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Abstract

Human trajectory prediction is challenging and criti-

cal in various applications (e.g., autonomous vehicles and

social robots). Because of the continuity and foresight

of the pedestrian movements, the moving pedestrians in

crowded spaces will consider both spatial and temporal

interactions to avoid future collisions. However, most of

the existing methods ignore the temporal correlations of in-

teractions with other pedestrians involved in a scene. In

this work, we propose a Spatial-Temporal Graph Atten-

tion network (STGAT), based on a sequence-to-sequence

architecture to predict future trajectories of pedestrians.

Besides the spatial interactions captured by the graph at-

tention mechanism at each time-step, we adopt an extra

LSTM to encode the temporal correlations of interactions.

Through comparisons with state-of-the-art methods, our

model achieves superior performance on two publicly avail-

able crowd datasets (ETH and UCY) and produces more

“socially” plausible trajectories for pedestrians.

1. Introduction

As a challenging task, the human trajectory predic-

tion has attracted considerable attention in computer vi-

sion [42, 23, 28, 21, 24, 39, 20] and robotics [5, 19] fields

over the past few years. Modeling the complex and diverse

interactions among humans is critical and challenging in

trajectories prediction, while the hand-crafted energy func-

tions adopted in earlier works [14, 21] failed to build crowd

interactions among pedestrians in crowded spaces.

Recently, some LSTM-based (Long-Short Term Mem-

ory) methods were proposed to capture the dynamic in-

teractions of pedestrians, where the latent motions repre-

sented with the hidden states of LSTMs are shared by var-
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Figure 1. Illustration of the interactions in the crowd. The same

color on trajectories means the same time-step. Two red arrows

indicate the spatial interactions from pedestrian B and C to A at

time t respectively. The blue sector domains are the continuous

effects from t −∆t to t.

ious mechanisms including “pooling” [1, 12] and “atten-

tion” [33, 10, 13], etc. The “pooling” scheme exploits so-

cial pooling on occupancy maps to collect the latent motion

dynamics of pedestrians involved in a local neighborhood

or the whole scene. Different from the restriction of the lo-

cal neighborhood assumption, the “attention” mechanism is

helpful to encode the relative influences and the potential

spatial interactions among pedestrians, due to the unequal

importance of the neighboring pedestrians contributing to

the trajectories prediction. Compared with the “pooling”

scheme, by assigning the different and adaptive importance

to the pedestrians, attention-based models can get a better

understanding of the crowd behaviors based on spatial in-

teractions.

However, although the diverse aspects have been well

investigated, a factor was neglected in previous works. Be-

sides the spatial interactions at the same time-step, the tem-

poral continuity of interactions in the crowd is necessary.

As shown in Fig. 1, the effects of the spatial interactions

from pedestrian B and C at time t have been well-considered

in the existing trajectories prediction works. However, due

to the continuity and forward-looking nature of human mo-

tion, pedestrians need to consider others’ historical move-

ments to determine their current motion behavior for avoid-
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ing potential collisions in the future. For example, when

pedestrian A plans the trajectory, the interactions from t−∆t

to t from the pedestrian B and C should be taken into con-

sideration. Thus, the temporal correlations of interactions

in the crowd play an important role.

To address the limitations mentioned above, we build

a novel Spatial-Temporal Graph Attention network (called

STGAT), where the spatial and temporal interactions among

pedestrians are encoded, respectively. The spatial interac-

tions at one time-step are captured by the Graph Attention

(GAT) scheme [32], which models over all the pedestrians

involved in the scene. After assigning the different impor-

tance on pedestrians, an extra LSTM is used to capture the

temporal correlations of interactions. By aggregating all the

spatial and temporal interactions among all the pedestrians,

the future trajectories are generated by our sequence-to-

sequence (seq2seq) architecture. To model the multimodal

movement, we adopt the variety loss [12] to produce multi-

ple socially plausible outputs.

Contributions: We present a novel framework (called

STGAT) to forecast the trajectories of humans. First, we

explicitly model the temporal correlations of interactions

by adopting an extra LSTM. To the best of our knowl-

edge, the continuity of interactions has never been con-

sidered separately. Second, we model the spatial interac-

tions among pedestrians by using GAT to aggregate hidden

states of LSTMs. This paper is the first attempt to com-

bine GAT (graph attention network) with LSTM in the con-

text of modeling pedestrian motions. Experimental results

demonstrate that graph attention network can assign reason-

able importance to neighbors, and our model can predict

reasonable trajectories in different scenes.

