
Neural Re-Simulation for Generating Bounces in Single Images

Carlo Innamorati1*, Bryan Russell2, Danny M. Kaufman2, and Niloy J. Mitra1,2

1University College London
2Adobe Research

http://geometry.cs.ucl.ac.uk/projects/2019/bounce-neural-resim/

Abstract

We introduce a method to generate videos of dynamic

virtual objects plausibly interacting via collisions with a

still image’s environment. Given a starting trajectory, phys-

ically simulated with the estimated geometry of a single,

static input image, we learn to ‘correct’ this trajectory to

a visually plausible one via a neural network. The neural

network can then be seen as learning to ‘correct’ traditional

simulation output, generated with incomplete and impre-

cise world information, to obtain context-specific, visually

plausible re-simulated output – a process we call neural re-

simulation. We train our system on a set of 50k synthetic

scenes where a virtual moving object (ball) has been physi-

cally simulated. We demonstrate our approach on both our

synthetic dataset and a collection of real-life images depict-

ing everyday scenes, obtaining consistent improvement over

baseline alternatives throughout.

1. Introduction

Christopher Robin: You’re next, Tigger. Jump!

Tigger: Er, jump? Tiggers don’t jump, they

bounce.

Winnie the Pooh: Then bounce down.

Tigger: Don’t be “ridick-orous”. Tiggers only

bounce up!

– A. A. Milne, Winnie The Pooh

A single still image depicts an instant in time. Videos, on

the other hand, have the capacity to depict dynamic events

where scene objects may interact with and bounce off each

other over time. We seek to allow users to bring single still

images to life by allowing them to automatically generate

videos depicting a virtual object interacting with a depicted

scene in the image.

∗Work initiated at Adobe during CI’s summer internship.

Specifically, we address the problem of dynamic object

compositing in a single still image where a virtual object

physically interacts by contact, such as bouncing, with the

depicted scene. Our goal is to generate visually plausible

virtual object-scene interactions instead of a physically ac-

curate forward prediction. In other words, we seek to gener-

ate an output that looks physically valid to a human observer

even if it does not exactly match an observed physical inter-

action starting from the same initial conditions. Our task is

important for applications in augmented reality and anima-

tion, allowing users to author dynamic events in a depicted

scene without access to sufficient information about the cor-

responding world.

For our study, we focus on the case where we toss a

virtual ball into an everyday scene, such as living rooms,

bedrooms, and kitchens, and seek to have the ball bounce

off different objects in the scene (see Figure 1). This setup

presents many challenges as we need to reason about the

geometric layout of the scene and infer how the virtual ball

will physically interact with the scene. Previous approaches

either do not physically interact with the scene through con-

tact [12, 20], require captured scene depth through multiple

views or active sensing [33, 34], or rely on forward simu-

lation using predicted single-view scene depth. However,

predicted scene depth may be noisy, resulting in inaccurate

and visually implausible forward-simulated trajectory out-

put (see videos in supplemental). Furthermore, there may

be global scaling issues with depth predictions if an algo-

rithm is trained on one dataset and applied to another with

different camera intrinsics.

To address the above challenges, we seek to learn to

‘re-simulate’ the outputs obtained from running a forward

simulation over noisy, estimated scene geometry inferred

for the input image to yield a visually plausible one. Re-

simulation methods are traditionally applied in visual ef-

fects to reuse and combine pre-exisiting physical simula-

tions for new and novel scenarios [22, 39, 45]. Here, in

analogy, we introduce a neural network for learning re-

18719



geometry

estimation
pyBullet

dynamic object 

generation network

0

1.5

ti
m

e
 (

se
c)

Figure 1. Problem statement and approach overview. We take as input a single still image depicting a scene and output a video depicting

a virtual object dynamically interacting with the scene through bouncing. Here, we consider a ball as our virtual object. We achieve this

by our Dynamic Object Generation Network which takes as inputs estimated depth and an initial forward trajectory of the virtual object

from the PyBullet simulator [11] and outputs a ‘corrected’ trajectory via a neural re-simulation step. To visualize all the trajectories in

this paper, we composited the virtual object at each time step with the input image; warmer colors indicate earlier time steps. Please view

output videos in the supplemental.

simulation – a process we call neural re-simulation. In

particular, here we apply neural re-simulation from trajec-

tories with noisy and insufficient data to plausible output.

Our solution is thus also related to recent approaches for

re-rendering scenes with a neural network [21, 27, 29, 44];

here we seek to re-simulate dynamic trajectory outputs.

