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Abstract

This paper proposes a learning-based framework for re-
constructing 3D shapes from functional operators, com-
pactly encoded as small-sized matrices. To this end we
introduce a novel neural architecture, called OperatorNet,
which takes as input a set of linear operators representing
a shape and produces its 3D embedding. We demonstrate
that this approach significantly outperforms previous purely
geometric methods for the same problem. Furthermore, we
introduce a novel functional operator, which encodes the ex-
trinsic or pose-dependent shape information, and thus com-
plements purely intrinsic pose-oblivious operators, such as
the classical Laplacian. Coupled with this novel operator,
our reconstruction network achieves very high reconstruc-
tion accuracy, even in the presence of incomplete informa-
tion about a shape, given a soft or functional map expressed
in a reduced basis. Finally, we demonstrate that the multi-
plicative functional algebra enjoyed by these operators can
be used to synthesize entirely new unseen shapes, in the con-
text of shape interpolation and shape analogy applications.

1. Introduction

Encoding and reconstructing 3D shapes is a fundamen-
tal problem in Computer Graphics, Computer Vision and
related fields. Unlike images, which enjoy a canonical rep-
resentation, 3D shapes are encoded through a large variety
of representations, such as point clouds, triangle meshes and
volumetric data, to name a few. Perhaps even more impor-
tantly, 3D shapes may undergo a diverse set of transforma-
tions, ranging from rigid motions to complex non-rigid and
articulated deformations, that impact these representations.

The representation issues have become even more
prominent with the recent advent of learning-based tech-
niques, leading to a number of solutions for learning di-
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Figure 1. Shape interpolation via OperatorNet (top) and PointNet
autoencoder (bottom). Our interpolations are more smooth and
less distorted.

rectly on geometric 3D data [7]. This is challenging, as
point clouds and meshes lack the regular grid structure ex-
ploited by convolutional architectures. In particular, de-
vising representations that are well-adapted for both shape
analysis and especially shape synthesis remains difficult.
For example, several methods for shape interpolation have
been proposed by designing deep neural networks, includ-
ing auto-encoder architectures, and interpolating the latent
vectors learned by such networks [35, 1] . Unfortunately, it
is not clear if the latent vectors lie in a linear vector space,
and thus linear interpolation can lead to unrealistic interme-
diate shapes.

In this paper, we show that 3D shapes can not only be
compactly encoded as linear functional operators, using the
previously proposed shape difference operators [32], but
that this representation lends itself very naturally to learn-
ing, and allows us to recover the 3D shape information, us-
ing a novel neural network architecture which we call Op-
eratorNet. Our key observations are twofold: first we show
that since shape difference operators can be stored as canon-
ical matrices, for a given choice of basis, they enable the use
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of a convolutional neural network architecture for shape re-
covery. Second, we demonstrate that the functional algebra
that is naturally available on these operators can be used to
synthesize new shapes, in the context of shape interpolation
and shape analogy applications. We argue that because this
algebra is well-justified theoretically, it also leads to more
accurate results in practice, compared to commonly used
linear interpolation in the latent space (see Figure 1).

The shape difference operators introduced in [32], have
proved to be a powerful tool in shape analysis, by allowing
to characterize each shape in a collection as the “difference”
to some base geometry. These difference operators encode
precise information about how and where each shape differs
from the base, but also, due to their compact representa-
tion as small matrices, enable efficient exploration of global
variability within the collection. Inspired by the former per-
spectives, purely geometric approaches [5, 10] have been
proposed for shape reconstruction from shape differences.
Though theoretically well-justified, these approaches rely
on solving difficult non-linear optimization problems and
require strong regularization for accurate results, especially
when truncated bases are used.

