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Abstract

Learning an effective similarity measure between image

representations is key to the success of recent advances in

visual search tasks (e.g. verification or zero-shot learn-

ing). Although the metric learning part is well addressed,

this metric is usually computed over the average of the ex-

tracted deep features. This representation is then trained to

be discriminative. However, these deep features tend to be

scattered across the feature space. Consequently, the rep-

resentations are not robust to outliers, object occlusions,

background variations, etc. In this paper, we tackle this

scattering problem with a distribution-aware regularization

named HORDE1. This regularizer enforces visually-close

images to have deep features with the same distribution

which are well localized in the feature space. We provide

a theoretical analysis supporting this regularization effect.

We also show the effectiveness of our approach by obtain-

ing state-of-the-art results on 4 well-known datasets (Cub-

200-2011, Cars-196, Stanford Online Products and Inshop

Clothes Retrieval).

1. Introduction

Deep Metric Learning (DML) is an important yet chal-

lenging topic in the Computer Vision community with nu-

merous applications such as visual product search [15, 18],

multi-modal retrieval [1, 31], face verification and cluster-

ing [22], person or vehicle identification [14, 38]. To deal

with such applications, a DML method aims to learn an em-

bedding space where all the visually-related images (e.g.,

images of the same car model) are close to each other and

dissimilar ones (e.g., images of two cars from the same

brand but from different models) are far apart.

Recent contributions in DML can be divided into three

categories. A first category includes methods that focus

1Code is available at https://github.com/pierre-jacob/

ICCV2019-Horde

on batch construction to maximize the number of pairs or

triplets available to compute the similarity (e.g., N-pair loss

[23]). A second category involves the design of loss func-

tions to improve the generalization (e.g., binomial deviance

[26]). The third category covers ensemble methods that

tackle the embedding space diversity (e.g., BIER [19]).

This similarity metric is trained jointly with the image

representation which is computed using deep neural net-

work architectures such as GoogleNet [25] or BN-Inception

[8]. For all of these networks, the image representations

are obtained by the aggregation of the deep features using

a Global Average Pooling [37]. Hence, the deep features

are summarized using the sample mean, and the training

process makes sure that the sample mean is discriminative

enough for the target task.

Our insight is that ignoring the characteristics of the deep

feature distribution leads to a lack of distinctiveness in the

deep features. We illustrate this phenomenon in Figure 1. In

Figure 1a, we train a DML model on MNIST and plot both

the deep features and the image representations from a set

of images sampled from the training set. We observe that

the representations are perfectly organized while the deep

features are in contrast scattered in the entire space. As the

representations are obtained using the sample mean only,

they are sensitive to outliers or sampling problems (occlu-

sions, illumination, background variation, etc.), which we

refer to as the scattering problem. We illustrate this prob-

lem in Figure 1b where the representations are computed

using the same architecture but by sampling only 1/6-th of

the original deep features. As we can see, the resulting rep-

resentations are no longer correctly organized.

In this paper, we propose HORDE, a High-Order Regu-

larizer for Deep Embeddings which tackles this scattering

problem. By minimizing (resp. maximizing) the distance

between high-order moments of the deep feature distribu-

tions, this DML regularizer enforces deep feature distribu-

tions from similar (resp. dissimilar) images to be nearly

identical (resp. to not overlap). As illustrated in Figure 1c,

our HORDE regularizer produces well localized features,
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(a) Representations using all deep features (b) Representations using 1/6-th of deep features (c) Representations using 1/6-th of deep features

trained with HORDE

Figure 1: 2D visualizations of representations (stars) and deep features (points) using t-SNE computed from a DML architec-

ture on MNIST dataset with one color per class. Representations and features come from the training set. Figure 1a shows

discriminative representations but with scattered deep features (Remark the scale of the axes). Figure 1b shows representa-

tions computed with 1/6-th of the deep features, leading to a disorganized space. Figure 1c shows the same model trained

with HORDE: the deep features are well concentrated and the representations computed using 1/6-th of the deep features are

organized according to the classes (best viewed on a computer screen).

leading to robust image representations even if they are

computed using only 1/6-th of the original deep features.

