D. At the beginning of clustering, we take

each landmark i as a cluster, and then iteratively merge

these clusters pairwisely until the distance between any pair

of clusters (defined as the maximum distance between their

landmarks) is larger than a given parameter ǫ (set to 60.0 in

our implementation). This complete-linkage criterion [10]

is chosen since the motion consistency between landmarks

is not transitive, i.e., the consistencies between landmarks

i, j and j, z do not ensure the consistency between land-

marks i and z. By implementing a heap structure over

all the elements in D and keep track of their changes, the

time complexity of HAC is O(n2 log n). Several alternative

choices for clustering are further compared in Sec. 4.4-B

which shows the advantage of using HAC.

3.1.3 Consensus Clustering from Multiple Chunks

The size of D grows quadratically with the number of land-

marks, which is positively related to the number of input

frames. To speed up the clustering algorithm, we divide the

input sequence into multiple chunks (100 frames each with

25 overlapped frames for cluster association) and perform

the HAC clustering (Sec. 3.1.2) separately. The influences

of the chunk size are further tested in Sec. 4.4-C.

Then, we perform consensus clustering based on all as-

signments computed from each individual chunk, by con-

structing a sparse vector for each landmark i as yi =
{θm(i)}m to depict its per-chunk assignments, and perform

the Iterative Voting Consensus algorithm [33]. We refer

readers to the supplementary material for details.

3.2. SLAM for Clusters and Camera Ego­motion

3.2.1 Noise-aware Cluster Shape Initialization

The initialization process of a new cluster q aims at acquir-

ing the estimation for the position of its landmarks X̂
q,i
t

(Note the difference between X̂t and the back-projected

single-frame position X, where the former represents esti-

mated state concluding all historical frames up to the frame

t). Similar to reconstruction pipelines [32], this process

contains two operations, namely registration and integra-

tion, and we consider the uncertainty of frame observations

in both of them. In our implementation, we maintain a

Gaussian mixture Gq,it for each landmark i and regard X̂
q,i
t

as the mean for all components in the mixture.

Frame-to-Model Registration. When the first frame of

a cluster q is encountered at frame t, we initialize the local

coordinates of this cluster by assigning T
qc
t = I for integra-

tion. For subsequent frames, a frame-to-model registration

is executed to obtain the transformation T
qc
t which converts

points from the current local coordinates of the frame Pc
t to

this constructed coordinate system, by optimizing the fol-

lowing equation:

T
qc
t = argmin

T

∑

i

min
g

(

1

2

∥

∥

∥
TX

c,i
t − X̂

q,i
t−1

∥

∥

∥

2

Σi
g

−Ci
g

)

,

Ci
g ,

1

2
log |Σi

g|+ log |Σg|, (3)

where g traverses each component of the Gaussian mixture,

and Σg is the g-th component of Gq,it−1
. Σi

g = RΣc,i
t R⊤ +

Σg . Ci
g is the constant factor introduced by the maximum-

likelihood estimation [6]. This formulation can be viewed

as a weighted ICP algorithm, with the weight being the un-

certainty of both the frame and the model.

Frame Integration and Shape Refinement. After the

transformation matrix of the latest frame t is robustly esti-

mated, we update the Gaussian mixture Gq,it−1
by inserting

a new component with covariance Σg′ = R
qc
t Σc,i

t (Rqc
t )⊤

weighted by 1/|Σg′ |, and remove the component with the

least weight from the mixture if the size of Gq,it−1
exceeds

3. This strategy ensures the registration to be considered

through one of the most reliable measurements. Then, we

integrate the obervation into the landmark position X̂
q,i
t as:

X̂
q,i
t = argmin

X

∥

∥

∥
X

c,i
t −T

cq
t X

∥

∥

∥

2

Σ
c,i
t

|Σg′ |
+
∑

g

∥

∥

∥
X̂

q,i
t−1
−X

∥

∥

∥

2

Σg

|Σg|
,

(4)

where the first term is used for adding current observations

and the rest terms for previous observations.