Our OperatorNet, on the other hand, leverages the infor-
mation encoded at both the pairwise level and the collection
level by using the shape collection to guide the reconstruc-
tion. It is well-known that related shapes in a collection of-
ten concentrate near a low-dimensional manifold in shape
space [33, 19]. In light of this, the shape difference opera-
tors can help to both encode the geometry of the individual
shapes, but also help to learn the constrained space of real-
istic shapes, which is typically ignored by purely geometric
approaches. Finally, they also allow to encode differences
between shapes with different discretizations by relying on
functional maps, rather than, e.g., pointwise bijections.

In addition to demonstrating the representative power of
the shape differences in a learning framework, we also ex-
tend the original formulation in [32], which only involves
intrinsic (i.e., invariant to isometric transformations) shape
differences, with a novel extrinsic difference operator that
facilitates pose-dependent embedding recovery. Our for-
mulation is both simpler and robuster compared to previ-
ous approaches, e.g. [10], and, as we show below, can more
naturally be integrated in a unified learning framework.

To summarize, our contributions are as follows:

e We propose a learning-based pipeline to reconstruct
3D shapes from a set of difference operators.

e We propose a novel formulation of extrinsic shape
difference, which complements the intrinsic operators
formulated in [32].

e We demonstrate that by applying algebraic operations
on shape differences, we can synthesize new operators
and thus new shapes via OperatorNet, enabling shape
manipulations such as interpolation and analogy.

2. Related Work

Shape Reconstruction Our work is closely related to
shape reconstruction from intrinsic operators, which was re-
cently considered in [5, 10] where several advanced, purely
geometric optimization techniques have been proposed that
give satisfactory results in the presence of full information
[5] or under strong regularization [10]. These works have
also laid the theoretical foundation for shape recovery by
demonstrating that shape difference operators, in principle,
contain complete information necessary for recovering the
shape embedding (e.g. Propositions 2 and 4 in [10]). On the
other hand, these methods also highlight the practical chal-
lenges of reconstructing a shape without any knowledge of
the collection or “shape space” that it belongs to. In con-
trast, we show that by leveraging such information via a
learning-based approach, realistic 3D shapes can be recov-
ered efficiently from their shape difference representation,
and moreover that entirely new shapes can be synthesized
using the algebraic structure of difference operators, e.g.,
for shape interpolation.

Shape Representations for Learning. Our work is re-
lated to the recent techniques aimed at applying deep learn-
ing methods to shape analysis. One of the main challenges
is defining a meaningful notion on convolution, while en-
suring invariance to basic transformations, such as rotations
and translations. Several techniques have been proposed
based on e.g., Geometry Images [34], volumetric [22, 38],
point-based [28] and multi-view approaches [29], as well
as, very recently intrinsic techniques that adapt convolution
to curved surfaces [21, 6, 27] (see also [7] for an overview),
and even via toric covers [20], among many others.

Despite this tremendous progress in the last few years,
defining a shape representation that is compact, lends itself
naturally to learning, while being invariant to the desired
class of transformations (e.g., rigid motions) and not lim-
ited to a particular topology, remains a challenge. As we
show below, our representation is well-suited for learning
applications, and especially for encoding and recovering ge-
ometric structure information. We note that a recent work
that is closely related to ours is the characteristic shape dif-
ferences proposed in [14]. That work is primarily focused
on analyzing shape collections, rather than on shape synthe-
sis that we target.

Shape Space Exploring the structure of shape spaces has
a long and extensive research history. Classical PCA-based
models, e.g. [2, 3], and more recent shape space models,
adapted to specific shape classes such as humans [19] or
animals [39], or parametric model collections [33], all typi-
cally leverage the fact that the space of “realistic” shapes is
significantly smaller than the space of all possible embed-
dings. This has also recently been exploited in the context
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of learning-based shape synthesis applications for shape
completion [17], interpolation [3] and point cloud recon-
struction [ 1] among others. These techniques heavily lever-
age the recent proliferation of large data collections such
as DFAUST [4] and Shapenet [8] to name a few. At the
same time, it is not clear if, for example, the commonly
used linear interpolation of latent vectors is well-justified,
leading to unrealistic synthesized shapes. Instead, the shape
difference operators that we use satisfy a well-founded mul-
tiplicative algebra, which, as we show below, can be used to
create realistic synthetic shapes.