2. Related Work

Crowd Interaction The pioneering model for pedes-

trian dynamics was proposed by Helbing et al. [14]. Their

Social Force model uses attractive forces to guide pedestri-

ans toward their destinations, and repulsive forces to avoid

collisions. Over the past decades, this model has been ex-

tended and modified by several approaches [20, 39, 21].

Most of these Social Force based models attempt to learn

the parameters of the force functions from real-world crowd

datasets. But experiments in [1] have shown that only at-

tractive and repulsive forces can not model complex crowd

interactions. There are also other hand-crafted features

based models, where Antonini et al. used a Discrete Choice

framework [3], Treuille et al. proposed continuum dynam-

ics [31], and further, there are a series of topics models

[35, 15, 9]. However, all these models mentioned above

rely on hand-crafted energy potential functions, which limit

the performance of prediction accuracy. Recently, there are

many deep learning based models, Yi et al. [41] proposed

Behaviour-CNN, which uses CNN to model crowd interac-

tions. Alahi et al. [2] encoded the human-human interac-

tions into a “social” descriptor. Vemula et al. [33] proposed

a novel spatial-temporal graph, which uses an attention

module to merge information from different edgeRNNs. Xu

et al. [38] used a softmax way to assign different weights

to other pedestrians based on spatial affinity. In the past

two years, the RNN-based models have achieved great suc-

cess [1, 33, 12, 13, 16, 38], all these methods use different

ways to share the hidden states of RNNs to model interac-

tions between pedestrians in crowded scenes.

Recurrent Neural Networks for Sequence Predic-

tion Sequence prediction problem involves using histor-

ical sequence information to predict future values in the

sequence. Recurrent Neural Networks, like Long Short-

Term Memory (LSTM) networks, are designed for se-

quence prediction problem. They have achieved great suc-

cess in many sequence prediction tasks, e.g., speech recog-

nition [7, 11], machine translation [4, 6, 30] and image cap-

tioning [8, 26, 37]. The approaches by [1, 29, 38] have

proved the success of LSTM for modeling the motion pat-

tern of each pedestrian. However, vanilla LSTM ignores the

crowd interactions. To tackle this problem, several attempts

have been made to jointly reason across multiple people.

Alahi et al. [1] used a “social” pooling layer which allows

the LSTMs of spatially proximal sequences to share their

hidden states. Gupta et al. [12] used a “pooling module” in

the Generator to aggregate information across people. Xu et

al. [38] used LSTMs as “motion encoder module” to han-

dle only temporal information, and another module called

“location encoder module” is adopted to model spatial in-

teractions.

Sequence to Sequence Model Seq2seq model was in-

troduced by Sutskeveret al. [30]. It aims to map a fixed

length input with a fixed length output, where the two

lengths may be different. The seq2seq model and its vari-

ants are considered as the best solution for many com-

plex tasks, e.g., machine translation [36], speech recogni-

tion [22] and video captioning [34]. Our problem is to

predict the future trajectories of all pedestrians given the

observed trajectories, while the seq2seq model is designed

for generating new sequences based on existing sequences,

which is just right for our problem. Thus, we adopt seq2seq

as our main architecture.

Graph Neural Network Graph neural networks

(GNNs) are powerful neural network architecture for ma-

chine learning on graphs. Recent years, systems based on

graph convolutional network (GCN) [25] and gated graph

convolution neural network (GGNN) [18] have demon-

strated ground-breaking performance on many tasks like

modeling physics system, learning molecular fingerprints,

predicting protein interface [43]. Recently, some meth-

ods [27] [40] in the field of action recognition have made

significant progress by applying GNNs to spatial-temporal
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Figure 2. The architecture of our proposed STGAT model. The framework is based on seq2seq model and consists of 3 parts: Encoder,

Intermediate State and Decoder. The Encoder module includes three components: 2 types of LSTMs and GAT. The Intermediate State

encapsulates the spatial and temporal information of all observed trajectories. The Decoder module generates the future trajectories based

on Intermediate State.

data. Among these approaches, Veličković et al. [32] pro-

posed Graph Attention Network (GAT). It allows for (im-

plicitly) assigning different importance to different nodes

within a neighborhood without costly matrix operations.