Equs. 3 and 4 can be solved efficiently with the Gauss-

Newton method and QR decomposition, respectively. In

practice, we choose to fix Σi
g in Equ. 3 during each itera-

tion to make the registration easier to solve. We compare

such a probabilistic form of registration and integration to

the traditional point-to-point registration in Sec. 4.4-D. The

final initialized cluster poses and landmark positions are as-

signed as Tqc = T
qc

T and X̂s,i = X̂
s,i
T , respectively, where

T is the index of the last frame.
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3.2.2 Decoupled Factor Graph Optimization

Traditional factor graph optimization only treats static land-

marks X̂0,i and camera ego-motion
⋃

t P
c
t as objectives.

Assuming that the dynamic scene comprises multiple rigid

bodies, we additionally treat the motion of all clusters
⋃

q,t P
q
t and their landmarks

⋃

q,i X̂
q,i as objectives. Then

the BA energy function for each individual cluster can be

written as:

Eq ,
∑

i,t

ρ(
∥

∥

∥
xi
t − f ′

(

(Pc
t )

′P
q
t X̂

q,i
)
∥

∥

∥

2

Σi
t

), (5)

where ρ(·) is an optional robust kernel [1] and f ′ is the in-

verse of f , i.e., the stereo projection model.

We use the following three candidate optimization strate-

gies to test their differences: First, fully-coupled optimiza-

tion tries to solve E =
∑

q Eq w.r.t. variables of all

clusters jointly. Second, decoupled optimization is per-

formed following three steps: (1) solve Eq (q 6= 0) for
⋃

q 6=0{
⋃

i X̂
q,i,

⋃

t T
cq
t } by regarding (Pc

t )
′P

q
t as a sin-

gle variable; (2) solve E0 to obtain the camera ego-motion
⋃

t P
c
t and static landmark positions

⋃

i X̂
0,i; (3) compos-

ite the ego-motion and these transformations to generate the

motion of clusters as
⋃

q,t P
q
t . Third, semi-decoupled op-

timization replaces the above step (2) by solving the whole

objective function E =
∑

q Eq rather than E0.

Both Hessian matrix based theoretical analysis (in sup-

plementary material) and our experiments (Sec. 4.4-E)

demonstrate the suitability and time efficiency of the de-

coupled strategy and we adopt this method in our final al-

gorithm.

4. Evaluation

4.1. Datasets and Parameter Setup

Our experiments are performed on two synthetic datasets

(SUNCG [40], CARLA [13]) and one real-world dataset

(KITTI [16]).

Synthetic datasets. The SUNCG dataset [40] provides

3D models for constructing indoor scenes, and we build 3

scenes with 2 sequences on each, respectively. In these se-

quences, 2-5 instances as well as the stereo camera are dy-

namic, with their motions generated manually in 6 Degrees

of Freedom. The CARLA simulator [13] is used for gen-

erating outdoor car-driving scenes. We use its engine to

simulate streets with multiple driving vehicles and generate

4 sequences for experiments.

Ground-truth landmarks are extracted through random

sampling among the vertices of these models, and we add

a maximum of 1.5 pixels noise to both u, v coordinates

for simulating noisy landmark observations on these stereo

frames. The synthetic stereo camera has a resolution of

1280 × 720 and a horizontal Field-of-View of 90◦, with

its baseline set to 10cm for indoor SUNCG and 50cm for

outdoor CARLA, respectively.

Real-world dataset. We use 3 KITTI raw sequences

(0013, 0015, and 0017) and Superpoint [11] for feature

point extraction. A similar step as in [23] is performed in the

frontend to find associations and generate landmark track-

lets. Please refer to our supplementary materials for detailed

information about these synthetic and real-world scans.