3. Preliminaries and Notations

Discretization of Shapes Throughout this paper, we as-
sume that a shape is given as a triangle mesh (V,F),
where V = {vy,va,--,v,} is the vertex set, and F =
{(vi,vj,v)|vi,v;, vk € V} is the set of faces encoding the
connectivity information.

Laplace-Beltrami Operator To each shape S, we asso-
ciate a discretized Laplace-Beltrami operator, £ := AW,
using the standard cotangent weight scheme [23, 26],
where W is the cotangent weight (stiffness) matrix, and A
is the diagonal lumped area (mass) matrix. Furthermore,
we denote by A, ®, respectively the diagonal matrix con-
taining the £ smallest eigenvalues and the corresponding
eigenvectors of .S, such that W® = A®PA. In particular,
the eigenvalues stored in A are non-negative and can be or-
dered as 0 = \; < Ay < ---. The columns of ® are sorted
accordingly, and are orthonormal with respect to the area
matrix, i.e., ®7 AP = Iy, the k x k identity matrix. It
is well-known that Laplace-Beltrami eigenbasis provides a
multi-scale encoding of a shape [16], and allows to approx-
imate the space of functions via a subspace spanned by the
first few eigenvectors of ®.

Functional Maps The functional map framework was in-
troduced in [24] primarily as an alternative representation of
maps across shapes. In our context, given two shapes Sy, S1
and a point-wise map 7" from S; to Sy, we can express the
functional map Cy; from S, to S7, as follows:

COl = (I)F{Aln()l@(% (l)

Here, A; is the area matrix of Sq, and Il is a binary ma-
trix satisfying o1 (p, ¢) = 1 if T(p) = ¢ and 0 otherwise.
Note that Cy; is a k1 X kg matrix, where k1, kg is the num-
ber of basis functions chosen on S; and Sy. This matrix
allows to transport functions as follows: if f is a function
on Sy expressed as a vector of coefficients a, s.t. f = ®pa,
then Cy;a is the vector of coefficients of the corresponding
function on S, expressed in the basis of ®;.

In general, not every functional map matrix arises from a
point-wise map, and the former might include, for example,

soft correspondences, which map a point to a probability
density function. All of the tools that we develop below can
accommodate such general maps. This is a key advantage
of our approach, as it does not rely on all shapes having the
same number of points, and only requires the knowledge
of functional map matrices, which can be computed using
existing techniques [25, 18].

Intrinsic Shape Difference Operators Finally, to repre-
sent shapes themselves, we use the notion of shape differ-
ence operators proposed in [32]. Within our setting, they
can be summarized as follows: given a base shape Sy, an
arbitrary shape .S; and a functional map Cg; between them,
let Ky (resp. K;) be a positive semi-definite matrix, which
defines some inner product for functions on Sy (resp. S;)
expressed in the corresponding bases. Thus, for a pair of
functions f,g on Sy expressed as vectors of coefficients
a,b, we have < f,g >=a’Kb.

Note that these two inner products Ky, K; are not com-
parable, since they are expressed in different bases. Fortu-
nately, the functional map Cy; plays a role of basis synchro-
nizer. Thus, a shape difference operator, which captures the
difference between Sy and S; is given simply as:

D = K{ (ClK;Cu), )

where T is the Moore-Penrose pseudo-inverse.

The original work [32] considered two intrinsic inner
products, which using the notation above, can be expressed
as: KL = Id, and K#' = A. These inner products, in
turn lead to the following shape differences operators:

Area-based (L?):
Conformal (H1'):

D;. =Cl.Cy;, A3)
D§; =A§ CLiACoi, (D)

These shape difference operators have several key prop-
erties. First, they allow to represent an arbitrary shape .S;, as
a pair of matrices of size kg X kg, independent of the num-
ber of points, by requiring only a functional map between
the base shape Sy and .S;. Thus, the size of this represen-
tation can be controlled by choosing an appropriate value
of kg which allows to gain multi-scale information about
the geometry of .S;, from the point of view of Sy. Second,
and perhaps more importantly, these matrices are invariant
to rigid (and indeed any intrinsic isometry) transformation
of Sy or S;. Finally, previous works [10] have shown that
shape differences in principle contain complete information
about the intrinsic geometry of a shape. As we show below
these properties naturally enable the use of learning appli-
cations for shape recovery.