GAT has achieved or matched state-of-the-art results across

several benchmarks for graph-related tasks. For our prob-

lem, the complex interactions can be modeled using GAT,

where pedestrians in the crowded scene can be considered

as nodes on the graph at every time-step, and the exis-

tence of interactions between pedestrians can be described

as graph edges.

3. Method

Our goal is to forecast the trajectories of the pedestrians

involved in a scene. In this section, we present our seq2seq-

based STGAT model (as shown in Fig. 2). There are three

components in the encoder: an LSTM-based pedestrian tra-

jectory encoding module, a GAT-based module for model-

ing the spatial interactions, and an LSTM-based module for

capturing the temporal correlations of interactions.

3.1. Problem Definition

We assume there are N pedestrians involved in a scene,

represented as p1,p2,. . . , pN . The position of pedestrian

pi (i ∈ [1,N]) at time-step t is denoted as St
i = (xt

i ,y
t
i).

Then given St
i of pedestrian i = 1,2, . . . ,N at time-steps

t = 1, . . . ,Tobs, our goal is to predict the future positions St
i

at time-step t = Tobs +1, . . . ,Tpred .

3.2. Trajectory Encoding for One Pedestrian

Each pedestrian has his(or her) motion pattern, includ-

ing different gait, preferred speed, and acceleration. LSTM

has been proven to successfully capture the historical mo-

tion state of a single pedestrian [1, 29, 38]. Similarly, we

use one LSTM for each pedestrian to get the motion state.

We denote this LSTM by M-LSTM (LSTM for motion en-

coding).

In our implementation, we first calculate the relative po-

sition of each pedestrian to the previous time-step:

∆xt
i = xt

i − xt−1
i

∆yt
i = yt

i − yt−1
i

(1)

Then the relative position is embedded into a fixed-length

vector et
i for every time-step, and these vectors are used as

inputs to the LSTM cell as follows:

et
i = φ(∆xt

i ,∆yt
i;Wee) (2)

mt
i = M-LSTM(mt−1

i ,et
i;Wm) (3)

where the function φ(·) is an embedding function. Wee is

the embedding weight. mt
i is the hidden state of the M-

LSTM at time-step t. Wm is the weight of the M-LSTM

cell. These parameters are shared among all the pedestrians

in the scene.

3.3. GAT­based Crowd Interaction Modeling

Naive use of one LSTM per person does not capture

human-human interactions. In order to share information

across different pedestrians in crowded scenes, we propose

to consider the pedestrians in a scene as nodes on the graph

and leverage the recent progress in GNNs. Since GAT al-

lows for aggregating information from neighbors by assign-

ing different importance to different nodes, we use GAT as

our sharing mechanism. As shown in Fig. 3, we use edges

on the graph to represent the existence of human-human in-

teractions. Many recent works have pointed out that when

considering the influences of other pedestrians, each pedes-

trian in the scene is necessary [38, 10, 12, 33]. Following

these works, the pedestrians in the scene are treated as nodes

on the complete graph at each time-step.

GAT operates on graph-structured data and computes the

features of each graph node by attending over its neighbors,

following a self-attention strategy. GAT is constructed by

stacking graph attention layers. We illustrate a single graph
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Figure 3. Pedestrians in a scene are considered as nodes on the

complete graph at every time-step. The edges on the graph repre-

sent the exist of human-human interactions.
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Figure 4. An illustration of graph attention layer. It allows a node

to assign different importance to different nodes within a neigh-

borhood and aggregate features from them.

attention layer in Fig. 4. The input of the graph attention

layer is h= {~h1, ~h2, . . . , ~hN}, where~hi ∈RF , N is the number

of nodes, and F is the feature dimension of each node. The

output is h
′
= {~h

′

1,
~h

′

2, . . . ,
~h

′

N}. (~h
′

i ∈ RF
′

, F
′

and F can be

unequal).

In observation period, mt
i (t = 1, . . . ,Tobs) is fed to graph

attention layer. The coefficients in the attention mechanism

of the node pair (i, j) can be computed by:

α t
i j =

exp(LeakyReLU(aT [Wmt
i ‖ Wmt

j])

∑k∈Ni
exp(LeakyReLU(aT [Wmt

i ‖ Wmt
k]))

(4)

where ‖ is the concatenation operation, ·T represents trans-

position, α t
i j is the attention coefficient of node j to i at time-

step t, Ni represents the neighbors of node i on the graph.