For the initial forward trajectory, we generate geometry

based on estimated depth from the input image and run a

physical simulator on this estimated geometry. Then, in the

neural re-simulation step, our proposed model ‘corrects’ the

initial trajectory resulting from the noisy depth predictions

conditioned on context information available in the input

image. Furthermore, we introduce an approach that learns

to correct the global scaling of the estimated depths for the

scene conditioned on the initial trajectory. We train our sys-

tem on a dataset of trajectories computed by forward sim-

ulating trajectories with an off-the-shelf physical simulator

(PyBullet [11]) on SUNCG scenes [42]. We find that our

forward trajectories complement the information provided

by the estimated depths. Finally, we use an adversarial

loss [18] during training to allow for learning to generate

visually plausible trajectory outputs.

Evaluating the quality of the dynamic object insertion

task is difficult due to two factors: first, on real images,

there is no available ground truth to compare against; and

second, for target applications such as AR/VR and anima-

tion, ‘visual plausibility’ is more relevant rather than accu-

rate forward trajectory predictions. We evaluate our pro-

posed approach quantitatively both on synthetic data where

we have access to ground truth simulations and on real data

via a user study.

Our contribution is a system that learns to correct an ini-

tial trajectory of a virtual object provided by forward simu-

lation on geometry specified by predicted depth of an input

single still image to output a visually plausible trajectory of

the object. Furthermore, we introduce a network that learns

to update the predicted depth values conditioned on the ini-

tial trajectory. We demonstrate our approach on synthetic

images from SUNCG and on real images and show that our

approach consistently outperforms baseline methods by a

healthy margin.

2. Related Work

Our work is primarily related to previous approaches on

generating video and modeling dynamic object interactions.

Video generation. Prior work has generated dynamic or

video textures by analyzing low-level motion features [13,

40]. However, we seek to model and generate motions due

to high-level interactions in a scene. Prior work has looked

at modeling interactions in constrained environments, such

as sports [3]. While these interactions are complex and in-

volve reasoning about the intention of multiple agents in a

scene, we seek to model interactions that occur in every-

day scenes. More recently, there has been work to endow

28720



Figure 2. Visually implausible trajectories. Examples of the visually implausible trajectories that are generated by simulations with

depth prediction. Left to right: a virtual object bounces in mid air, flies into an object, bounce in an unexpected direction, or has completely

different scale due to globally incorrect depth.

a neural network with the ability to generate video. Ex-

amples include forecasting human dynamics from a single

image [10], forecasting with variational auto-encoders [48],

generating visual dynamics [53], and generating the fu-

ture [47]. These works primarily forecast or generate hu-

man actions in video and do not focus on modeling object

interactions. Moreover, making long-term video genera-

tions spanning multiple seconds from a neural network is

challenging. Most relevant to our generation task is prior

work that disentangles underlying structure and from the

generation step [46].

Object interactions and intuitive physics. Prior work in

modeling dynamic object interactions have involved reason-

ing and recovering parameters to a physical system [4, 7, 5,

6, 23, 26, 30, 55, 56]. While these works aim for phys-

ical accuracy, our aim is different as we want to achieve

visual plausibility through learning. Other work has looked

at changing the viewpoint of an object in a scene [20] or

manipulating modal bases of an object [12], but do not

address the problem of object-scene interaction via con-

tact. Recent work has aimed to train a learning system to

reason about physics for understanding the semantics of a

scene [19] or for making future predictions in synthetic 2D

scenarios [2, 9, 16, 50]. Work has aimed to go beyond the

synthetic setting by inferring forces in real-world images

through Newtonian image understanding [31]. More re-

cently, work has aimed to learn to model 3D systems, such

as predicting where toy blocks in a tower will fall [24], mod-

eling a variety of different closed-world systems such as

ramps, springs and bounces [14, 15, 51, 52], and predict-

ing the effect of forces in images by reasoning over the 3D

scene layout and training over 3D scene CAD models [32].

Recent work has also leveraged learning about real-world

interactions by interacting with the world through visual-

motor policies [25], grasping [37], pushing and poking ob-

jects [1, 36], crashing a drone into scene surfaces [17], hit-

ting surfaces with a stick to reason about sound [35], or gen-

erating audible shapes [54]. Closest to ours is recent work

that uses a neural network to make forward predictions of

bounces in real-world scenes [38] and infer scene geom-

etry and physical parameters such as coefficient of restitu-

tion [49]. Note that this work, while similar to ours, aims for

physical accuracy and predicts an immediate short-term tra-

jectory of a ball bounce after making contact with a surface.

We go beyond this work and infer roll outs over multiple

bounces and aim for visual plausibility.

3. Dynamic Object Generation Network

Given an input image I depicting a scene, we seek to

output a video V of time length T where a virtual moving

object with initial conditions ρ has been composited into the

image depicting physical interaction with the scene. Exam-

ple scene interactions include the virtual object flying in the

air, making contact with several scene objects, and chang-

ing its trajectory after bouncing off scene objects. While

one could learn to generate the video directly from train-

ing data using a neural network, such long-term generations

are currently hard due to fundamental issues such as tempo-

ral flickering and decaying visual signal to the mean [28].