Functoriality of Shape Differences Another useful prop-
erty of the shape difference operators is functoriality, shown
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Figure 2. Illustration of shape analogy.

in [32], and which we exploit in our shape synthesis appli-
cations in Section 7. Given shape differences Dy;, Dg; of
shapes S; and S; with respect to a base shape .Sy, functorial-
ity allows to compute the difference D;;, without functional
maps between S; and S;. Namely (see Prop. 4.2.4 in [9]):

D,; = Cy;D§;Dy;C;;! (3)

Intuitively, this means that shape differences naturally sat-
isfy the multiplicative algebra: Dy;D;; = Dg;, up to a
change of basis ensured by Cy,.

This property can be used for shape analogies: given
shapes S4, Sp and S¢, find Sx such that Sy relates to S¢
in the same way as Sp relates to S4 (see the illustration
in Figure 2). This can be solved by looking for a shape
X that satisfies: C(J{CDCXCOC = C(J{ADABC()A. In our
application, we first create an appropriate Do x and then use
our network to synthesize the corresponding shape.

Finally, the multiplicative property also suggests a way
of interpolation in the space of shape differences. Namely,
rather than using basic linear interpolation between Dy, and
Dy;, we interpolate on the Lie algebra of the Lie group of
shape differences, using the exponential map and its inverse,
which leads to:

D(t) = exp((1—t)log(Dg;)+tlog(Dy;)),t € [0,1]. (6)

Here exp and log are matrix exponential and logarithm re-
spectively. Note that, around identity, the linearization pro-
vided by the Lie algebra is exact, and we have observed it
to produce very accurate results in general.

4. Extrinsic Shape Difference

In our (discrete) setting, with purely intrinsic informa-
tion one at the best can determine the edge lengths of
the mesh. Recovering the shape from its edge lengths,
while possible in certain simple scenarios, nevertheless of-
ten leads to ambiguities, as highlighted in [10]. To alleviate
such ambiguities, we propose to augment the existing intrin-
sic shape differences with a novel extrinsic shape difference
operator, and in turn boosts our reconstruction.

One basic approach to combine extrinsic information
with the multi-scale Laplace-Beltrami basis is to project
the 3D coordinate functions onto the basis, to obtain three
vectors of coefficients (one for each x,y, 2z coordinates):
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Figure 3. From left to right: original shape with 1000 vertices, the
recovered embedding from G encoded in the leading k = 10, 60,
100 and 300 eigenbasis of the original shape.

f = ®T X, where X is the ny x 3 matrix of vertex coordi-
nates [16, 15]. Unfortunately representing a shape through
f, though being multi-scale and compact, is not rotationally
invariant, and does not provide information about intrinsic
geometry. For example, interpolation of coordinate vectors
can easily lead to loss of shape area.

Another option, which is more compatible with our ap-
proach and is rotationally invariant, is to encode the inner
products of coordinate functions on each shape using the
Gram matrix G = X XT. Expressing G in the correspond-
ing basis, and using Eq. (2) gives rise to a shape difference-
like representation of the coordinates. Indeed, the following
theorem (see proof in the supplementary materials) guaran-
tees that the resulting representation contains the same in-
formation, up to rotational invariance, as simply projecting
the coordinates onto the basis.

Theorem 1. Let G = ®TAX X T AP be the extrinsic inner
product encoded in ®, then one can recover the projections
of the coordinate functions, X, on the subspace spanned by
® from G, up to a rigid transformation. In particular, when
® is a complete full basis, the recovery of X is exact.

