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Abstract

Images of static scenes submerged beneath a wavy wa-

ter surface exhibit severe non-rigid distortions. The physics

of water flow suggests that water surfaces possess spatio-

temporal smoothness and temporal periodicity. Hence they

possess a sparse representation in the 3D discrete Fourier

(DFT) basis. Motivated by this, we pose the task of restora-

tion of such video sequences as a compressed sensing (CS)

problem. We begin by tracking a few salient feature points

across the frames of a video sequence of the submerged

scene. Using these point trajectories, we show that the

motion fields at all other (non-tracked) points can be ef-

fectively estimated using a typical CS solver. This by itself

is a novel contribution in the field of non-rigid motion es-

timation. We show that this method outperforms state of

the art algorithms for underwater image restoration. We

further consider a simple optical flow algorithm based on

local polynomial expansion of the image frames (PEOF).

Surprisingly, we demonstrate that PEOF is more efficient

and often outperforms all the state of the art methods in

terms of numerical measures. Finally, we demonstrate that

a two-stage approach consisting of the CS step followed by

PEOF much more accurately preserves the image structure

and improves the (visual as well as numerical) video quality

as compared to just the PEOF stage.

The source code, datasets and supplemental material can

be accessed at [1], [3].

1. Introduction

Underwater image analysis is a challenging and rela-

tively less explored area of computer vision. In particu-

lar, if a scene submerged in water is imaged by a cam-

era in air, the scene exhibits severe spatial distortions due

to dynamic refraction at the wavy/dynamic water surface.

Such distortions can interfere with higher level tasks such

as object recognition, tracking, motion analysis or segmen-

tation, which are required in applications such as coral reef

monitoring, surveillance of shallow riverbeds to observe

vegetation [32], or studying of visual perception in water-

birds (see references in [5]). Applying the principle of

reversibility of light, there also exist applications in sub-

marines where a camera in water is observing scenes in the

air [5].

Related Work: There exists a medium-sized body of lit-

erature on this topic. The earliest work, to our knowledge,

is from [19] where frame-to-frame optical flow is estimated

using a correlation-based method, and the underlying image

is estimated from the centroid of the flow trajectory at each

point. Such a method is expensive and error-prone due to

ambiguities in optical flow (especially in case of large mo-

tion), and reflective or blur artifacts. The work in [29] infers

a set of ‘water bases’ from synthetic underwater scenes gen-

erated from the wave equation, and then expresses deforma-

tion fields within small patches as linear combinations of

the water bases. The work in [20] performs non-rigid reg-

istration of blurred versions of all frames in the sequence

with an evolving template (initialized to be the mean im-

age) followed by a robust PCA step [7]. Both these meth-

ods are expensive and prone to local minima in case of large

motion, leaving behind some residual motion or geometric

distortion. Along similar lines, [15] proposes a method to

register all frames of a video sequence with a ‘reference

frame’, chosen to be a frame with the least blur. The so-

called ‘lucky region approach’ has been developed in [12],

[9], [36] and [35]. In this, distortion-free patches which cor-

respond to patches of the image formed due to a locally flat

portion of the water surface, are identified and then stitched

together using graph embedding. In [25], the restoration is

performed based on the assumption that the water surface is

a single unidirectional cyclic wave (UCW). The restoration

process is framed as a blind deconvolution problem, the in-

put to which is the average of the video frames (equivalent

to a motion-blurred image due to long camera exposure).

The UCW assumption will not hold in some scenarios, for

example if the water waves are formed from a superposi-

tion of different constituent waves due to multiple indepen-

dent disturbances. Recently, [18] presented a deep learning
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framework to restore single distorted underwater images (as

opposed to using video sequences). A neural network was

trained on pairs of distortion-free and distorted images, to

infer geometric distortion and also apply photometric cor-

rection. This method does not account for the extra infor-

mation in the form of temporal redundancy, which is readily

available in even short video sequences. To be effective, it

also requires a large amount of training data. In contrast, our

method is based on principles of basic physics/geometry. It

also does not require training data as in [18], representa-

tive distortion-free templates (which are generally hard to

acquire) to drive the technique as in [30, 31], multiple il-

lumination sources as in [32] or multiple viewpoints as in

[21].