Recent work in long-term video generation has shown suc-

cess by disentangling the prediction of the underlying scene

structure and generation of the video pixels [46]. We seek

to leverage this insight for our video generation task.

Our approach starts by computing an initial depth map

Z0 of the input image, which is then passed, after geome-

try processing, to a physical simulator S along with initial

conditions ρ. The initial conditions consist of the initial

state of the virtual object (velocity and position) and ma-

terial parameters (e.g., coefficients for friction and restitu-

tion). The output of the physical simulator is an initial tra-

jectory X0 = S(Z0, ρ) represented as a sequence of object

states X0 = (x1, . . . , xT ). We assume access to depth pre-

dictions for the scene from an off-the-shelf algorithm. For

our work, we use the depth prediction system of Chakrabarti

et al. [8], which is a top performer on predicting depth on

the NYUv2 dataset [41]. We run forward simulations using

the PyBullet physical simulator [11].

Given the initial forward trajectory X0, one could simply

generate the final video V by passing the trajectory and the

image I to a composing function R to yield V = R(I, X0).

38721



depth

estimation

re-estimated trajectory

input image

final trajectory video 

input conditions

input conditions

estimated depth

physics

simulator

physics

simulator

simulated trajectory

depth correction

network

corrected depth

forward traj.

update 

network

final 

composite

Figure 3. System overview. Our system takes as inputs an image depicting a scene and initial conditions for the object that is tossed in the

scene and outputs a video showing a visually plausible predicted trajectory of the object interacting with the scene. Our approach predicts

depth at every pixel in the image and consists of two networks – a forward trajectory update network Gz and a depth correction network

H. See text for more details.

However, this step often yields visually implausible output

videos where the virtual object may or may not change di-

rection at inappropriate times or bounce in a direction that

is not congruent with a depicted surface due to inaccurate

depth predictions. Example visually implausible outputs

are shown in Figure 2. Such visually implausible artifacts

cause the viewer to perceive the virtual object to bounce in

mid-air, fly into a scene object or surface, or bounce in an

unexpected direction, and are due to inaccurate predictions

in the depth estimates.

Our insight is to correct such visually implausible arti-

facts by correcting the initial depth Z0 and initial forward

trajectory X0 to yield a visually plausible final result – we

call this step neural re-simulation. We introduce two net-

works Gz and H that generate updated forward trajectory

X and updated depth map Z, respectively. The forward tra-

jectory update network Gz is a generative neural network

parameterized by scalar z that takes as inputs the image I

and a forward trajectory X and returns an updated trajec-

tory,

X ′ = Gz(I, X). (1)

The depth correction network H is a neural network that re-

turns an updated depth map given the image I, initial depth

map Z0, and initial trajectory X0 as inputs,

Z = H(I, Z0, X0). (2)

The final video can be generated by composing the two

networks,

V = R(I,Gz(I,S(H(I, Z0, X0), ρ))). (3)

We describe both networks in the following subsections and

outline our overall approach in Figure 3.

3.1. Trajectory update network

We assume a neural network for the trajectory update

network. The network takes as inputs the input image I,

the virtual object’s forward trajectory X resulting from the

corrected depth predictions for the scene, and a value z sam-

pled from a Gaussian distribution z ∼ N (0, 1). The net-

work first consists of a multilayer perceptron (MLP) that

takes as input a concatenation of the trajectory X and sam-

pled value z and outputs an encoded representation of the

trajectory. The MLP is followed by a second MLP that

takes as input a concatenation of the encoded trajectory rep-

resentation and an encoding of the image I. We obtain

the image encoding through a pre-trained Inception-ResNet

model [43] that has been pre-trained on ImageNet. The en-

coding is extracted from the penultimate layer. The second

MLP outputs the updated trajectory X ′.

Learning. One could train our trajectory update network

using an L2 loss to ground truth trajectories with the aim of

making physically accurate predictions. However, this strat-

egy would yield over-smooth predictions to the mean distri-

bution over trajectories. Moreover, our goal is to generate

visually plausible trajectories and not necessarily physically

accurate ones.

To achieve our goal, we aim to fool a discriminator given

a dataset of trajectories and the set of initial trajectories

provided by running a forward simulation on the geometry

from the initial depth map Z0. We train the trajectory up-

48722



depth histogram overlay of trajectories

co
u

n
t

depth (cm)
150 400

Figure 4. Dataset. Histogram of scene depth (left) and sampled

trajectories from our dataset (right), illustrating the dataset’s vari-

ety over depth and trajectory.

date network using an adversarial loss [18]. Given training

examples of visually plausible trajectories pplausible and a

set of initial trajectories pinitial, we seek to optimize the fol-

lowing adversarial loss over the trajectory update network G

and a discriminator architecture D,

min
G

max
D

EX∼pplausible
[log (D(I, X))]

+ EX∼pinitial

z∼N (0,1)

[log (1−D(I,Gz(I, X)))]. (4)

The discriminator network consists of an MLP that takes

as input a trajectory X and outputs its encoded representa-

tion. The MLP is followed by a second MLP that takes as

input a concatenation of the encoded trajectory representa-

tion and an Inception-ResNet encoding of the image I. The

second MLP outputs a prediction label.