W ∈ RF
′
×F is the weight matrix of a shared linear transfor-

mation which is applied to each node (F is the dimension

of mt
i , F

′
is the dimension of output), and a ∈ R2F

′

is the

weight vector of a single-layer feedforward neural network.

It is normalized by a softmax function with LeakyReLU.

After getting the normalized attention coefficients, the

output of one graph attention layer for node i at t is given

by:

m̂t
i = σ

(

∑ j∈Ni
α t

i jWmt
j

)

(5)

where σ is a nonlinear function. Eq. 4 and Eq. 5 show how

a single graph attention layer works. In our implementation,

two graph attention layers are adopted. m̂t
i (the result after

two graph attention layers) is the aggregated hidden state for

pedestrian i at t, which contains the spatial influence from

other pedestrians.

3.4. Fusion of Spatial and Temporal Information

When modeling interactions in crowded scenes, many

LSTM-based methods share hidden states among pedestri-

ans [1, 12, 38]. However, these methods only consider the

hidden information at the same time-step. In our work, we

propose to use another LSTM to model the temporal corre-

lations between interactions explicitly. We term this LSTM

as G-LSTM:

gt
i = G-LSTM(gt−1

i , m̂t
i;Wg) (6)

where m̂t
i is from Eq. 5. Wg is the G-LSTM weight and is

shared among all the sequences.

In Encoder component, two LSTMs (M-LSTM, G-

LSTM) are used to model the motion pattern of each pedes-

trian, and the temporal correlations of interactions, respec-

tively. We combine these two parts to accomplish the fusion

of spatial and temporal information. At time-step Tobs, there

are two hidden variables (m
Tobs
i , g

Tobs
i ) from two LSTMs of

each pedestrian. In our implementation, these two variables

are fed to two different multilayer perceptrons (δ1(·) and

δ2(·)) before getting concatenated:

m̄i = δ1(m
Tobs
i ) (7)

ḡi = δ2(g
Tobs
i ) (8)

hi = m̄i ‖ ḡi (9)

3.5. Future Trajectory Prediction

From the real-world trajectory datasets, we need to learn

human motion patterns, which is the response of pedestri-

ans to the changing environment.. Due to the uncertainty

of pedestrian movement, we hope our model can generate

multiple reasonable and realistic trajectories.

Most previous works [1, 33, 13] embody this uncertainty

by learning parameters of Gaussian distribution, then ob-

tain future positions sampled from the distribution. Dur-

ing the training phase, these models minimize the negative

log-likelihood loss of ground-truth positions under the pre-

dicted Gaussian distribution. However, such methods in-

troduce difficulty in backpropagation as the sampling pro-

cess is non-differentiable [12]. Gupta et al. [12] proposed

a variety loss to encourage the network to produce diverse

samples, and verified the effectiveness of their method. We

follow their strategy to model the multimodal properties of

pedestrian motion.

The intermediate state vector of our model consists of

three parts: hidden variables of M-LSTM, hidden variables

of G-LSTM, and the noise added (as shown in Fig. 2). The

intermediate state vector is calculated as:

d
Tobs
i = hi ‖ z (10)

where z represents noise, hi is from Eq. 9. The intermediate

state vector d
Tobs
i then acts as the initial hidden state of the

decoder LSTM (termed as D-LSTM). The predicted relative

position is given by:

d
Tobs+1
i = D-LSTM(d

Tobs
i ,e

Tobs
i ;Wd) (11)

(∆x
Tobs+1
i ,∆y

Tobs+1
i ) = δ3(d

Tobs+1
i ) (12)
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where Wd is D-LSTM weight, δ3(·) is a linear layer, e
Tobs
i

is from Eq. 2. After getting the predicted relative position

at time-step Tobs +1, the subsequent inputs of D-LSTM are

calculated based on the last predicted relative position ac-

cording to Eq. 2. And it’s easy to convert relative positions

to absolute positions for computing loss.

The variety loss from [12] works as follow: for each

pedestrian, the model produces multiple predicted trajec-

tories by randomly sampling z from N (0,1) (the standard

normal distribution). Then it chooses the trajectory that has

the smallest distance to ground-truth as the model output to

compute the loss:

Lvariety = min
k

||Yi − Ŷ k
i ||2 (13)

where Yi is the ground-truth trajectory of pedestrian i, Ŷ k
i is

the trajectory produced by our model, k is a hyperparameter.

By considering only the best trajectory, this loss encourages

the network to cover the space of outputs that conform to the

past trajectory.