Our contributions are the following: First, we propose

a High-Order Regularizer for Deep Embeddings (HORDE)

that reduces the scattering problem and allows the sample

mean to be a robust representation. We provide a theo-

retical analysis in which we support this claim by show-

ing that HORDE is a lower bound of the Wasserstein dis-

tance between the deep feature distributions while also be-

ing an upper-bound of their Maximum Mean Discrepancy.

Second, we show that HORDE consistently improves DML

with varying loss functions, even when considering ensem-

ble methods. Using HORDE, we are able to obtain state

of the art results on four standard DML datasets (Cub-200-

2011 [27], Cars-196 [12], In-Shop Clothes Retrieval [15]

and Stanford Online Products [18]).

The remaining of this paper is organized as follows: In

section 2, we review recent works on deep metric learn-

ing and how our approach differs. In section 3, after an

overview of our proposed method, we present the practical

implementation of HORDE as well as a theoretical analysis.

In section 4 we compare our proposed architecture with the

state-of-the-art on four image retrieval datasets. We show

the benefit of HORDE regularization for different loss func-

tions and an ensemble method. In section 5 we conduct

extensive experiments to demonstrate the robustness of our

regularization and its statistical consistency.

2. Related Work

In DML, we jointly learn the image representations and

an embedding in such a way that the Euclidean distance cor-

responds with the semantic content of the images. Current

approaches use a pre-trained CNN to produce deep features,

then they aggregate these features using Global Average

Pooling [37]. Finally they learn the target representation

with a linear projection. The whole network is fine-tuned to

solve the metric learning task according to three criteria: a

loss function, a sampling strategy and an ensemble method.

Regarding the loss function, popular approaches con-

sider pairs [3] or triplets [22] of similar/dissimilar samples.

Recent works generalize these loss functions to larger tu-

ples [2, 18, 23, 26] or improve the design [28, 29, 34].

The sampling of the training tuples receive plenty of at-

tention [18, 22, 23], either through mining [7, 22], proxy

based approximations [16, 17] or hard negative generation

[4, 13]. Finally, ensemble methods have recently become an

increasingly popular way of improving the performances of

DML architectures [11, 19, 33, 35]. Our proposed HORDE

regularizer is a complementary approach. We show in sec-

tion 4 that it consistently improves these popular DML

models.

Recent approaches also consider a distribution analysis

for DML [21, 13]. Contrarily to us, they only consider the

distribution of the representations to design a loss function

or a hard negative generator but they do not take into ac-

count the distribution of the underlying deep features. Con-

sequently, they do not address the scattering problem. More

precisely, Magnet loss [21] proposes to better represent a

given class manifold by learning a K-mode distribution in-

stead of the standard uni-mode assumption. To that aim, the

per-class distribution is approximated using K-means clus-

tering. The proposed loss tries to minimize the distance be-

tween a representation and its nearest class mode and tries

to maximize the distance between all modes of all other
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Figure 2: Global overview of our HORDE architecture. The deep convolutional neural network extracts h × w × c deep

features. The standard architecture (top blue block) relies on a global average pooling and an embedding before computing

the LDML loss. The bottom red block is our HORDE regularizer, composed by the approximation of all high-order moments

φk, global average pooling and embeddings before computing the sum of each Lk loss.

classes. However, since the magnet loss is directly applied

to the sample means of the deep features, it leads to the scat-

tering problem illustrated in Figure 1. In DVML [13], the

authors assume that the representations follow a per-class

Gaussian distribution. They propose to estimate the param-

eters of these distributions using a variational auto-encoder

approach. Then, by sampling from a Gaussian distribution

with the learned parameters, they are able to generate arti-

ficial hard samples to train the network. However, no as-

sumption is made on the distribution of the deep features,

which leads to the scattering problem illustrated in Figure 1

(see also [13], Figure 1). In contrast, we show that focusing

on the distribution of the deep features reduces the scatter-

ing problem and improves the performances of DML archi-

tectures.

In the next section, we first give an overview of the pro-

posed HORDE regularization. Then, we describe the prac-

tical implementation of the high-order moments computa-

tion. Finally, we give theoretical insights which support the

regularization effect of HORDE.

3. Proposed High-Order Regularizer

We first give an overview of the proposed method in Fig-

ure 2. We start by extracting a deep feature map of size

h × w × c using a CNN where h and w are the height

and width of the feature map and c is the deep features di-

mension. Following standard DML practices, these features

are aggregated using a Global Average Pooling to build the

image representation and are projected into an embedding

space before a similarity-based loss function is computed

over these representations (top-right blue box in Figure 2).