To help with the early stages of training, the adversar-

ial loss is aided by an L2 loss of decreasing relevance over

training epochs. In particular, the L2 loss is weighted down

by 0.5% after every epoch, resulting in a complete adver-

sarial loss after the 200th epoch. The network is run for a

total 1k epochs.

3.2. Depth correction network

A major source of error is when an initial depth map Z0

is grossly out of range of the expected depth values for a

given depicted scene. To correct this issue, we seek to have

a network learn to output calibration parameters Zmin and

Zmax that will be used to scale the initial depth values into

the expected range. To achieve this result, we assume the

depth correction network H is a MLP followed by a depth

calibration update that takes as input a concatenated vector

consisting of an encoded representation of the input image

I, an encoding of the initial depth map Z0, and the output of

the trajectory update network with the initial trajectory X0

passed as input. The MLP outputs (Zmin, Zmax), which is

then used to scale the min and max input depth map values

in Z0 to match the newly computed normalization values.

The updated depth map Z is returned as output.

Learning. The depth correction network is trained using L2

loss to regress the two normalization parameters given the

trajectory X0, an encoding of the image I and an encoding

of the initial depth map Z0. The network is run for a total

of 1k epochs.

Geometry processing. To obtain the input trajectories of

the model X0 from the input depth map, we leverage pro-

jection and view matrices to obtain a point cloud, where

each vertex corresponds to a pixel of the depth map. We

then turn the point cloud into a mesh by connecting neigh-

boring vertices. The mesh is then passed through PyBullet

to obtain a corresponding trajectory.

4. Synthetic Trajectory Generation

A critical aspect of training our system is the ability

to learn from a large collection of examples depicting an

object interacting with an everyday scene. This aspect is

challenging as such data is relatively scarce. For exam-

ple, while one could consider real videos, the largest known

dataset of a ball interacting with a scene contains about

5000 videos [38]. Moreover, the ball starts with different

initial velocity (speed and direction) in each video.

To overcome this challenge, we leverage recent datasets

containing large stores of 3D CAD models. We consider the

SUNCG dataset for our study [42]. The SUNCG dataset

contains 45k 3D scenes. We equip the 3D CAD models

with a physics simulator, namely PyBullet [11]. To render

forward trajectories, we import a scene into PyBullet and

specify a camera viewpoint. We leverage the pre-computed

camera locations provided by the SUNCG toolbox, which

depicts viewpoints where the camera is held upright with

the pitch angle rotated up by 30 degrees and pointing to-

ward the interior of the scene geometry. We filtered the

cameras to not directly face walls and other large surfaces

and adjusted the cameras to match PyBullet’s intrinsic pa-

rameters. We use 50k of the available 828k cameras.

For our study, we assume that the object is a spherical

ball and starts with an initial velocity of 0.6 meters per sec-

ond in the direction away from the camera center. We set

the coefficients for friction and restitution to 0.5 and gen-

erate forward trajectories of length 1.5 seconds, sampled at

20Hz. At each time point, we record the output of the 3D

center-of-mass location of the ball in camera space from Py-

Bullet. After processing the trajectory, we render the new

frames by re-creating the object in PyBullet and re-updating

the coordinate system.

Our dataset consists of 50k examples, with each example

coming from a multi-room 3D model containing on average

eight different rooms. We generate data using less than 10%

of the available cameras; the majority of the rooms have less

than two sampled viewpoints out of maximum five. We split

our dataset into training, validation, and testing sets of sizes

40k, 5k and 5k, respectively. Figure 4 shows a histogram of

58723



Table 1. Quantitative evaluation on synthetic scenes. We report

L2 distances in 2D and 3D and a perceptual loss (top – baselines,

bottom – ablations). Notice how our approach out-performs all

baselines and ablations across all criteria.

Method L2 (2D) L2 (3D) Perc. loss
(

1× 104
) (

1× 104
) (

1× 102
)

Dataset prior 616.4 797.8 6.3

Depth + fwdS. 186.5 255.1 4.9

DepthEq + fwdS. 144.1 196.3 4.5

2D regression 4.9 N/A N/A

3D regression 4.9 6.5 3.1

DepNet 101.2 133.5 2.9

TrajNet 3.3 4.3 2.4

Ours 1.5 2.1 1.3

the span of depth values over the dataset in centimeters, in

addition to a set of randomly selected trajectories from the

dataset, illustrating the dataset’s variety.