Parameters and Hardware Setup. Since both the base-

line and scales are different in indoor and outdoor scenes,

we use two sets of parameters for these two scenarios, re-

spectively. For indoor scenes, these parameters remain as

presented in Sec. 3. For outdoor scenes, we adjust ǫ to 90.0

regarding the change in stereo baseline and bigger size of

vehicles, and raise the size of each chunk to 200 to main-

tain the density of D (i.e., sufficient pairwise distances for

intra-chunk clustering). We utilize the g2o framework [25]

for implementing some of those proposed least-squares op-

timizations. All of the experiments for the backend are exe-

cuted on an Intel Core i7-8700K, 32GB RAM desktop com-

puter with a GTX 1080 GPU for timing.

4.2. Full Backend Performance

Baselines. For comparing the full backend performance,

three candidate baseline methods are built: (1) Full Bun-

dle Adjustment, where BA is performed on all visible land-

marks assuming they are static. (2) Progressive DCS (dy-

namic covariance scaling), which takes a step beyond the

Full BA through the robust dynamic covariance scaling ker-

nel [1] for determining those dynamic objects one by one

during each iteration. Specifically, the landmarks with aver-

age error larger than χ2

N +0.3(χ2

M−χ2

N ) will be marked as

dynamic and introduced to the next iteration (χ2

N represents

its smallest reprojection error and χ2

M the largest). The

algorithm will continuously segment one consensus object

after each iteration, until the number of outliers is smaller

than 10. (3) Semantic Segmentation, where a Mask R-CNN

model trained on the MS-COCO dataset [19] is employed

to get the instance-level segmentation of each input frame.

These predicted labels are used to vote for the final labeling

of each landmark through recursive Bayesian. In conclu-

sion, these three categories represent the classical, robust

strategy, and sequential tracking-by-detection methods re-

spectively as discussed in Sec. 2.

Evaluation Criteria. We then use the following metrics

to quantitatively compare the performance: (1) logχ2, as

the logarithm of reprojection error in BA, reflecting the ac-

cordance of these optimization results w.r.t. the input con-

straints. (2) RMSE, as the pointwise Root Mean Square

Error for the position of each tracked landmark w.r.t. its

ground truth position, measuring the quality of mapping.

(3-5) ATE and R./T.RPE, as the RMSE of Absolute Trajec-

tory Error and the Rotational/Translational Relative Pose
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Table 1. Quantitative comparison on synthetic sequences.
Indoor Sequences Outdoor Sequences

log χ2 RMSE(m) ATE R.RPE T.RPE Acc.(%) βVI Time(s) log χ2 RMSE(m) ATE R.RPE T.RPE Acc.(%) βVI Time(s)

Full BA 9.61 2.10 0.53/- 0.48/- 0.87/- 52.73 1.19 5.45 10.92 14.39 12.94/- 0.73/- 42.55/- 81.39 0.84 6.00

P. DCS 12.80 1.53 0.63/1.61 0.49/1.82 0.99/2.60 56.05 1.18 3.83 13.85 11.22 9.36/- 0.73/- 37.61/- 80.22 0.82 1.86

Sem. SEG 9.31 0.84 0.31/0.51 0.12/0.87 0.49/0.95 69.60 1.19 3.82∗ 8.55 2.69 1.65/3.09 0.18/0.32 2.34/8.11 96.70 0.24 5.28∗

Ours w/o U 7.88 1.21 0.35/0.34 0.15/0.37 0.53/0.57 65.60 0.96 9.60 8.56 2.48 1.86/5.13 0.02/0.40 3.18/12.32 86.51 0.64 6.96

Ours w/o I 8.65 1.05 0.15/0.31 0.05/0.57 0.21/0.55 76.16 1.06 9.47 9.70 9.56 2.12/3.44 0.47/0.20 4.47/9.94 81.83 0.57 5.84

Ours 7.15 0.44 0.01/0.12 0.01/0.29 0.02/0.22 91.54 0.40 11.15 6.52 0.63 0.53/3.37 0.02/0.18 1.10/8.65 94.15 0.27 6.14
∗ Mask R-CNN [19] prediction time is excluded.