3.6. Implementation Details

All LSTMs in our implementation only have one layer.

The dimension of et
i in Eq. 2 is set to 16; the dimension

of mt
i in Eq. 3 is set to 32. W in Eq. 4 for first graph at-

tention layer is of shape 16× 16, for the second layer is of

shape 16× 32, the dimension of a in Eq. 4 is set to 32 for

first graph attention layer, and set to 64 for second layer.

Batch Normalization is applied over the input of graph at-

tention layer. The dimension of gt
i in Eq. 6 is set to 32. δ1(·)

in Eq. 7 contains 3 layers with ReLU activation functions,

where the hidden nodes in these layers are 32, 64 and 24,

respectively. δ2(·) in Eq. 8 contains 3 layers with ReLU ac-

tivation functions and the number of hidden nodes is 32, 64,

16, respectively. The dimension of z in Eq. 10 is set to 16.

We train the network using Adam optimizer with a learning

rate of 0.01 and batch size 64.

4. Experiments

In this section, we present the results on two pub-

licly available pedestrian trajectory datasets: ETH [21] and

UCY [17]. The ETH dataset consists of two scenarios

named ETH and HOTEL. UCY dataset includes two scenar-

ios and in three components, named ZARA-01, ZARA-02

and UCY. These datasets contain thousands of real-world

pedestrian trajectories and cover rich human-human inter-

actions. Because the original ETH and UCY datasets do

not have a uniform data format, we follow the same data

preprocessing strategy as SGAN [12] to compare different

methods. First, all the data is converted to the world coordi-

nate system and then interpolated to obtain values at every

0.4 seconds.

Evaluation Metrics: same as prior works [33, 12, 38],

we use two error metrics to report prediction errors:

1. Average Displacement Error (ADE): the mean square

error (MSE) over all estimated positions in the pre-

dicted trajectory and ground-truth trajectory.

2. Final Displacement Error (FDE): the distance between

the predicted final destination and the true final desti-

nation at Tpred .

Baselines. Since traditional methods based on hand-

crafted features (such as linear model, social force model

and interacting gaussian processes, etc.) perform worse

than social LSTM model [1], we compare our model with

following methods:

1. LSTM: a vanilla LSTM with no pooling mechanism,

all trajectories are considered to be independent of

each other.

2. S-LSTM: the method proposed by Alahi et al. [1].

Each pedestrian is modeled with an LSTM, and the

hidden state is pooled with neighbors at each time-step.

3. Social Attention: the method proposed by Vemula et

al. [33]. It formulates the trajectory prediction prob-

lem as a spatial-temporal graph, and uses two types of

edges to capture the spatial and temporal dynamics of

the crowd.

4. CIDNN: the method proposed by Xu et al. [38]. It

has four components: motion encoder module, loca-

tion encoder module, crowd interaction module, and

displacement prediction module.

5. SGAN: the method proposed by Gupta et al. [12]. We

represent results of the model with three different con-

trol settings: SGAN-1V-1, SGAN-20V-20 and SGAN-

20VP-20 (the meaning of these notations will be ex-

plained later).

For ablation study, we investigate our model with dif-

ferent control settings, following a similar notation as [12].

We represent our full method as STGAT-kV-N, k represents

the number of outputs for calculating the variety loss (as

shown in Eq. 13), and k = 1 means no variety loss, N refers

to the number of sampling times during test time (the def-

initions of k and N in our model are the same with k and

N in SGAN model, p in SGAN represents the usage of the

“pooling module”). And we use the best prediction in L2

sense for quantitative evaluation.

In addition to the models with different control settings,

we investigate a variation of STGAT to capture the contri-

butions of different parts of our model. In this case, we ig-

nore the temporal correlations of interactions and only use
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Metric Dataset LSTM
S-LSTM

[1]

SocialAttention

[33]

CIDNN

[38]

SGAN [12] STGAT(Ours)

1V-1 20V-20 20VP-20 1V-1 1V-20 20V-20 SGAT

ADE

ETH 0.70 / 1.09 0.73 / 1.09 1.04 / 1.39 0.89 / 1.25 0.79 / 1.13 0.61 / 0.81 0.60 / 0.87 0.75 / 0.88 0.74 / 0.80 0.56 / 0.65 0.68 / 0.70

HOTEL 0.55 / 0.86 0.49 / 0.79 1.95 / 2.51 1.25 / 1.31 0.71 / 1.01 0.48 / 0.72 0.52 / 0.67 0.43 / 0.56 0.42 / 0.52 0.27 / 0.35 0.32 / 0.37