5. Experiments

In this section, we show qualitative and quantitative re-

sults of our system. To better appreciate our final results, we

encourage the reader to view videos of our dynamic com-

posite outputs in the supplemental material.

5.1. Results on synthetic data

As a first experiment, we evaluate the effectiveness

of our approach on synthetic scenes from the SUNCG

dataset [42], which allows us to directly compare against

trajectories resulting from forward simulation.

Dataset and evaluation criteria. We use the generated tra-

jectories resulting from forward simulation as outlined in

Section 4. We evaluate our predicted trajectories by com-

paring against ground truth trajectories using L2 distance

averaged over time. While this criterion evaluates physi-

cal accuracy of the predicted trajectory, it does not evalu-

ate the trajectory’s visual plausibility. In addition to report-

ing time-averaged L2 distance, we also report a perceptual

loss over the rendered video by computing the L2 distance

between the image encoding of each frame with the cor-

responding ground truth frame. We obtain the image en-

codings through a pre-trained Inception-ResNet model that

has been pre-trained on ImageNet [43] and compare the re-

sponses from the penultimate layer.

Baselines. We evaluate a number of baselines for our task.

First, we consider a baseline (Dataset prior) where we com-

pute the average 3D forward trajectory over the training set.

Second, we train a neural network to regress to 2D and 3D

trajectories (2D regression and 3D regression) given the in-

put single image. For fair comparison, the networks share

the same architecture as the trajectory update network out-

lined in Section 3.1 except the sampled value z is with-

held as input; for 2D, we used only two dimensions for in-

put/output. We trained the networks for the same number of

epochs while monitoring the validation loss to avoid over-

fitting. Third, we consider a baseline of a forward phys-

ical simulation of the ball using geometry from the pre-

dicted depth (Depth + fwdS.). We used the same depth-

prediction algorithm [8] as in our proposed method. Fi-

nally, we consider performing histogram equalization over

histogrammed ground truth and predicted depth values over

the training set (DepthEq + fwdS.).

Ablations. We consider the following ablations of our

model. First, we consider running our full pipeline with-

out the depth correction network (TrajNet). Second, we

consider running our full pipeline without the last trajectory

update network (DepNet).

Results. To evaluate the improvement we achieve with our

depth correction network, in addition to standard L2 mea-

sures, we computed the difference in time to the first bounce

event (lower is better): Dataset prior – 3.8, Depth + fwdS.

– 3.0, DepthEq + fwdS. – 2.6, DepNet – 1.8; our depth cor-

rection network outperforms the baselines on this criterion.

We show final quantitative results in Table 1. Notice how

we outperform all baselines and ablations across all crite-

ria.

5.2. Results on real data

As a second experiment, we evaluate the effectiveness of

our approach on single still images depicting real scenes.

As per the synthetic experiments, we trained our system on

the synthetic data from Section 4.

Dataset, baselines, ablations. We collected a dataset of

30 in the wild natural images depicting indoor scenes from

royalty-free sources and compared our approach against the

baselines and ablations described in Section 5.1. Addition-

ally, we randomly selected a set of 20 NYUv2 images [41]

and compared our approach against forward simulation on

the provided depths from an active-sensing camera. Lastly,

we compared our method to the work described in [38].

Qualitative results. We show qualitative results in Fig-

ure 5. Notice how our approach generally improves over

the initial trajectories and out-performs the 3D trajectory re-

gression baseline that returns trajectories close to the mean.

User study. As we do not have noise-free ground truth tra-

jectories for either sets of images, we conducted a user study

where we asked humans to judge the visual plausibility of

the outputs. More specifically, we presented a user with

two outputs from different systems and asked the user to

choose which output looks more realistic. We randomized

the order in which we showed each output to the user. The

experiments were conducted with workers from thehive.ai.

For the set of 30 natural images, we compared our re-

sults against forward simulation on predicted depth (Depth

68724



Figure 5. Qualitative results on real images. We show (a) the input image depicting a real scene, (b) output from the 3D trajectory

regression baseline, (c) our initial trajectory resulting from forward simulation on predicted depth, and (d) our output optimized trajectory.

Notice how the visual plausibility of our output trajectories improve over the initial trajectory. Last row – failure example.

78725



+ fwdS.) and our full pipeline without the last trajectory

update network (DepNet). Additionally, we also compared

Depth + fwdS. against DepNet. Each experiment was con-

ducted by 80 unique users and the users casted 4.5k votes

over the three tasks. Users preferred our method over Depth

+ fwdS. and DepNet 71% and 59% of the time (p < .0001
– all p-values from binomial test), respectively, illustrating

the effectiveness of our approach. Moreover, users pre-

ferred DepNet over Depth + fwdS. in 63% of the cases

(p < .0001), illustrating that the depth correction network

helps improve results. For the NYUv2 images, we eval-

uated our method against forward simulation on the pro-

vided active-sensing depths over 98 unique users casting 2k

votes. Users preferred our method 49% of the time (no sta-

tistical significance), demonstrating the effectiveness of our

approach and the level of noise in the active-sensing depths.