Overview: In this paper, we present a novel method that

exploits the inherent spatio-temporal redundancy of water

waves. We note that the motion vector fields (MVFs), de-

fined as the collection of displacement vectors at each point

in every frame of the video sequence, have a sparse repre-

sentation in the discrete Fourier basis. This emerges from

the spatial smoothness of the flow, and its temporal peri-

odicity as well as smoothness. We begin by tracking some

N salient feature points across all T frames of the video,

to yield point-trajectories (PTs) {pi , {(xit, yit)}Tt=1}Ni=1,

and then convert these into displacement-trajectories (DTs)

{di , {(dx,it, dy,it)}Tt=1}Ni=1. Given these DTs, we use

a compressed sensing (CS) method to infer the DTs at all

other points in the image domain. The specific manner in

which we have applied CS for motion estimation in this pa-

per, is a novel contribution (see Sec. 2.3.4 for a comparison

to other approaches for sparsity-based motion estimation).

We also observe that our method largely reduces the non-

rigid motion and outperforms the state of the art methods.

Our second major contribution is the usage of an existing

optical flow method based on local polynomial image rep-

resentations [13], for this particular task. Despite its sim-

plicity, we show that this method outperforms the state of

the art. Lastly, we show that a two stage approach with CS

followed by the optical flow method leads to better video

stabilization as well as image structure preservation (visual

and numerical) than the optical flow stage alone, at only

slightly greater computational cost.

Organization: The main theory behind our method is

explained in Sec. 2. The datasets and experiments are de-

scribed in Sec. 3, followed by a discussion and conclusion

in Sec. 4.

2. Theory

We first present a complete description of the various as-

sumptions made in our restoration task, and compare them

with those of other aforementioned methods.

2.1. Image Formation

We assume a static planar scene submerged at unknown

depth h below a clear, shallow water surface, imaged

by an orthographic camera in air whose optical axis is

pointing downwards perpendicular to the scene. This

assumption is valid in practice (as also seen from our

results on real sequences in Section 3) and has also been

made in existing work such as [29, 25, 19]. Let I0 be

the original image (size Nx × Ny) as if it were formed

in the absence of any wavy water surface. Then the

distorted image Id due to the wavy water surface is given as

Id(x0, y0, t) = I0(x0 + dx(x0, y0, t), y0 + dy(x0, y0, t)),
where (dx(x0, y0, t), dy(x0, y0, t)) is the displacement

at point (x0, y0) (indexing into the undistorted im-

age I0) at time t. A precise relationship between

(dx(x0, y0, t), dy(x0, y0, t)) and the derivatives of the

dynamic height z(x, y, t) of the water surface at the point

of refraction, has been derived in previous work [19]. Here,

our aim is to estimate I0(x0, y0) for all (x0, y0) given

{Id(:, :, t)}Tt=1. We are assuming that the video frames

are largely blur-free, though moderate deviations from this

assumption do not affect our theory or results. We ignore

effects such as reflection of light from the water surface

(which were found to be absent or rare in real videos we

gathered or those from [29]).