UNIV 0.36 / 0.61 0.41 / 0.67 0.78 / 1.25 0.59 / 0.90 0.37 / 0.60 0.36 / 0.60 0.44 / 0.76 0.31 / 0.52 0.31 / 0.51 0.32 / 0.52 0.35 / 0.59

ZARA1 0.25 / 0.41 0.27 / 0.47 0.59 / 1.01 0.29 / 0.50 0.25 / 0.42 0.21 / 0.34 0.22 / 0.35 0.25 / 0.41 0.24 / 0.39 0.21 / 0.34 0.21 / 0.35

ZARA2 0.31 / 0.52 0.33 / 0.56 0.55 / 0.88 0.28 / 0.51 0.32 / 0.52 0.27 / 0.42 0.29 / 0.42 0.21 / 0.31 0.20 / 0.30 0.20 / 0.29 0.24 / 0.31

AVG 0.43 / 0.70 0.45 / 0.72 0.98 / 1.41 0.66 / 0.89 0.49 / 0.74 0.39 / 0.58 0.41 / 0.61 0.39 / 0.54 0.38 / 0.50 0.31 / 0.43 0.36 / 0.47

FDE

ETH 1.45 / 2.41 1.48 / 2.35 1.83 / 2.39 1.89 / 2.32 1.61 / 2.21 1.22 / 1.52 1.19 / 1.62 1.55 / 1.66 1.52 / 1.53 1.10 / 1.12 1.29 / 1.35

HOTEL 1.17 / 1.91 1.01 / 1.76 2.97 / 2.91 2.20 / 2.36 1.44 / 2.18 0.95 / 1.61 1.02 / 1.37 0.88 / 1.15 0.85 / 1.08 0.50 / 0.66 0.56 / 0.67

UNIV 0.77 / 1.31 0.84 / 1.40 1.56 / 2.54 1.13 / 1.86 0.75 / 1.28 0.75 / 1.26 0.84 / 1.52 0.66 / 1.13 0.65 / 1.12 0.66 / 1.10 0.73 / 1.23

ZARA1 0.53 / 0.88 0.56 / 1.00 1.24 / 2.17 0.59 / 1.04 0.53 / 0.91 0.42 / 0.69 0.43 / 0.68 0.53 / 0.91 0.50 / 0.87 0.42 / 0.69 0.41 / 0.69

ZARA2 0.65 / 1.11 0.70 / 1.17 1.09 / 1.75 0.60 / 1.07 0.66 / 1.11 0.54 / 0.84 0.58 / 0.84 0.44 / 0.68 0.42 / 0.64 0.40 / 0.60 0.46 / 0.64

AVG 0.91 / 1.52 0.91 / 1.54 1.74 / 2.35 1.28 / 1.73 1.00 / 1.54 0.78 / 1.18 0.81 / 1.21 0.81 / 1.11 0.79 / 1.05 0.62 / 0.83 0.69 / 0.92

Table 1. Quantitative results of all the baselines and our model with different control settings. We represent two error metrics ADE and

FDE for Tpred = 8 and Tpred = 12. The experiments show that our proposed model significantly improves the prediction accuracy compared

to other baseline methods (lower numerical results are better). STGAT-1V-1, STGAT-1V-20 and STGAT-20V-20 are models with different

control settings, and SGAT is a variation of our model.

(a) (b) (c)

(d) (e) (f)
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Figure 5. Comparisons between our model (STGAT-20V-20) with SGAN (SGAN-20VP-20) in six different scenarios. We choose scenarios

with multiple pedestrians and complex interactions. For a better view, only part of the pedestrians in the scene is presented. We can see that

our model can generate complex trajectories, while SGAN produces more linear trajectories. And our trajectories are closer to ground-truth.

LSTM once for each pedestrian in Encoder. The hidden

state of the last observation time-step is processed by GAT

(GAT is used only once for each pedestrian). The rest of the

model (including the variety loss, the noise, etc.) is the same

as STGAT-20V-20. We refer to this variation as SGAT (i.e.

STGAT model without considering temporal correlations of

interactions).

Evaluation Methodology. Following prior works [12,

1, 38], the leave-one-out approach is adopted. The model

is trained on 4 datasets and tested on the remaining dataset.