In HORDE, we directly optimize the distribution of the

deep features by minimizing (respectively maximizing) a

distance between the deep feature distributions of similar

images (respectively dissimilar images). We approximate

the deep feature distribution distance by computing high-

order moments (bottom-right red box in Figure 2). We

recursively approximate the high-order moments and we

compute an embedding after each of these approximations.

Then, we apply a DML loss function on each of these em-

beddings.

3.1. High­order computation

In practice, the computation of high-order moments is

very intensive due to their high dimension. Furthermore,

it has been shown in [9, 19] that an independence assump-

tion over all high-order moment components is unrealistic.

Hence, we rely on factorization schemes to approximate

their computation, such as Random Maclaurin (RM) [10].

The RM algorithm relies on a set of random projectors to

approximate the inner product between two high-order mo-

ments. In the case of the second-order, we sample two in-

dependent random vectors w1,w2 ∼ W whereW is a uni-

form distribution in {−1,+1}. For two non random vectors

x and y, the inner product between their second-order mo-

ments can be approximated as:

Ew1,w2∼W [φ2(x)φ2(y)] = 〈x ; y〉2

= 〈x⊗ x ; y ⊗ y〉 (1)

where⊗ is the Kronecker product, Ew1,w2∼W is the expec-

tation over the random vectors w1 and w2 which follow the

distribution W and φ2(x) = 〈w1 ; x〉 〈w2 ; x〉. This ap-

proach easily holds to estimate any inner product between

K-th moments:

Ewk∼W [φK(x)φK(y)] = 〈x ; y〉K

=

〈

x⊗ · · · ⊗ x
︸ ︷︷ ︸

K times

;y ⊗ · · · ⊗ y
︸ ︷︷ ︸

K times

〉

(2)
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where φK(x) is computed as:

φK(x) =

K∏

k=1

〈wk ; x〉 (3)

In practice, we approximate the expectation of this quan-

tity by using the sample mean over d sets of these random

projectors. That is, we sample independent random matri-

ces W1,W2, ...,WK ∈ R
c×d and we compute the vector

φK(x) ∈ R
d that approximates the K-th moments of x

with the following equation:

φK(x) =
(
W⊤

1 x
)
⊙
(
W⊤

2 x
)
⊙ · · · ⊙

(
W⊤

Kx
)

(4)

where ⊙ is the Hadamard (element-wise) product. Thus,

the inner product between the K-th moments is:

〈x ; y〉K ≈ 1

d
〈φK(x) ; φK(y)〉 (5)

However, Random Maclaurin produces a consistent esti-

mator independently of the analyzed distributions, and thus

also encodes non informative high-order moment compo-

nents. To ignore these non-informative components, the

projectors Wk can be learned from the data. However, the

high number of parameters in O(K2cd) makes it difficult

to learn a consistent estimator, as we empirically show in

subsection 5.2. We solve this problem by computing the

high-order moment approximation using the following re-

cursion:

φk(x) = φk−1(x)⊙
(
W⊤

k x
)

(6)

This last equation leads to the proposed cascaded architec-

ture for HORDE summarized in Algorithm 1. We empir-

ically show in subsection 5.2 that this recursive approach

produces a consistent estimator of the informative high-

order moment components.

Then, the HORDE regularizer consists in computing a

DML-like loss function on each of the high-order moments,

such that similar (respectively dissimilar) images have sim-

ilar (respectively dissimilar) high-order moments:

LHORDE =

K∑

k=2

Lk (Ex∼I [φk(x)],Ey∼J [φk(y)]) (7)

In practice, we cannot compute the expectation

Ex∼I [φk(x)] since the distribution of x is unknown.

We propose to estimate it using the empirical estimator:

LHORDE(I,J ) =
K∑

k=2

Lk

(

1

|I|
∑

xi∈I
φk(xi),

1

|J |
∑

xj∈J
φk(yj)



 (8)

Algorithm 1 High-order moments computation

Require: W1, . . . ,WK sampled from {−1;+1}
Ensure: K first moments approximations

1: procedure APPROXMOMENTS(x)

2: φ2(x)← 1√
d

(
W⊤

1 x
)
⊙
(
W⊤

2 x
)

3: k ← 3
4: while k ≤ K do

5: φk(x) = φk−1(x)⊙
(
W⊤

k x
)

6: k ← k + 1
7: end while

8: return φ2(x), . . . ,φK(x)
9: end procedure

where {xi ∈ I} and {xj ∈ J } are the sets of deep features

extracted from images I and J .