Error w.r.t. the ground truth motions, showing the quality

of the motion estimation (with camera ego-motion and ob-

ject motion separately recorded). ATE and R./T.RPE are

measured in meters, radians and meters, respectively. (6-7)

Clustering accuracy, taken as the best among all permuta-

tions of ground truth and prediction label correspondences

and βV I , as the variation of information distance [29].

These two metrics reflect the performance of segmentation.

(8) Running Time of the whole backend when all frames of

the sequence are considered as a batch.

Results and Analysis. Quantitative comparisons on all

synthetic sequences are averaged and listed in Tab. 1, with

variations of our methods presented together but further dis-

cussed in Sec. 4.4-A. Despite our proposed method requir-

ing more running time for processing, it outperforms other

methods on the performance of tracking and mapping. Al-

though Mask R-CNN [19] for segmenting individual ob-

jects is better than ours on outdoor sequences, it requires

a pre-trained model and extra time for prediction (it costs

on average 40.5 and 67.0 additional seconds in the frontend

for indoor and outdoor sequences, respectively), and does

not work for object categories not present in the training

data. Besides, the Progressive DCS scores best in running

time due to a better Gauss-Newton quadratic approximation

of its cost function [1].

In account of their quality, we found that the Progres-

sive DCS only tends to reject dynamic outliers in its first

pass. In its second pass few outliers can be detected even

though the landmarks left may contain multiple rigid bod-

ies. This is because the dramatically reduced sparse ob-

servation constraints cannot provide enough information to

determine the accurate kinematics (low signal-to-noise ra-

tio). Despite higher clustering accuracy of the Semantic

Segmentation than ours, its estimation of motions and land-

mark positions is affected by their imprecise masks, since

an inaccurate edge of the mask appearing on the border of

an object may erroneously categorize its nearby landmarks,

and eventually influence the backend performance. Further-

more, we show visual comparisons of different clustering

results on sample frames (Fig. 1) and the motion trajectories

(Fig. 2), and our method produces more accurate results.

Performance on KITTI. Our algorithm is also tested on

KITTI. The estimated trajectories are further smoothed by

applying Gaussian interpolation [35] to reduce jitter. We

Figure 1. Visual comparisons on a SUNCG sequence. Landmarks

are colorized by their index of cluster.

Figure 2. Recovered trajectories on synthetic sequences. Resolu-

tions of the major grids (solid lines) are 1m, 1m, 20m and 5m, resp.

Disconnected trajectories stand for multiple dynamic instances.

Table 2. Ego motion comparison on KITTI sequences.
0013 0015 0017

ATE R.RPE T.RPE ATE R.RPE T.RPE ATE R.RPE T.RPE

Sem. SEG 2.65 0.06 4.70 2.64 0.07 8.35 0.77 0.09 1.11

Ours 2.12 0.07 5.50 1.32 0.03 3.64 0.27 0.02 0.40

compare and list the results in Tab. 2 with a visualized sam-

ple shown in Fig. 3. In addition to a better camera ego-

motion, our algorithm can further detect and track multiple

moving cars.
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Figure 3. Our results on the KITTI dataset. Middle: Overview

of the street with the camera trajectory (black) and multiple clus-

ters colorized through index and time. Top and Bottom: Sample

images and the visualized point clouds in the perspective view.

4.3. Real­time SLAM System Performance

The evaluation in Sec. 4.2 is performed by taking the

entire video sequence as a single batch and running our al-

gorithm over it. In real-time scenarios, it is intractable to

run batch optimization on all acquired frames. We hereby

present implementation strategies to build an online version

of our system which can run at 7.1Hz for outdoor cases.

Implementation Details. Similar to [23], we restrict the

size of input frames to our backend algorithm to a small

neighborhood of 30 recent frames and optimize within the

window periodically. Detected clusters between each dif-

ferent runs of the backend are associated by counting co-

existing landmarks. Pairs of history and new clusters are

associated if the landmark overlap ratio is over 70%, other-

wise the clusters are either split or dropped. After cluster

association, the involved landmarks are aligned to find the

best transform between the history and new trajectories to

connect them. Experiments show that this implementation

takes 80.10ms/20.68ms on average for every iteration of op-

timization for indoor/outdoor sequences, respectively due to

their different numbers of involved landmarks.