We observe a trajectory for 3.2 seconds (8 time-steps), then

predict for the next 3.2 seconds (8 time-steps) and 4.8 sec-

onds (12 time-steps).

4.1. Quantitative Evaluation

Following SGAN [12], we refer to our complete method

as STGAT-20V-20. In Table 1, we evaluate our model

against all baseline models as well as our model with multi-

ple control settings. The results show that our method out-

performs all compared methods on all datasets in terms of

ADE and FDE. The best baseline method that has the low-

est average prediction error is SGAN-20V-20. Compared

to it, the average error rate of our method in ADE is re-

duced by 25.8% and 34.9% respectively, when predicting

the future 8, 12 time-steps. For FDE, the performance is in-

creased by 25.8%, 42.2% respectively. These results show

that our model has advantages compared to other methods,

especially in the case of longer predictions (Tpred = 12).

Evaluation of GAT. The SGAT model only uses one

LSTM for each pedestrian, and GAT is adopted at Tobs.

Its architecture is similar to SGAN-20VP-20 [12], but GAT

is exploited to aggregate information from others. The re-

sults of SGAT show the ability of GAT for modeling inter-
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SGAN-P SocialAttention SGAT STGAT

8 8.910 29.328 12.268 12.502

12 8.247 27.804 10.861 10.858

AVG 8.579 28.566 11.565 11.680

Time Usage 1x 3.33x 1.35x 1.36x

Table 2. The comparison of speed in seconds. All methods are

benchmarked on the same dataset (containing 2875, 2253 trajec-

tories for two prediction lengths) and one NVIDIA TITAN Xp

graphics card.

actions among pedestrians. As is shown in Table 1, com-

pared with SGAN-20VP-20, for two prediction lengths, the

average error rate of SGAT in ADE is reduced by 13.9%

and 29.8% respectively, and in FDE is reduced by 17.4%

and 31.5% respectively. Compared with vanilla LSTM, the

performance in ADE is increased by 19.4% and 48.9% re-

spectively. While for FDE, the performance is increased by

31.8% and 65.2% respectively. These results validate the

effectiveness of the GAT component.

Evaluation of G-LSTM. The SGAT can be seen as a

simplified version of our full model. The only difference is

that STGAT has G-LSTM after GAT module. As shown in

Table 1, the STGAT-20V-20 model outperforms the SGAT

model on average. Specifically, the average error rate of

STGAT-20V-20 in terms of ADE is reduced by 16.1% and

9.3% respectively. In terms of FDE, the average error rate

is reduced by 11.3%, 10.8% respectively. Obviously, mod-

eling the temporal correlations of interactions contributes to

improving the performance.

Evaluation of variety loss. Due to the polymorphism of

pedestrian movement, we use the variety loss [12] to pro-

duce multiple socially acceptable trajectories. We represent

three different control settings of our model in Table 1. Both

STGAT-1V-20 and STGAT-20V-20 can generate multiple

future trajectories. By using the variety loss, the average

error rate of STGAT-20V-20 in ADE is reduced by 22.6%

and 16.3% respectively. For FDE, the average error rate is

reduced by 27.4%, 26.5% respectively.

Time and space consumption. We compare our method

with two baselines, SGAN [12] and SocialAttention [33]1.

As shown in Table 2, STGAT is slower than SGAN. This is

caused by our “GAT” scheme which is more time consum-

ing than the “Pooling” module of SGAN. Table 4 compares

the CUDA memory usage of each model during the training

and evaluating phases. The memory usage of STGAT is 2.5

times larger than SGAN during training. The comparison

between SGAT and STGAT indicates that considering the

continuity of interactions will not influence the time con-

suming, but significantly increase the memory usage.

1The consumption of time and space is greatly affected by the imple-

mentation details. We use the official implementation of the corresponding

models. Note that SocialAttention model is implemented with a batch size

of 1 during evaluating in original code.

SGAN-P SocialAttention SGAT STGAT

train 3031 649 1133 7503

evaluation 589 657 589 593

Table 3. The comparison of CUDA memory usage (in MB).

SGAN-P, SGAT, and STGAT are benchmarked with the same

batch size (32) and prediction length (12).

(a) (b)

(c) (d)

Figure 6. Example of diverse predictions. (a) shows the best sam-

ple produced by SGAN (SGAN-20VP-20) model. (b)(c)(d) are

three diverse samples generated by our STGAT-20V-20 model,

where (d) represents the best sample from our model.