Hence, the DML model is trained on a combination of a

standard DML loss and the HORDE regularizer on pairs of

images I and J :

L(I,J ) = LDML(I,J ) + LHORDE(I,J ) (9)

This can easily be extended to any tuple based loss function.

In practice, we use the same DML loss function for HORDE

(∀k,Lk = LDML).

Remark also that at inference time, the image represen-

tation φ1(I) consists only of the sample mean of the deep

features:

φ1(I) =
1

|I|
∑

xi∈I
xi, (10)

and the HORDE part of the model can be discarded.

3.2. Theoretical analysis

In this section, we show that optimizing distances be-

tween high-order moments is directly related to the Max-

imum Mean Discrepancy (MMD) [6] and the Wasserstein

distance. We consider the Reproducing Kernel Hilbert

Space (RKHS) H of distributions f : Ω 7→ R
+ defined

on the compact Ω ⊂ R
c, endowed with the Gaussian ker-

nel k(x,y) = e−γ‖x−y‖2

. An image is then represented

as a distribution I ∈ H from which we can sample a set

of deep features {xi ∈ Ω}i. We denote Ex∼I [x] ∈ R
c

the expectation of x sampled from I. The high-order

moments are denoted using their vectorized forms, that is

Ex∼I [x⊗k] ∈ R
ck where x⊗2 = x⊗x,x⊗3 = x⊗x⊗x,

etc. By extension, we use Ex∼I [x⊗1] for the mean. We

assume that all moments exist for every distributions in H
and we note, ∀I ∈ H:

max
k
‖ Ex∼I [x

⊗k] ‖2 = K <∞ (11)
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Following [6], the MMD between two distributions I
and J is expressed as:

MMD(I,J ) = sup
T

Ex∼I [T (x)]− Ey∼J [T (y)] (12)

The MMD searches for a transform T that maximizes the

difference between the expectation of two distributions. In-

tuitively, a low MMD implies that both distributions are

concentrated in the same regions of the feature space.

In the following theorem, we show that the distance

over high-order moments is an upper-bound of the squared

MMD (the proof mainly follows [6]):

Theorem 1. There exists A ∈ R
+∗ such that, for every

distributions I,J ∈ H, the MMD is bounded from above

by the p first moments of I and J by:

MMD2(I,J ) ≤ A

p
∑

k=1

∥
∥Ex∼I [x

⊗k]− Ey∼J [y⊗k]
∥
∥
2

+ 1 + o(
γpK

p!
) (13)

Proof. As the MMD is a distance on the RKHS H [6], the

square of the MMD can be re-written such as:

MMD2(I,J ) = ‖Ex∼I [φ(x)]− Ey∼J [φ(y)]‖2H (14)

where φ is defined using the kernel trick k(x,y) =
〈φ(x) ; φ(y)〉. Then, we can approximate the Gaussian

kernel using its Taylor expansion:

k(x,y) = exp(−γ‖x‖2 − γ‖y‖2) exp(2γ 〈x ; y〉)

= exp(−γ‖x‖2 − γ‖y‖2)
+∞∑

k=0

(2γ)k

k!
〈x;y〉k

≤ 1 +

+∞∑

k=1

ak
〈
x⊗k;y⊗k

〉
(15)

where ak = (2γ)k

k! > 0. Thus, we can define φ as the direct

sum of all weighted and vectorized moments:

φ(x) =

+∞⊕

k=1

√
akx

⊗k (16)

As all moments exist, we can swap the expectation and the

direct sum. Moreover, since the sequence ak = (2γ)k

k! −→
0 when k −→ +∞ and the moments are bounded by K,

the higher-order moment contributions become negligible

compared to the p first moments. Thus, we have:

MMD2(I,J ) ≤ 1 +

+∞∑

k=1

ak‖Ex∼I [x
⊗k]− Ey∼J [y⊗k]‖2

≤ A

p
∑

k=1

‖Ex∼I [x
⊗k]− Ex∼J [x⊗k]‖2

+ 1 + o(
γpK

p!
) (17)

where A = max
k

ak.