Finally, we compared to the work of [38]. As a di-

rect comparison with [38] is not feasible due to the addi-

tional information it requires, we designed a ground-truth-

augmented version of the method. The work in [38] re-

quires a ground-truth input trajectory up to the first bounce,

which we can provide by running PyBullet with appropri-

ate parameters over the geometry obtained from the kinect

depths of the NYUv2 dataset. Further, as [38] outputs a

post-bounce trajectory spanning only 0.1s and our approach

outputs multiple bounces and roll-out trajectories over 1.5s,

we manually extended the output from [38] to 1.5s via 3D

parabola fitting (note that this step is comparable to simu-

lating post-bounce free fall). We show a qualitative com-

parison of the resulting trajectories in Figure 6.

For the experiment conducted on the aforementioned

data, 130 users cast a total of 2.5k votes. Users preferred

our method in 59% of the cases (p < .0001), which is

noteworthy given that [38] has access to ground-truth about

when and where in the scene the bounce occurs and indi-

rect access to kinect depths for the scene. Additionally, we

performed a second study, where our trajectories were ex-

tended after the first bounce through free fall – note that

this is an ablated version of our method as it lacks multi-

bounces and roll-outs. For this study, 90 users cast a total

of 1.8k votes. Users preferred our outputs 56% of the time

(p < .0001).

6. Conclusion

We introduced neural re-simulation as a ‘correction’

mechanism that learns to generate visually plausible bounce

interactions of a virtual ball in depicted scenes in single still

images. Our system learns to update an initial depth esti-

mate of the depicted scene through our depth correction net-

work and uses this update to correct an initial trajectory ob-

tained via forward simulation through our trajectory update

network. We demonstrated our system on not only synthetic

scenes from SUNCG, but also on real images. We showed

(a) extended [34] (b) ours

Figure 6. Sample user study trajectories. We show our results

versus results obtained by providing access to ground-truth depth

and extending the work of [38] through free fall. Note that, in

ground-truth augmented [38] (see text), the ball passes through

scene objects, such as the cubicle (row 1) and table (row 2).

via a human study that our approach on real images yields

outputs that are more visually plausible than baselines. Our

approach opens up the possibility of generating more com-

plex interactions in single still images, such as inserting ob-

jects with different geometry and physical properties and

modifying the depicted environment.

Acknowledgements

We thank our reviewers for their insightful comments.

We also thank Senthil Purushwalkam for helping out with

the comparison with [38] and Tobias Ritschel, Paul Guer-

rero and Yu-Shiang Wong for their technical help through-

out the project. This work was partially funded by the ERC

Starting Grant SmartGeometry (StG-2013-335373).

References

[1] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik,

and Sergey Levine. Learning to poke by poking: Experi-

ential learning of intuitive physics. In Advances in Neural

Information Processing Systems (NIPS), 2016. 3

[2] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo

Jimenez Rezende, and Koray Kavukcuoglu. Interaction net-

works for learning about objects, relations and physics. In

Advances in Neural Information Processing Systems (NIPS),

2016. 3

[3] Vinay Bettadapura, Caroline Pantofaru, and Irfan Essa.

Leveraging contextual cues for generating basketball high-

lights. In Proceedings of ACM International Conference on

Multimedia (ACM-MM). ACM, October 2016. 2

88726



[4] Kiran Bhat, Steven M. Seitz, Jovan Popović, and Pradeep

Khosla. Computing the physical parameters of rigid-body

motion from video. In Proceedings of European Conference

on Computer Vision (ECCV), 2002. 3

[5] Marcus A. Brubaker and David J. Fleet. The kneed walker

for human pose tracking. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2008.

3

[6] Marcus A. Brubaker, David J. Fleet, and Aaron Hertzmann.

Physics-based person tracking using the anthropomorphic

walker. International Journal of Computer Vision, 87(140),

2010. 3

[7] Marcus A. Brubaker, Leonid Sigal, and David J. Fleet. Esti-

mating contact dynamics. In Proceedings of IEEE Interna-

tional Conference on Computer Vision (ICCV), 2009. 3

[8] Ayan Chakrabarti, Jingyu Shao, and Gregory Shakhnarovich.