As an illustration of Theorem 1, we show in Figure 3 the
embeddings recovered from G when the number of basis
functions in ® ranges from 10 to 300.

However, the rank of the Gram matrix G of a shape is
at most 3, meaning that the majority of its eigenvalues are
zero. This turns out to be an issue in applications, where
gaining information about the local geometry of the shape is
important, for example in our shape analogies experiments.

To compensate for this rank deficiency, we make the ex-
trinsic inner product Laplacian-like:

EP =
) {Zi;éjE(z',j) i=j 7

Where E(i, j) is ||v; — v;||*A(i,4) A(3, 5), i.€., the squared
Euclidean distance between points v;,v; on the shape,
weighted by the respective vertex area measures. Since £
can be regarded as the Laplacian of a complete graph, all
but one of its eigenvalues are strictly positive.
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Figure 4. A pair of shapes are compared. The most area (resp.
extrinsic) distorted region is captured by the leading eigenfunction
of the area-based (resp. extrinsic) shape difference.

It is worth noting that the Gram matrix and the squared
Euclidean distance matrix are closely related and can be re-
covered from each other as is commonly done in the Multi-
Dimensional Scaling literature [11].

To summarize, given a base shape Sy, another shape .5;
and a functional map Cy; we encode the extrinsic informa-
tion of .S; from the point of view of Sy as follows:

DF = (®{ EP ®0)"(CL,®T EP®,Cpi). (8

In Figure 4, we compute D# and D¥ of the target shape
with respect to the base, and color code their respective
eigenfunctions associated with the largest eigenvalue on the
shapes to the right. As argued in [32] these functions cap-
ture the areas of highest distortion between the shapes, with
respect to the corresponding inner products. Note that the
eigenfunction of D* captures the armpit where the local
area shrinks significantly, while that of D captures the
hand, where the pose changes are evident.

Note that in [ 10], the authors also propose a shape differ-
ence formulation for encoding extrinsic information, which
is defined on the shape offset using the surface normal in-
formation. However, their construction can lead to insta-
bilities, and moreover, it only gives information about local
distances, making it hard to recover large changes in pose.

5. Network Details

Problem Setup Our general goal is to develop a neural
network capable of recovering the coordinates of a shape,
given its representation as a set of shape difference matrices.
We therefore aim to solve the same problem considered in
[5, 10]. However, unlike these purely geometric methods,
we also leverage a collection of training shapes to learn and
constrain the reconstruction to the space of realistic shapes.

Thus, we assume that we are given a collection of shapes,
each represented by a set of shape difference operators with
respect to a fixed base shape. We also assume the pres-
ence of a point-wise map from the base shape to each of
the shapes in the collection, which allows us to compute the

Coord. function

Input shape diff. func

60x60x3 30x30x8

1024 1024

3*1000
Figure 5. OperatorNet architecture. The inputs of the network
are shape difference matrices considered as channels. It outputs
the coordinate functions of the shape. The first part (left) of the
network consists of a convolutional encoder while the second part
(right) is a fully-connected decoder built with dense layers.

“ground truth” embedding of each shape. We represent this
embedding as three coordinate functions on the shape. Our
goal then is to design a network, capable of converting the
input shape difference operators to the ground truth coordi-
nate functions.

At test time, we use this network to reconstruct a target
shape given only the shape difference operators with respect
to the base shape. Importantly, these shape difference oper-
ators only require the knowledge of a functional map from
the base shape, and can thus arise from shapes with differ-
ent discretizations, or can be synthesized directly for shape
analogies or interpolations applications.

Architecture To solve the problem above we developed
the OperatorNet architecture, which takes as input shape
difference matrices and outputs coordinate functions. Our
network has two modules: a shallow convolutional encoder
and a 3 layer dense decoder as shown in Figure 5.

The grid structure of shape differences is exploited by
the encoder through the use of convolutions. Note however
that translation invariance does not apply to these matrices.