This result implies that regularizing high-order moments

to be similar enforces similar images to have deep features

sampled from similar distributions. Thus, deep features

from similar images have a higher probability of being con-

centrated in the same regions of the feature space.

Next, we show a converse relation between high-order

moments and the Wasserstein distance:

Theorem 2. There exists a ∈ R
+∗ such that, for every dis-

tributions I,J ∈ H, the squared Wasserstein distance is

bounded from below by the p first moments of I and J by:

W 2
1 (I,J ) ≥ a

p
∑

k=1

∥
∥Ex∼I [x

⊗k]− Ey∼J [y⊗k]
∥
∥
2 − o(

γp

p!
)

(18)

Proof. Similarly to the Theorem 1, we can lower-bound the

Gaussian kernel using its Taylor expansion:

k(x,y) ≥ α

+∞∑

k=1

ak
〈
x⊗k;y⊗k

〉

where α = exp(−2γK) and ak = (2γ)k

k! > 0. Then, by

using the definition of φ from Equation 16, a lower-bound

for the MMD is:

MMD2(I,J ) ≥ α a′
p
∑

k=1

‖Ex∼I [x
⊗k]− Ey∼J [y⊗k]‖2

− o(
γpK

p!
) (19)

where a′ = min
k

ak. Finally, the MMD is a lower-bound of

the Wasserstein distance [24]:
√
KW1(I,J ) ≥ MMD(I,J ) (20)

By combining Equation 19 and Equation 20, we get the ex-

pected lower-bound:

W 2
1 (I,J ) ≥ a

p
∑

k=1

‖Ex∼I [x
⊗k]− Ey∼J [y⊗k]‖2 − o(

γp

p!
)

(21)

where a = α a′

K
.
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Cub-200-2011 Cars-196

Backbone R@ 1 2 4 8 16 32 1 2 4 8 16 32

Loss functions or mining strategies

GoogleNet

Angular loss [29] 54.7 66.3 76.0 83.9 - - 71.4 81.4 87.5 92.1 - -

HDML [36] 53.7 65.7 76.7 85.7 - - 79.1 87.1 92.1 95.5 - -

DAMLRMM [32] 55.1 66.5 76.8 85.3 - - 73.5 82.6 89.1 93.5 - -

DVML [13] 52.7 65.1 75.5 84.3 - - 82.0 88.4 93.3 96.3 - -

HTL [5] 57.1 68.8 78.7 86.5 92.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0

contrastive loss (Ours) 55.0 67.9 78.5 86.2 92.2 96.0 72.2 81.3 88.1 92.6 95.6 97.8

contrastive loss + HORDE 57.1 69.7 79.2 87.4 92.8 96.3 76.2 85.2 90.8 95.0 97.2 98.8

Triplet loss (Ours) 50.5 63.3 74.8 84.6 91.2 95.0 65.2 75.8 83.7 89.4 93.6 96.5

Triplet loss + HORDE 53.6 65.0 76.0 85.2 91.1 95.3 74.0 82.9 89.4 93.7 96.4 98.0

Binomial Deviance (Ours) 55.9 67.6 78.3 86.4 92.3 96.1 78.2 86.0 91.3 94.6 97.1 98.3

Binomial Deviance + HORDE 58.3 70.4 80.2 87.7 92.9 96.3 81.5 88.5 92.7 95.4 97.4 98.6

Binomial Deviance + HORDE† 59.4 71.0 81.0 88.0 93.1 96.5 83.2 89.6 93.6 96.3 98.0 98.8

BN-Inception

Multi-similarity loss [30] 65.7 77.0 86.3 91.2 95.0 97.3 84.1 90.4 94.0 96.5 98.0 98.9

contrastive loss + HORDE 66.3 76.7 84.7 90.6 94.5 96.7 83.9 90.3 94.1 96.3 98.3 99.2

contrastive loss + HORDE† 66.8 77.4 85.1 91.0 94.8 97.3 86.2 91.9 95.1 97.2 98.5 99.4