Depth from a single image by harmonizing overcomplete lo-

cal network predictions. In NIPS, 2016. 3, 6

[9] Michael B. Chang, Tomer Ullman, Antonio Torralba, and

Joshua B. Tenenbaum. A compositional object-based ap-

proach to learning physical dynamics. In Proceedings of

the International Conference on Learning Representations

(ICLR), 2017. 3

[10] Yu-Wei Chao, Jimei Yang, Brian Price, Scott Cohen, and Jia

Deng. Forecasting human dynamics from static images. In

Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 3

[11] Erwin Coumans and Yunfei Bai. pybullet, a Python mod-

ule for physics simulation for games, robotics and machine

learning. http://pybullet.org/, 2016–2017. 2, 3, 5

[12] Abe Davis, Justin G. Chen, and Frédo Durand. Image-space

modal bases for plausible manipulation of objects in video.

ACM Trans. Graph., 34:239:1–239:7, 2015. 1, 3

[13] Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and

Stefano Soatto. Dynamic textures. International Journal of

Computer Vision (IJCV), 51(2):91–109, 2003. 2

[14] Sébastien Ehrhardt, Aron Monszpart, Niloy J. Mitra, and

Andrea Vedaldi. Learning a physical long-term predictor.

CoRR, abs/1703.00247, 2017. 3

[15] Sébastien Ehrhardt, Aron Monszpart, Andrea Vedaldi,

and Niloy J. Mitra. Learning to represent mechanics

via long-term extrapolation and interpolation. CoRR,

abs/1706.02179, 2017. 3

[16] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and

Jitendra Malik. Learning predictive visual models of physics

for playing billiards. In Proceedings of the International

Conference on Learning Representations (ICLR), 2016. 3

[17] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning

to fly by crashing. In Proceedings of the International Con-

ference On Intelligent Robots and Systems (IROS), 2017. 3

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 27, pages 2672–2680. Curran Associates,

Inc., 2014. 2, 5

[19] Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks

world revisited: Image understanding using qualitative ge-

ometry and mechanics. In ECCV, 2010. 3

[20] Natasha Kholgade, Tomas Simon, Alexei Efros, and Yaser

Sheikh. 3d object manipulation in a single photograph using

stock 3d models. ACM Trans. Graph., 33(4):127:1–127:12,

2014. 1, 3

[21] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng

Xu, Justus Thies, Matthias Niessner, Patrick Pérez, Christian

Richardt, Michael Zollhöfer, and Christian Theobalt. Deep

video portraits. ACM Trans. Graph., 37(4):163:1–163:14,

July 2018. 2

[22] Theodore Kim and John Delaney. Subspace fluid re-

simulation. ACM Trans. Graph., 32(4), 2013. 1

[23] Nikolaos Kyriazis, Iason Oikonomidis, and Antonis Argyros.

Binding vision to physics based simulation: The case study

of a bouncing ball. In Proceedings of the British Machine

Vision Conference (BMVC), 2011. 3

[24] Adam Lerer, Sam Gross, and Rob Fergus. Learning physical

intuition of block towers by example. In Proceedings of the

33rd International Conference on International Conference

on Machine Learning - Volume 48, ICML’16, pages 430–

438. JMLR.org, 2016. 3

[25] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-end training of deep visuomotor policies.

Journal of Machine Learning Research (JMLR), 2016. 3

[26] Richard Mann, Allan Jepson, and Jeffrey Siskind. The com-

putational perception of scene dynamics. In CVIU, 1997. 3

[27] Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel

Pidlypenskyi, Jonathan Taylor, Julien Valentin, Sameh

Khamis, Philip Davidson, Anastasia Tkach, Peter Lincoln,

Adarsh Kowdle, Christoph Rhemann, Dan B Goldman,

Cem Keskin, Steve Seitz, Shahram Izadi, and Sean Fanello.

Lookingood: Enhancing performance capture with real-time

neural re-rendering. ACM Trans. Graph., 37(6):255:1–

255:14, Dec. 2018. 2

[28] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error. In

Proceedings of the International Conference on Learning

Representations (ICLR), 2016. 3

[29] Moustafa Meshry, Dan B. Goldman, Sameh Khamis, Hugues

Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-

Brualla. Neural rerendering in the wild. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019. 2

[30] Aron Monszpart, Nils Thuerey, and Niloy J. Mitra. SMASH:

Physics-guided reconstruction of collisions from videos.

ACM Transactions on Graphics (SIGGRAPH Asia), 2016. 3

[31] Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad

Rastegari, and Ali Farhadi. Newtonian image understand-

ing: Unfolding the dynamics of objects in static images. In

Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 3

[32] Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta,

and Ali Farhadi. “What happens if...” Learning to predict

the effect of forces in images. In Proceedings of European

Conference on Computer Vision (ECCV), 2016. 3

98727



[33] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J. Davison, Push-

meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W.