(a) (b)
Figure 7. Trajectories generated by SGAT model. (a) shows

the same scenario as Fig. 5(b). (b) shows the same scenario as

Fig. 5(e).

4.2. Qualitative Evaluation

As mentioned before, pedestrian trajectory prediction

is a complex problem because we have to consider the

spatial-temporal properties of each pedestrian in the scene.

Pedestrians in crowded scenes may have complex interac-

tions, representing different motion modes, including form-

ing groups, following other pedestrians, changing directions

to avoid collisions, etc. The qualitative results are shown in

Fig. 5. We choose scenarios containing different motion

patterns and collision avoidance. Fig. 5 shows that SGAN

(SGAN-20VP-20) model can capture interactions, and gen-

erate socially-acceptable trajectories in most cases. How-

ever, compared with the trajectories produced by STGAT,

their trajectories are closer to linear. And our model outper-

forms SGAN as we generate trajectories closer to ground-

truth, especially when the crowd moves in the opposite di-

rection.

Fig. 6 shows an example of diverse predictions. We rep-

resent a challenging scenario with multiple pedestrians and

complex interactions. Fig. 6(b)(c)(d) show three different

predictions generated by our model, where (d) represents

the sample closest to the ground-truth (we term this predic-

tion the best prediction). As a comparison, we show the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Attention weights predicted by graph attention mechanism. The solid dots on the trajectory indicate different time-steps and the

arrows show the directions of trajectories. The trajectories without circles are the target pedestrians. The circles on other trajectories show

the attentions represented with the radius proportional to attention weight.

best prediction produced by SGAN in Fig. 6(a). As can be

seen from Fig. 6(a) and Fig. 6(d), neither model can predict

accurate future trajectories in such a complex environment.

Fig. 7 presented the predicted trajectories of the SGAT

model in two scenarios. By comparing the corresponding

scenes of Fig. 5, it can be observed that the SGAT model is

worse than the STGAT model, which is consistent with the

quantitative results. By comparing Fig. 7(a) with Fig. 5(b),

Fig. 7(b) with Fig. 5(e), we can see that the trajectories pro-

duced by SGAT model are socially plausible, but the ac-

curacy is worse than STGAT model. These qualitative re-

sults visually demonstrate that when considering the tem-

poral correlations of interactions, the predicted trajectories

are more accurate and socially acceptable.

We visualize the learned attention weights in Fig 8.

As shown in Fig. 8(a)-(e), our model successfully learned

the relative importance of surrounding pedestrians in these

scenarios. In these successful cases, GAT assigns higher

weights to some neighbours such as moving in the opposite

directions and being close in position. In addition, when

surroundings move toward the same direction, the pedestri-

ans in front has more significant influence than pedestrians

in the rear. And the model assigns nearly equal attention

weights to pedestrians who are far from the target. Since

the input to our model is the relative displacement of each

pedestrian relative to the previous moment, these learned

weights are based on each pedestrian’s motion state. In

this process, neither global nor local position information

is adopted. These successful cases show that GAT can as-

sign reasonable importance to neighbours by their motion

status.

There are also many failure cases as shown in Fig. 8 (f)-

(i). In Fig. 8(f), only part of the weights is reasonable. In

Fig. 8(g), the stationary pedestrian has an unreasonable high

influence. And in Fig. 8(h)(i), the learned attention weights

are very chaotic. In these failed cases, (g) and (i) are very

representative. Our model often assigns a high impact on

the stationary pedestrian, and when the scene contains many

pedestrians, the weights assigned are confusing. The cause

of the first problem may be that we use relative displace-

ment as the model input. The possible reason for the second

problem is that all pedestrians in the scene are considered.

We will solve these problems in future work.

5. Conclusion

In this work, a novel seq2seq framework that can jointly

predict the future trajectories of all pedestrians in a scene

is proposed. We use one LSTM for each trajectory to cap-

ture the historical trajectory information of each pedestrian,

and adopt graph attention network to model the interac-

tions in human crowds at every time-step. Moreover, an-

other LSTM is adopted to model the temporal correlations

between interactions explicitly. Our proposed method out-

performs state-of-the-art methods on two publicly available

datasets. Qualitative experiments show that graph attention

network can assign reasonable importance to neighbors ac-

cording to their motion states, and our model can predict

accurate trajectories in different scenes.
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uum crowds. In ACM Transactions on Graphics (TOG), vol-

ume 25, pages 1160–1168. ACM, 2006.
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