2.2. Water Surface and Motion Vector Field Model

In our work, we essentially require the wavy water sur-

face to be a smooth signal in space and time, and also

temporally periodic. The assumption of spatio-temporal

smoothness is common in the literature on this topic, for

example [29, 20], and excludes turbulent flows. We do not

require the water surface to be explicitly modelled as a lin-

ear combination of sinusoidal waves, though our method

works very well even for such cases. The motion vector

at point (xi0, yi0) (of the underlying undistorted video) at

time instant t is denoted as d
(t)
i , (dxit, dyit). The com-

plete motion vector field (MVF) can be represented as two

3D signals dx,dy in R
Nx×Ny×T , containing the X- and

Y -components of the displacements at every pixel (xi0, yi0)
and every time instant t. Due to the spatio-temporal smooth-

ness (and thereby their band-limited nature), both dx,dy

will admit a sparse (or compressible) decomposition in the

Fourier space. For computational reasons, we use the Dis-

crete Fourier Transform (DFT) basis. Given the innate in-

terdependence between dx,dy (since they emerge from the

same wavy water surface), we instead work with a complex-

valued vector field d , dx + ιdy where d ∈ C
Nx×Ny×T

and ι ,
√
−1. This is a natural way to exploit the interde-

pendence. Moreover, if the video sequence is long enough

so that the actual MVF is temporally periodic, then that fur-
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ther contributes to the sparsity of the Fourier domain rep-

resentation. This is because by definition, periodic signals

are sparse in the Fourier domain, even more so if they are

band-limited - which is a consequence of smoothness.

The assumption of sparsity of the MVF in the Fourier

basis finds corroboration in the fluid mechanics literature.

For example in [23, 14, 37], the rapid convergence of the

Fourier series of different types of time-periodic velocity

vector fields arising in fluid flow, has been demonstrated.

Due to this, the water surface height z(x, y, t) and hence

the MVFs (which are related to derivatives of z(x, y, t))
will also admit sparse Fourier decomposition. In addition,

in Sec. 3.3, we present an empirical verification of the

Fourier sparsity of the MVF d from real underwater video

sequences.

2.3. Method Overview

An overview of our method is summarized in a pseudo-

code in Alg. 1. The detailed steps are described further.

input : Distorted video Id
output: Restored image Īr

1 Track N feature points to obtain point-trajectories

{pi}Ni=1 as per Sec. 2.3.1.

2 Compute displacement trajectories {di}Ni=1 as per

Sec. 2.3.2.

3 Compute the motion vector field (MVF) d as defined

in Sec. 2.2 from its measurements {di}Ni=1 using the

CS-based method from Sec. 2.3.3.

4 Perform motion correction from the computed MVF to

obtain a restored video Ir.

5 Optionally, perform further motion correction on Ir
using the PEOF technique from Sec. 2.3.5.

6 Compute mean or median frame of Ir to yield Īr.

Algorithm 1: Algorithm to Restore Video

2.3.1 Feature point detection and tracking

We begin with a salient feature point detection and

tracking algorithm yielding point-trajectories {pi ,

{(xit, yit)}Tt=1}Ni=1 for N salient feature points detected in

the first frame. The coordinates (xit, yit) represent the po-

sition in frame t of the ith point whose coordinates in a

distortion-free frame are denoted as (xi0, yi0), where the

subscript ‘0’ refers to an index in the undistorted image.

Of course, (xi0, yi0) are unknown at the outset. Our salient

feature point detection combines four algorithms: (1) differ-

ence of Gaussians (DoG) used by SURF[6], (2) the FAST

method [24], (3) the popular Harris corner method, and (4)

the BRISK technique [17]. Consider a union-set of salient

points in the first frame, as detected by all these methods.

All points in this set are tracked in subsequent frames using

the well-known Kanade-Lucas-Tomasi (KLT) tracker [2].

We obtain excellent results with the standard KLT tracker

because it inherently takes care of locally affine motion (a

first approximation to non-rigid motion). In some cases,

however, we encounter tracking errors. Such trajectories are

weeded out and not used in later steps, if (1) they are consid-

ered invalid by the KLT tracker itself (which happens when

the region around a salient feature point in a frame cannot

be accurately expressed as an affine transformation of the

corresponding region in a previous frame), or if (2) the cen-

ter of trajectory (COT), as defined in Sec. 2.3.2, computed

over the first T/2 and last T/2 frames differ by a threshold

of more than 3 pixels.