Ensemble Methods

GoogleNet

HDC [35] 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4

BIER [19] 55.3 67.2 76.9 85.1 91.7 95.5 78.0 85.8 91.1 95.1 97.3 98.7

A-BIER [20] 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7

ABE [11] 60.6 71.5 79.8 87.4 - - 85.2 90.5 94.0 96.1 - -

ABE (Ours) 60.0 71.8 81.4 88.9 93.4 96.6 79.2 87.1 92.0 95.2 97.3 98.7

ABE + HORDE 62.7 74.3 83.4 90.2 94.6 96.9 86.4 92.0 95.3 97.4 98.6 99.3

ABE + HORDE† 63.9 75.7 84.4 91.2 95.3 97.6 88.0 93.2 96.0 97.9 99.0 99.5

Table 1: Comparison with the state-of-the-art on Cub-200-2011 and Cars-196 datasets. Results in percents. † means that the

test scores are computed using all the high-order moments (concatenation + PCA to the embedding size).

Stanford Online Products In-Shop Clothes Retrieval

Backbone R@ 1 10 100 1000 1 10 20 30 40 50

GoogleNet

Angular loss [29] 70.9 85.0 93.5 98.0 - - - - - -

HDML [36] 68.7 83.2 92.4 - - - - - - -

DAMLRMM [32] 69.7 85.2 93.2 - - - - - - -

DVML [13] 70.2 85.2 93.8 - - - - - - -

HTL [5] 74.8 88.3 94.8 98.4 80.9 94.3 95.8 97.2 97.4 97.8

Binomial Deviance (Ours) 67.4 81.7 90.2 95.4 81.3 94.2 95.9 96.7 97.2 97.6

Binomial Deviance + HORDE 72.6 85.9 93.7 97.9 84.4 95.4 96.8 97.4 97.8 98.1

BN-Inception
Multi-similarity loss [30] 78.2 90.5 96.0 98.7 89.7 97.9 98.5 98.8 99.1 99.2

contrastive loss + HORDE 80.1 91.3 96.2 98.7 90.4 97.8 98.4 98.7 98.9 99.0

Table 2: Comparison with the state-of-the-art on Stanford Online Products and In-Shop Clothes Retrieval. Results in percents.

Hence, regularizing high-order moments to be dissimi-

lar enforces dissimilar images to have deep features sam-

pled from different distributions. As such, deep features are

more distinctive as they are sampled from different regions

of the feature space for dissimilar images. This is illustrated

in Figure 1c (p = 5) compared to Figure 1a (p = 1).

4. Comparison to the state-of-the-art

We present the benefits of our method by comparing our

results with the state-of-the-art on four datasets, namely

CUB-200-2011 (CUB) [27], Cars-196 (CARS) [12], Stan-

ford Online Products (SOP) [18] and In-Shop Clothes Re-

trieval (INSHOP) [15]. We report the Recall@K (R@K)

on the standard DML splits associated with these datasets.

Following standard practices, we use GoogleNet [25] as a

backbone network and we add a fully connected layer at

the end for the embedding. For CUB and CARS, we train

HORDE using 5 high-order moments with 5 classes and 8

images per instance per batch. For SOP and INSHOP, we

use 4 high-order moments with a batch size of 2 images and

40 different classes as there are classes with only 2 images

in these datasets. We use 256×256 crops and the following

data augmentation at training time: multi-resolution where

the resolution is uniformly sampled in [80%, 180%] of the

crop size, random crop and horizontal flip. At inference

time, we only use the images resized to 256 × 256. For

HORDE, we use 8192 dimensions for all high-order mo-

ments and we fix all embedding dimensions to 512. Finally,

we take advantage of the high-order moments at testing time

by concatenating them together. To be fair with other meth-

ods, we reduce their dimensionality to 512 using a PCA.
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k 1 2 3 4 5 6

n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

R@1 55.9 57.8 58.6 56.8 58.0 56.9 57.8 58.8 57.6 56.1 57.4 57.7 56.8 56.3 53.3 57.4 57.9 57.1 55.6 54.4 50.7

R@2 67.6 69.5 70.4 68.1 69.4 68.7 69.2 70.6 70.0 68.5 68.8 69.9 69.3 68.1 65.4 69.9 70.6 70.5 68.9 66.2 63.0

R@4 78.3 79.0 79.8 78.3 78.8 78.1 78.6 79.9 79.2 78.1 78.7 78.8 79.2 78.0 75.9 79.4 80.0 79.9 78.7 76.5 74.0

R@8 86.4 86.7 87.2 86.2 86.7 86.6 86.5 87.2 87.0 85.5 87.0 87.1 87.1 86.5 84.2 86.9 87.4 87.4 86.7 85.4 82.5

Table 3: Impact of the high order moments as regularizers. We report the Recall@K on CUB. k is the number of chosen

orders at training time, and n is the order used at testing time to evaluate the performances. k = n = 1 is the baseline.