After comparing multiple depths of encoders, we select
a shallow version as it performs the best in practice, imply-
ing that the shape difference representation already encodes
meaningful information efficiently. Moreover, as shown in
[10] the edge lengths of a mesh can be recovered from in-
trinsic shape differences through a series of least squares
problems, hinting that increasing the depth of the network
and thus the non-linearity might not be necessary with shape
differences.

On the other hand, the decoder is selected for its abil-
ity to transform the latent representation to coordinate func-
tions for reconstruction and synthesis tasks.

Datasets We train OperatorNet on two types of datasets:
humans and animals. For human shapes, our training
set consists of 9440 shapes sampled from the DFAUST
dataset [4] and 8000 from the SURREAL dataset [37],
which is generated with the model proposed in [19]. The
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DFAUST dataset contains scan of human characters subject
to a various of motions. On the other hand, the SURREAL
dataset injects more variability to the body types.

For animals, we use the parametric model proposed in
SMAL [39] to generate 1800 animals of 3 different species
— lions, dogs, and horses. The meshes of the humans (resp.
animals) are simplified to 1000 vertices (resp. 1769 ver-
tices).

Input Shape Differences We construct the input shape
differences using a truncated eigenbasis of dimension 60
on the base shape, and the full basis on the target one, in
all experiments, regardless of the number of vertices on the
shapes. The functional maps from the base to the targets are
induced by the identity maps, since our training shapes are
in 1-1 correspondence. This implies that each of the shapes
is represented by three 60 x 60 matrices, representing the
area-based, conformal and extrinsic shape differences re-
spectively. The independence among the shape differences
allows flexibility in selecting the combination of input shape
differences, in Section 6 we compare the performance of
several combinations, and present a more detailed ablation
study in the supplementary materials.

It is worth noting that recent learning-based shape
matching techniques enable efficient (functional) maps es-
timation. In particular, we use the unsupervised matching
method of [31] and evaluate OperatorNet trained with com-
puted shape differences in Section 6.

Loss Function OperatorNet reconstructs coordinate func-
tions of a given training shape. Our shape reconstruction
loss operates in two steps. First, we estimate the optimal
rigid transformation to align the ground truth point cloud
th and the reconstructed point cloud Xyecon using the
Kabsch algorithm [36] with ground truth correspondences.
Secondly, we estimate the mean squared error between the
aligned reconstruction and the ground truth.

1 - % g
L(Xgt Xrecon) = - > IR (Xfecon) = Xgill*. 9

i=1

Here R is the function that computes the optimal transfor-
mation between Xrecon and X gt- We align the computed
reconstruction to the ground truth embedding, so that the
quality of the reconstructed point cloud is invariant to rigid
transformations. This is important since the shape differ-
ence operators are invariant to rigid motion of the shape, and
thus the network should not be penalized, for not recovering
the correct orientation. On the other hand, this loss function
is differentiable, since we use a closed-form expression of
R X2 given by the SVD, which enables back-propagation

in neural network training.
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Figure 6. Qualitative comparison of our method and the baselines.

6. Evaluation

In this section, we provide both qualitative and quantita-
tive evaluations of the results from OperatorNet, and com-
pare them to the geometric baselines.

Evaluation Metrics We denote by Sgt and Srecon the
ground-truth and the reconstructed meshes respectively. We
let dp = L(Xgt, Xrecon), where L is the rotationally-
invariant distance defined in Eq. (9) and X is the vertex
set of S. Since OperatorNet is trained with the loss de-
fined in Eq. (9), we introduce the following new metrics for
a comprehensive, unbiased evaluation and comparison: (1)
dy = ‘V(Sgt) — V(SI'CCOH)VV(Sgt); i.e., the relative er-

t
— 5PN/

ror of mesh volumes; (3) dg = mean; jy |l%t o

where [;; is the length of edge (i, 7).