We also trained a Siamese network following [27] to

learn good feature descriptors. See supplemental

material for further details about this. The Siamese net-

work produced slightly better results than the KLT tracker

on unseen synthetic and real data. However it did not per-

form as well as the KLT tracker if there was blur in the video

frames. Hence we used the KLT tracker in all experiments.

Examples of point tracking on real sequences are shown in

the supplemental material folder ‘CS MotionReduction’.

2.3.2 Displacement computation

Following previous definitions of (xi0, yi0) and the point-

trajectory pi, we approximate x̂i0 ,
∑T

t=1 xit/T ≈
xi0; ŷi0 ,

∑T

t=1 yit/T ≈ yi0 (termed ‘center of trajectory’

or COT), although more robust ‘means’ such as the median

can also be considered. This approximation is well justified

by the assumption of the local symmetry of water motion,

due to which the average surface normal (across time) at any

point on the water surface is close to the vertical line [19].

Our experiments for synthetic and real sequences confirm

that this is valid even for moderate T ∼ 50 frames. The sup-

plemental material includes an illustrative example. With

this, our set of displacements for the ith salient feature point

are given as di , (dix,diy) , {(xit − x̂i0, yit − ŷi0)}Tt=1.

We term these as ‘displacement-trajectories’ (DTs).

2.3.3 MVF Estimation using CS

The DTs {di}Ni=1 can be regarded as sparse samples (in the

space-time domain) of the 3D MVF signal d. The signal d

is sparse in the Fourier domain (see Sec. 2.2) and hence can

be expressed as vec(d) = Fθ where F is the 3D-DFT basis

matrix and θ is a sparse vector of Fourier coefficients. If the

DTs are concatenated to form a complex-valued ‘measure-

ment vector’ e of NT elements, then we have the following

model:

e = ΦFθ + η, (1)

where Φ is a sampling matrix of size NT × NxNyT and

η is a noise vector of NT elements indicating errors in

the DTs obtained from the tracking algorithm. Note that
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Φ is the row-subsampled version of the identity matrix of

size NxNyT × NxNyT , and each row of Φ is a one-hot

vector which indicates whether or not the displacement at

some pixel (xi0, yi0) (in the undistorted image) at some

time frame t was included in the set {di}Ni=1 (and hence

the measurement vector e). The sensing matrix Φ and

representation matrix F are an ideal combination, because

they are highly incoherent with each. This augurs well for

the application of a CS algorithm for estimation of θ (and

thereby d) from e,Φ. This is because CS theory states that

O(s log(NxNyT )µ(ΦF )) measurements are sufficient for

accurate reconstruction of the s-sparse vector θ with very

high probability [8]. Here µ(ΦF ) is the coherence between

Φ and F and is defined as µ(ΦF ) , maxi,j,i 6=j
|ΦiFj |

‖Φi‖2‖Fj‖2

where Φi and Fj are the ith row of Φ and jth column of

F respectively. Given the choice of Φ,F for our task, µ
reaches its lower bound of 1, thereby reducing the number

of samples required for reconstruction guarantees. To ac-

count for the noise in e, we determine d using an estimator

(popularly called the LASSO) which minimizes the follow-

ing objective function:

J(θ) = λ‖θ‖1 + ‖e−ΦFθ‖2. (2)

The regularization parameter λ can be chosen by cross-

validation [34] from a set S of candidate values. That is,

for every λ̂ ∈ S , a candidate signal d
λ̂

is computed by

the LASSO method using a set T1 of only (say) 90% of

the measurements from e. Following this, the value of

E(d
λ̂
) ,

∑

i∈T2
|ei − Φid

λ̂
|2 is computed, where T2 is

the set of the remaining measurements in e. The value of λ̂
that minimizes E(d

λ̂
) can be selected. Following this, d is

re-estimated by the LASSO method from all measurements

in e and with the selected λ̂ value.