k 1 2 3 4 5 6

n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

R@1 55.9 57.0 53.4 57.6 54.7 50.6 57.9 55.4 52.3 47.6 58.1 55.9 53.1 48.4 43.7 58.4 55.7 52.9 47.8 43.9 40.5

R@2 67.6 68.3 65.4 69.9 67.0 63.0 69.5 67.1 65.0 60.2 70.3 67.7 65.0 60.8 56.0 69.9 67.6 64.9 59.9 56.0 53.0

R@4 78.3 78.3 75.8 79.1 76.8 73.6 79.6 77.5 75.2 71.0 79.9 78.2 75.5 72.8 67.2 79.8 78.0 75.6 70.2 67.2 64.7

R@8 86.4 86.2 84.2 87.0 84.7 82.4 87.1 85.8 83.6 80.2 87.1 85.2 83.9 81.7 78.0 87.3 85.6 83.8 79.6 77.5 75.2

Table 4: Impact of the high order moments when all parameters are trained. We report the Recall@K on CUB. k is the

number of chosen orders at training time, and n is the order used at testing time. k = n = 1 is the baseline.

These results are annotated with a †.

First, we show in the upper part of Table 1 that HORDE

significantly improves three popular baselines (contrastive

loss, triplet loss and binomial deviance). These improve-

ments allow us to claim state of the art results for single

model methods on CUB with 58.3% R@1 (compared to

57.1% R@1 for HTL [5]) and second best for CARS.

We also present ensemble method results in the second

part of Table 1. We show that HORDE is also a benefit to

ensemble methods by improving ABE [11] by 2.7% R@1

on CUB and 7.2% R@1 on CARS. To the best of our knowl-

edge, this allows us to outperform the state of the art meth-

ods on both datasets with 62.7% R@1 on CUB and 86.4%
R@1 on CARS, despite our implementation of ABE under-

performing compared to the results reported in [11].

Note that both single models and ensemble ones are fur-

ther improved by using the high-order moments at testing:

+1.1% on CUB and +1.7% on CARS for the single mod-

els + HORDE and +1.2% on CUB and +1.6% on CARS for

ABE + HORDE.

Furthermore, we show that HORDE generalizes well to

large scale datasets by reporting results on SOP and IN-

SHOP in Table 2. HORDE improves our baseline bino-

mial deviance by 5.2% R@1 on SOP and 3.1% R@1 on IN-

SHOP. This improvement allows us to claim state of the art

results for single model methods on INSHOP with 84.2%
R@1 (compared to 80.9% R@1 for HTL) and second best

on SOP with 72.6% R@1 (compared to 74.8% R@1 for

HTL). Remark also that HORDE outperforms HTL on 3

out of 4 datasets.

We also report some results with the BN-Inception [8].

Our model trained with HORDE and contrastive loss leads

to similar results compared to the recent MS loss with min-

ing [30] on smaller datasets while on larger datasets we out-

perform it by 1.9% on SOP and by 0.7% on INSHOP. By

using the high-order moments are testing, performances are

further increased and outperforms MS loss with mining by

1.1% on CUB and by 2.1% on CARS.

Finally, we show some example queries and their nearest

neighbors in Figure 3 on the test split of CUB.

5. Ablation study

In this section, we provide an ablation study on the dif-

ferent contributions of this paper. We perform 3 experi-

ments on the CUB dataset [27]. The first experiment shows

the impact of high-order regularization on a standard ar-

chitecture while the high-order moments are consistently

approximated using the Random Maclaurin approximation.

The second experiment illustrates the benefit of learning the

high-order moments projection matrices. The last exper-

iment confirms the statistical consistency of our cascaded

architecture when the parameters are learned.

5.1. Regularization effect

In this section, we assess the regularization impact of

HORDE. To that aim, we use the baseline detailed in sec-

tion 4 and we train the architecture with a number of high-

order moments varying from 2 to 6. In this first experiment,

the computation of the high-order moments does not rely on

the cascade computation approach of Equation 6. Instead,

the matrices to approximate the high-order moments are un-

trainable and sampled using the Random Maclaurin method

of Equation 4. Remark also that the embedding layers on

all high-order moments are not added. We use the binomial

deviance loss with the standard parameters [26]. The results

are shown in Table 3.