Baselines Two major baselines are considered: (1) the in-
trinsic reconstruction method from [5], in which we evalu-
ate with the ‘Shape-from-Laplacian’ option and use the full
basis in both the base shape and the target shape; (2) the
reconstruction method from [10], where the authors con-
struct offset surfaces that also capture extrinsic geometry.
Moreover, this method also provides a purely intrinsic re-
construction version. We evaluate both cases with the same
basis truncation as our input. Beyond that, we also consider
the nearest neighbor retrieval from the training set with re-
spect to distances between shape difference matrices.

Test Data We use 800 shapes from the DFAUST dataset
as the test set, which contains 10 sub-collections (character
+ action sequence, each consisting of 80 shapes) that are
isolated from the training/validation set. For the efficiency
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of baseline evaluation, we further sample 5 shapes via fur-
thest point sampling regarding the pair-wise Hausdorff dis-
tance from each of the sub-collection, resulting in a set of
50 shapes that covers significant variability in both styles
and poses in the test set.

Qualitative Results We demonstrate the reconstructed
shapes from OperatorNet and the aforementioned baselines
in Figure 6, where the red shape in each row is the ground
truth target shape. The base shape in this experiment (also
the base shape we compute shape differences on) is shown
in Figure 4, which is in the rest pose. The geometric
baselines in general perform worse under significant pose
changes from the base (see the top two rows in Figure 6),
but give relatively more stable results when the difference
is mainly in the shape style (see the bottom row).

Our method, on the other hand, produces consistently
good reconstructions in all cases. Note also that, as ex-
pected, OperatorNet using all 3 types of shape differences
gives both the best quantitative and qualitative results. We
provide more reconstruction examples in the supplemen-
tary materials highlighting the generalization power of our
method.

Quantitative Results We report all the quantitative met-
rics defined above in Table 1. First, we observe that Oper-
atorNet using both intrinsic and extrinsic shape differences
achieves the lowest reconstruction error, while the purely
extrinsic version is the second best. Secondly, Operator-
Net trained on shape differences from computed functional
maps achieves competing performances, showing that our
method is efficient even in the absence of ground truth bi-
jective correspondences. Lastly, all the versions of Opera-
torNet significantly outperform the baselines.

Regarding the volume and edge recovery accuracy, either
complete or intrinsic-only versions of OperatorNet achieve
second to the best result. We remark that since the near-
est neighbor search in general retrieves the right body type,
therefore the volume is well-recovered. On the other hand,
since the full Laplacian is provided as input for the Shape-
from-Laplacian baseline, it is expected to preserve intrinsic
information.

Reconstructions of Shapes with Different Discretiza-
tions Lastly, we show that our approach is capable of en-
coding differences between shapes with different discretiza-
tions. In Figure 7, we compute the functional maps from the
fine meshes (top row, with 5k vertices) by projecting them
to a lower resolution base mesh with 1k vertices. We then
reconstruct them with OperatorNet trained on lower resolu-
tion shapes. This, on the other hand, is extremely difficult
for purely geometric methods. In the supplementary ma-
terials we provide examples of reconstructions in the same
setting using the method of [10], and reconstructions with
OperatorNet trained with shapes having 2k vertices.

Table 1. Quantitative evaluation of shape reconstruction (dr is at
the scale of 10™%).
| dr | dv | dp

Op.Net (Int+Ext) 1.11 | 0.014 | 0.045
Op.Net (Int) 241 | 0.013 | 0.046
Op.Net (Ext) 1.25 | 0.017 | 0.046

Op.Net (Comp)(Ext) 3.86 | 0.021 | 0.052
Op.Net (Comp)(Int+Ext) | 6.22 | 0.022 | 0.053
StL [5] 48.8 | 0.081 | 0.012
FuncChar [10](Int) 65.1 | 0.356 | 0.118
FuncChar [10] (Int+Ext) | 28.4 | 0.028 | 0.110
NN 25.5 | 0.005 | 0.043

(L EX.

Original (5k vertices)

Yy

Recon via OperatorNet: (‘T k vertices)

Y

Figure 7. Top row: input shapes with different number of vertices
than that of the base shape; Bottom row: reconstructions via Op-
eratorNet.