Comparisons and Analysis. We additionally compare

our online version, denoted as ‘Ours (RT)’, to the batch ver-

sion (denoted as ‘Ours’), stereo ORB-SLAM2 [30], its vari-

ant proposed by Murali et al. [31], DynSLAM [4] and Car-

Fusion [12] in terms of accuracy and speed. Tab. 3 compar-

atively shows our effectiveness of precisely acquiring both

trajectory and clustering through the proposed algorithm.

The criteria used are the same as Sec. 4.2.

ORB-SLAM2 [30] and Murali et al.’s system [31] are

only designed for ego-motion tracking, which perform on

par with ours in indoor cases. But for outdoor sequences

where large part of the scene is dynamic as in road junc-

tions, they fail to precisely track the ego-motion, causing

large trajectory error or even tracking loss.

Both DynSLAM [4] and CarFusion [12] acquire seg-

Table 3. Quantitative comparisons to existing systems.

Indoor Sequences

ATE R.RPE T.RPE Acc.(%) βVI Hz

ORB-SLAM2 0.03/- 0.01/- 0.02/- (52.73)† (1.19)† 8.5

Murali et al. 0.03/- 0.01/- 0.01/- (52.73)† (1.19)† 4.9

DynSLAM 0.54/0.19 1.10/0.73 2.60/0.40 61.12 1.21 2.0

Ours 0.01/0.12 0.01/0.29 0.02/0.22 91.54 0.40 *

Ours (RT) 0.03/0.12 0.01/0.30 0.05/0.21 85.27 0.60 2.2

Outdoor Sequences

ATE R.RPE T.RPE Acc.(%) βVI Hz

ORB-SLAM2 2.82/- 0.84/- 6.09/- (81.39)† (0.84)† 9.0

Murali et al. 1.19/- 0.53/- 3.45/- (81.39)† (0.84)† 5.0

DynSLAM 3.95/4.32 0.96/0.09 9.61/9.44 93.73 0.44 2.1

CarFusion -/2.97 -/0.22 -/9.39 93.02 0.51 ⋆

Ours 0.53/3.37 0.02/0.18 1.10/8.65 94.15 0.27 ⋆

Ours (RT) 0.92/1.53 0.04/0.20 1.82/3.35 88.58 0.51 7.1

†These methods do not detect dynamics, so Acc. and βVI are listed as the

values when assigning all landmarks into one static cluster.
⋆Offline methods.

mentation through an external deep network instead of op-

timization. Besides, DynSLAM [4] does not contain a

backend optimization and suffers from cumulative drift.

CarFusion [12] addresses a different input, i.e., multiple

video sequences captured alongside the road, so we feed the

groundtruth ego-motion to avoid its failure on tracking and

concentrate on assessing the motion of the dynamic objects.

We find its performance dependent on the precision of car

keypoint detection, where inaccurate detections may con-

flict with their intra-frame smoothing constraints and gen-

erate undesirable results.

4.4. Ablation Study

Ablation studies are performed and discussed for those

modules presented in Sec. 3.

A. Formulation of Motion Distance. We evaluate the

effectiveness of Equ. 1 by validating the necessity of its

forms, specifically on: (1) The noise-aware formulation by

switching the Mahalanobis form of the first term to Eu-

clidean and replacing the weighted average lij∗ into un-

weighted (denoted as w/o U); (2) The second vision based

prior term through directly removing it (denoted as w/o I).

Their results are listed in Tab. 1 with other parts of the al-

gorithm unchanged. For outdoor sequences, w/o U requires

more iterations to converge, and therefore is slower than our

method. Since most metrics except running time shown in

the table are worse than ours, we prove the necessity of both

forms on improving the final quality of the backend.