2.3.4 Comments Regarding MVF Estimation using CS

Note that our method is very different from the bispectral

approach in [36] which chooses ‘lucky’ (i.e. least distorted)

patches, by comparing to a mean template. In that method,

the Fourier transform is computed locally on small patches

in the spatial domain for finding similarity with correspond-

ing patches from a mean image. On the other hand, our

Fourier decomposition is spatio-temporal and global. The

idea of dense optical flow interpolation (not specific to un-

derwater scenes) from a sparse set of feature point corre-

spondences has been proposed in the so-called EpicFlow

technique [22]. The interpolation uses non-parametric ker-

nel regression or a locally affine method. However our

method uses key properties (spatio-temporal smoothness

and temporal periodicity) of water waves, and thus con-

siders temporal aspects of the MVFs. This aspect is miss-

ing in EpicFlow. Nevertheless, we present comparisons to

EpicFlow in Sec. 3.

The use of sparsity based techniques for dense flow

field estimation is not entirely new and has been used ear-

lier in [10, 26, 16]. However besides the usage of spar-

sity for underwater image restoration, there are key dif-

ferences between our approach and the existing ones. (a)

First, these papers use a sparse representation (eg., wavelets

[26], learned dictionaries [16] or low-rank and sparse mod-

els [10]) for optical flow in small patches unlike our method

which is more global. (b) Second, they compute the opti-

cal flow only between two frames with a data fidelity term

based on the brightness constancy equation (unlike our ap-

proach which uses displacement trajectories), they do not

consider spatio-temporal patches, and do not account for

temporal redundancy, which is a readily available and use-

ful prior that our approach exploits.

2.3.5 Polynomial Image Expansions for Optical Flow

The classical optical flow method in [13] expresses small

patches from the two images f1 and f2, between which the

MVF has to be computed, as second-degree polynomials.

This method can unduly smooth motion discontinuities as

mentioned in [13], but it is well suited to our problem, due

to the spatial smoothness of water waves. Consider the fol-

lowing:

f1(x) = xtA1x+ b1
tx+ c1 (3)

f2(x) ≈ f1(x− d) = (x− d)tA1(x− d) + b1
t(x− d) + c1

≈ xtA2x+ b2
tx+ c2,

where d is the 2D displacement vector at the point x ,

(x, y)t. Consider small patches in the two images respec-

tively, centered around point x. The polynomial coefficients

A1,A2 ∈ R
2×2; b1, b2, c1, c2 ∈ R

2×1 can be determined

by local regression. This process is repeated in sliding win-

dow fashion all through the image, and so these coefficients

become functions of x. Assuming a slowly changing MVF,

the displacement d(x) can be computed in the following

manner:

d(x) =
(

∑

x̃∈N (x)

A(x̃)TA(x̃)
)−1 ∑

x̃∈N (x)

A(x̃)T∆b(x̃),

(4)

where x̃ is a point in a neighborhood N (x) around x,

A(x̃) , (A1(x̃) + A2(x̃))/2 and ∆b(x̃) , (b1(x̃) −
b2(x̃))/2. Further details about this method can be found in

[13]. We term this method as polynomial expansion based

optical flow (PEOF). Given d(x), the image f1 is warped,

followed by polynomial fitting in the warped version of f1,

and re-estimation of d(x). The procedure is repeated itera-

tively. In the present work, the PEOF method is used to find

the MVF between each video frame and the mean image

(the average of all video frames). The computed MVFs are
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applied to each frame to obtain the restored video. These

restored images are then averaged to yield a final restored

image. As shown in Sec. 3, this method outperforms all

state of the art methods in terms of image restoration qual-

ity as well as computation speed.

3. Experimental Results

In this section, we present an extensive suite of re-

sults on both synthetic and real video sequences. All im-

age and video results are available in the supplemental

material.