7. Applications

In this section, we present all of our results using Opera-
torNet trained with all 3 types of shape differences.

Shape Interpolation Given two shapes, we first interpo-
late their shape differences using the formulation in Eq.(8),
and then synthesize intermediate shapes by inferring the in-
terpolated shape differences with OperatorNet.

We compare our method against nearest neighbor re-
trieval and PointNet autoencoder. PointNet autoencoder is
trained with the encoder architecture from [28] and with our
decoder. Two versions of PointNet are trained: one autoen-
coder with spatial transformers and one without. Since the
autoencoder without spatial transformers performs better in
our experiments, we select it for the comparisons. Nearest
neighbor interpolation retrieves the nearest neighbor of the
interpolated shape differences in the training set and uses
the corresponding embedding. As expected, (see the sec-
ond row of Figure 9), nearest neighbor interpolation is less
continuous.

As shown in Figure 1, our method produces smooth in-
terpolations, without significant local area distortions com-
pared to PointNet. Similarly, in Figure 9, we observe that
the interpolation via PointNet suffers from local distortion
on the arms. In contrast, interpolation using OperatorNet
is continuous and respects the structure and constraints of
the body, suggesting that shape differences efficiently en-
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Figure 8. Shape interpolation from a tiger (left) to a horse (right) using OperatorNet trained on animals dataset.
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Figure 9. Shape interpolation between two humans. Note that
PointNet autoencoder produces shapes with local area distortion,
while the interpolation from nearest neighbor (NN) retrieval is not
continuous.

code the shape structure. We provide further comparisons
to other baselines including [30, 3, 12] and to linear interpo-
lation of shape differences in the supplementary materials.

We also train OperatorNet on the animals dataset as de-
scribed in Section 5 and show in Figure 8 an interpolation
from a tiger to a horse.

Shape Analogy Our second application is to construct se-
mantically meaningful new shapes based on shape analo-
gies. Given shapes S4,Sp, Sc, our goal is to construct a
new shape Sx, such that S relates to Sx as S4 to Sp.

Following the discussion in Section 3, the functoriality
of shape differences allows an explicit and mathematically
meaningful way of constructing the shape difference of Sx,
given that of S4, Sp and Sc. Namely, Dx = DcDDg.
Then, with our OperatorNet, we reconstruct the embedding
of the unknown Sy by feeding D x to the network.

We compare our results to that of the PointNet autoen-
coder. In the latter, we reconstruct Sy by decoding the la-
tent code obtained by Ix = lc — l4 + Ip, where [ 4 is the
latent code of shape S 4 (and similarly for Sg, S¢).

In Figure 10, we show a set of shape analogies obtained
via OperatorNet and PointNet autoencoder. It is evident that
our results are both more natural and intuitive. We also refer

SA . SB = SC . SX

Ours PointNet

Figure 10. Transferring gender via shape analogies: S4 and Sp
are a fixed pair of human shapes with similar poses and styles, but
of different genders. We generate Sx, which is supposed to be a
“female” version of the varying Sc. Our analogies are semanti-
cally meaningful, while PointNet can produce suboptimal results
(see the red dotted boxes for the discrepancies).

the readers to the supplementary materials for more exam-
ples of analogies.

8. Conclusion & Future Work

In this paper we have introduced a novel learning-based
technique for recovering shapes from their difference oper-
ators. Our key observation is that shape differences, stored
as compact matrices lend themselves naturally to learning
and allow to both recover the underlying shape space in a
collection and encode the geometry of individual shapes.
We also introduce a novel extrinsic shape difference oper-
ator and show its utility for shape reconstruction and other
applications such as shape interpolation and analogies.

Currently our approach is only well-adapted to shapes
represented as triangle meshes. Thus, in the future we plan
to extend this framework to both learn the optimal inner
products from data, and adapt our pipeline to other shape
representations, such as point clouds or triangle soups.
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