Fitzgibbon. Kinectfusion: Real-time dense surface mapping

and tracking. 2011 10th IEEE International Symposium on

Mixed and Augmented Reality, pages 127–136, 2011. 1

[34] Richard A. Newcombe, Steven Lovegrove, and Andrew J.

Davison. Dtam: Dense tracking and mapping in real-time.

2011 International Conference on Computer Vision, pages

2320–2327, 2011. 1

[35] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-

ralba, Edward Adelson, and William Freeman. Visually indi-

cated sounds. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 3

[36] Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park,

and Abhinav Gupta. The curious robot: Learning visual rep-

resentations via physical interactions. In Proceedings of Eu-

ropean Conference on Computer Vision (ECCV), 2016. 3

[37] Lerrel Pinto and Abhinav Gupta. Supersizing self-

supervision: Learning to grasp from 50K tries and 700 robot

hours. In Proceedings of the International Conference On

Robotics and Automation (ICRA), 2016. 3

[38] Senthil Purushwalkam, Abhinav Gupta, Danny Kaufman,

and Bryan Russell. Bounce and learn: Modeling scene dy-

namics with real-world bounces. In International Confer-

ence on Learning Representations (ICLR), 2019. 3, 5, 6, 8

[39] Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita.

Editing fluid animation using flow interpolation. ACM Trans.

Graph., 37(5), 2018. 1

[40] Arno Schödl, Richard Szeliski, David Salesin, and Irfan A.

Essa. Video textures. In SIGGRAPH, 2000. 2

[41] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In ECCV, 2012. 3, 6

[42] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-

lis Savva, and Thomas Funkhouser. Semantic scene comple-

tion from a single depth image. Proceedings of 29th IEEE

Conference on Computer Vision and Pattern Recognition,

2017. 2, 5, 6

[43] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A. Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Proceed-

ings of the Thirty-First AAAI Conference on Artificial Intelli-

gence, February 4-9, 2017, San Francisco, California, USA.,

pages 4278–4284, 2017. 4, 6

[44] Justus Thies, Michael Zollhöfer, Christian Theobalt, Marc

Stamminger, and Matthias Nießner. IGNOR: image-guided

neural object rendering. CoRR, abs/1811.10720, 2018. 2

[45] Nils Thuerey. Interpolations of smoke and liquid simula-

tions. ACM Trans. Graph., 36(1), 2016. 1

[46] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn,

Xunyu Lin, and Honglak Lee. Learning to Generate Long-

term Future via Hierarchical Prediction. In Proceedings of

the International Conference on Machine Learning (ICML),

2017. 3

[47] Carl Vondrick and Antonio Torralba. Generating the fu-

ture with adversarial transformers. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 3

[48] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial

Hebert. An uncertain future: Forecasting from variational

autoencoders. In Proceedings of European Conference on

Computer Vision (ECCV), 2016. 3

[49] Jui-Hsien Wang, Rajsekhar Setaluri, Dinesh K. Pai, and

Doug L. James. Bounce maps: An improved restitution

model for real-time rigid-body impact. ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2017), 36(4), July

2017. 3

[50] Nicholas Watters, Andrea Tacchetti, Theophane Weber, Raz-

van Pascanu, Peter Battaglia, and Daniel Zoran. Visual in-

teraction networks. CoRR, abs/1706.01433, 2017. 3

[51] Jiajun Wu, Joseph J. Lim, Hongyi Zhang, Joshua B. Tenen-

baum, , and William T. Freeman. Physics 101: Learning

physical object properties from unlabeled videos. In Pro-

ceedings of the British Machine Vision Conference (BMVC),

2016. 3

[52] Jiajun Wu, Ilker Yildirim, Joseph J. Lim, William T. Free-

man, and Joshua B. Tenenbaum. Galileo: Perceiving phys-

ical object properties by integrating a physics engine with

deep learning. In Advances in Neural Information Process-

ing Systems (NIPS), 2015. 3

[53] Tianfan Xue, Jiajun Wu, Katherine L Bouman, and

William T Freeman. Visual dynamics: Probabilistic future

frame synthesis via cross convolutional networks. In Ad-

vances in Neural Information Processing Systems (NIPS),

2016. 3

[54] Zhoutong Zhang, Jiajun Wu, Qiujia Li, Zhengjia Huang,

James Traer, Josh H. McDermott, Joshua B. Tenenbaum, and

William T. Freeman. Generative modeling of audible shapes

for object perception. In Proceedings of IEEE International

Conference on Computer Vision (ICCV), 2017. 3

[55] Yixin Zhu, Chenfanfu Jiang, Yibiao Zhao, Demetri Ter-

zopoulos, and Song-Chun Zhu. Inferring forces and learning

human utilities from videos. In Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 3

[56] Yixin Zhu, Yibiao Zhao, and Song-Chun Zhu. Under-

standing tools: Task-oriented object modeling, learning and

recognition. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2015. 3

108728