B. Alternative Clustering Methods. We compare both

the clustering accuracy and βVI of our agglomerative clus-

tering method with Spectral Clustering (SC) and Affinity

Propagation (AP) methods. All these three methods do not

rely on a feature vector of each element and therefore are

suitable for our scenario with the dense pairwise matrix

form. We eliminate all non co-visible landmarks and build

dense motion distance matrix D for comparison. For this
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Figure 4. Accuracy and variation of information comparison of

different clustering methods with respect to noise.
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Figure 5. Chunk size vs. quality of clustering and computational

time on two long CARLA sequences.

experiment, we generate landmark observations on these

synthetic scans with the standard deviation of noise varied

from 0.0 to 3.0 pixels to test the robustness.

Their performance w.r.t. the standard deviation of noise

is shown in Fig. 4. We found that the clustering accuracy

of AP drops quickly when noise becomes severe. Besides,

in the case of small noise, SC is not as stable as ours (It

is not fully accurate even if the input observations do not

contain any noise). For the motion distance matrix D with

size 260 × 260, the average running time of our approach

is only 6.3ms while AP takes 13ms and SC takes 180ms on

average.

C. The size of Chunks. We use the two long CARLA

sequences (denoted as CARLA-L1 and CARLA-L2) to in-

vestigate how the length of chunks would affect βV I and

running time: We adjust the chunk size from 30 to 300

and plot the results in Fig 5. In general, smaller chunks

present better clustering results but reduce the number of

observations (i.e., challenging the density of D). It also in-

creases the total running time since the inter-chunk merging

requires more computations.

D. Noise-aware Cluster Initialization. Tab. 4 shows

our results compared to a traditional point-to-point ICP ap-

proach, which neglects the uncertainty in both the registra-

tion and the integration phases. Our method works better

especially on these outdoor sequences, since the uncertainty

of the disparity becomes more important when the baseline

is larger. It is also notably slower than the traditional ICP

Table 4. Comparison of the initialization methods.
Indoor Outdoor

ATE RMSE(m) ATE RMSE(m) Time(ms)

Point-to-Point ICP 0.07/0.13 0.22 7.83/1.37 8.54 0.01

Noise-aware ICP 0.01/0.15 0.12 0.98/0.61 0.94 0.12

Table 5. Comparison of different optimization schemes.
Indoor Outdoor

RMSE(m) Time/Iter(s) RMSE(m) Time/Iter(s)

Fully-Coupled 0.034 0.83 0.73 0.57

Semi-Coupled 0.047 1.04 0.12 1.07

Decoupled 0.047 0.57 0.12 0.53

due to the requirement of computing all the covariances of

observations and replacing the SVD by the Gauss Newton

optimization. Nevertheless, the overall time to initialize all

the poses is not a bottleneck in the backend.

E. Decoupled optimization. The three alternative opti-

mization strategies in Sec. 3.2.2 are tested with their RMSE

and running time per iteration listed in Tab. 5. All opti-

mizers run for 20 iterations. As a result, the decoupled

strategy is the fastest and does not obviously show different

quality in comparison to the semi-decoupled strategy. The

fully-coupled strategy obtains better results indoor but the

pose estimation on these dynamic clusters and the camera

ego-motion may interfere with each other and present unex-

pected results especially on those noisy outdoor sequences.

5. Conclusion

Limitations. Despite the general applicability of our ap-

proach, there are several limitations worth noticing: (1) Our

backend algorithm relies on the quality of landmark extrac-

tion and association from the frontend. Althrough false as-

sociations may be numerically filtered through the robust

kernel, excessive errors can cause unexpected results from

our backend. (2) Our algorithm may fail to detect dynamic

objects with insufficient landmarks, since their recovered

trajectory would be more severely affected by every single

noisy landmark.

In this paper we presented ClusterSLAM, a general

SLAM backend to simultaneously cluster rigid bodies and

estimate their motions. In the future, our formulation of

the multi-body factor graph optimization can be enhanced

by external measurements to further develop its functional-

ity, and it is also worth attempting to utilize the long-term

consistency from the backend to reciprocally refine the data

association in the frontend.
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