First, we can see that HORDE consistently improves the

baseline from 1% to 2% in R@1. These results corrobo-

rate the insights of our theoretical analysis in section 3 and

also provide a quantitative evaluation of the behavior ob-

served in Figure 1 on the retrieval ranking. When consider-
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k 1 2 3 4 5 6

n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

R@1 55.9 57.0 53.4 57.9 56.1 54.2 57.6 55.4 54.3 53.0 58.3 56.3 56.0 54.7 52.4 57.9 56.6 55.8 55.0 53.9 51.6

R@2 67.6 68.3 65.4 69.4 67.9 66.2 69.3 67.2 66.0 65.2 70.4 68.7 68.1 66.9 64.7 69.5 68.8 68.3 67.7 65.2 64.0

R@4 78.3 78.3 75.8 79.2 77.8 76.4 79.5 77.2 77.0 75.8 80.2 78.5 78.3 76.9 75.6 79.6 76.6 77.9 77.9 75.3 74.4

R@8 86.4 86.2 84.2 86.6 85.3 84.4 87.1 85.6 84.4 84.1 87.7 86.3 86.0 85.4 84.1 87.0 86.4 85.6 84.8 84.0 83.7

Table 5: Impact of the cascaded architecture when all parameters are trained using Algorithm 1. We report the Recall@K on

CUB. k is the number of chosen orders at training time, and n is the order used at testing time. k = n = 1 is the baseline.

Figure 3: Qualitative results on CUB for HORDE. Correct results are highlighted green (incorrect in red).

ing the high-order moments as representations, we observe

improved results with respect to the baseline for orders 2

and 3. Note however that the reported high-order results are

not comparable to the first order as the similarity measure is

computed on the 8192 dimensional representations. While

adding orders higher than 2 does not seem interesting in

terms of performances, we found that the training process

is more stable with 5 or 6 orders than only 2. This is ob-

served in practice by measuring the Recall@K with K ≥ 8
which tend to vary less between training steps. Moreover

on the CUB dataset, while the baseline requires around 6k

steps to reach the best results, we usually need 1k steps less

to reach higher accuracy with HORDE.

5.2. Statistical consistency

To evaluate the impact of estimating only informative

high-order moments, we first train the projection matrices

and the embeddings but without the cascade architecture

and report the results in Table 4.

In this second experiment, we empirically show that such

scheme also increases the baseline by at least 1% in R@1.

Notably, by focusing on the most informative high-order

moment components, HORDE further improves the perfor-

mances of the untrainable HORDE from 57.8% to 58.4%.

However, the retrieval performances of the high-order rep-

resentations are heavily degraded compared to Table 3. We

interpret these results as an inconsistent estimations of the

high-order moments due to overfitting the model. For exam-

ple, the 6% loss in R@1 for the third-order moment between

the first and the second experiments suggests a reduced in-

terest for even higher-order moments.

For the third experiment, we report the results of our cas-

caded architecture in Table 5. Interestingly, the high-order

moments computed from the cascaded architecture perform

almost identically to those computed from the untrained

method Table 3 but with a smaller dimension. Moreover,

we keep the performance improvement of the second exper-

iments of Table 4. This confirms that the proposed cascaded

architecture does not overfit its estimations of the high-order

moments while still improving the baseline. Finally, this

cascaded architecture only produces a small computational

overhead during the training compared to the architecture

without the cascade.

6. Conclusion

In this paper, we have presented HORDE, a new deep

metric learning regularization scheme which improves the

distinctiveness of the deep features. This regularizer, based

on the optimization of the distance between the distribu-

tions of the deep features, provides consistent improve-

ments to a wide variety of popular deep metric learning

methods. We give theoretical insights that show HORDE

upper-bounds the Maximum Mean Discrepancy and lower-

bounds the Wasserstein distance. The computation of high-

order moments is tackled using a trainable Random Maclau-

rin factorization scheme which is exploited to produce a

cascaded architecture with small computation overhead. Fi-

nally, HORDE achieves very competitive performances on

four well known datasets.
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