3.1. Description of Datasets

We created several synthetic 50 fps videos of size

∼ 512 × 512 × 101 by simulating the refraction model

from [19] on different images containing objects/text, for a

scene depth of 25 cm below the water surface. The water

surface was generated using superposition of 2 ≤ K ≤ 6
sinusoidal waves with randomly chosen parameters. We

henceforth refer to this dataset as Synthetic. We also

gathered real video sequences (of size ∼ 700 × 512 × 101
with a 50 fps camera) of laminated posters kept at the bot-

tom of a water-tank, with waves generated by mechanical

paddles. See supplemental material for details of

the acquisition. Visual inspection revealed that blur was

occasionally present in some frames. We henceforth refer

to this dataset as Real1. For ground truth (I0), we also

acquired a single image of the same posters under still

water with the same camera settings. We also demonstrate

results on three text sequences (size ∼ 300 × 250 × 101 at

125 fps) obtained from [29], for which ground truth was

available. We henceforth refer to this dataset as Real2.

Note that Real1 is a more challenging dataset than Real2

due to greater frame-to-frame motion - see Table 2 for

the standard deviation values of the motion σmotion ,
√

∑N

i=1

∑T

t=1((xit − x̂i0)2 + (yit − ŷi0)2)/(NT − 1),
computed over salient point trajectories.

3.2. Key Parameters and Comparisons

We compared restoration results for several algorithms:

(1) our CS-based method (CS) from Sec. 2.3.3; (2) our

PEOF method from Sec. 2.3.5; (3) the CS-based method

followed by the PEOF method (CS+PEOF); (4) the two-

stage method in [20] consisting of spline-based registration

followed by RPCA (SBR-RPCA) which is considered state

of the art for underwater image restoration; (5) the method

from [29] using learned water bases (LWB); and (6) the

deep learning (DL) approach from [18]. For SBR-RPCA

and LWB, we used code provided by the authors with de-

fault parameters. For DL, we used the pre-trained network

and code provided by the authors, on each video frame

separately and then computed the mean image. We per-

formed all computation and quality assessment with each

video frame resized to 256× 256 (after suitable cropping to

maintain aspect-ratio), as required by their specific imple-

mentation. For CS, we used the well-known YALL1 (Ba-

sic) solver [4], which allows for ℓ1-norm optimization of

complex-valued signals. We observed better and faster re-

sults in practice by downsampling the DTs comprising e

by a factor of 8 in X,Y directions (which is in tune with

the bandlimited nature of water waves), followed by CS re-

construction and subsequent upsampling to obtain the final

reconstructed MVF. For PEOF, we used the OpenCV imple-

mentation with a multi-scale pyramidal approach with 3 lev-

els, a pyramid scale of 0.5 and 10 iterations (i.e. the default

parameters). For quality assessment referring to ground

truth, we used the following measures: (i) visual inspection

of the restored video Ir as well as the mean-frame Īr of the

restored video, (ii) RMSE computed as ‖Īr − I0‖2/‖I0‖2
where I0 is the image representing the undistorted static

scene, (iii) normalized mutual information (NMI) between

Īr and I0, and (iv) SSIM [33] between Īr and I0.

We also considered comparing PEOF to a very compet-

itive optical flow algorithm: EpicFlow [22] (EF). For EF

[22], we used the authors’ code to estimate the deformation

of all video frames w.r.t. the mean frame of the video. We

then applied the deformations to each frame to yield the fi-

nal image. Results comparing PEOF and EF are included

in the supplemental material, and show that PEOF

outperforms EF for underwater image restoration. Note that

the EF method has so far not been applied for this task in

the literature. We do not present results with the state of the

art deep learning approaches for optical flow such as [11] or

[28] here, for two reasons: (i) EF yielded superior results on

our data compared to [11], and (ii) the results of PWC-net

from [28] show only a small improvement over EpicFlow

on some datasets such as Sintel.

We did not compare with the work in [25] because it re-

lies on a unidirectional wave motion assumption (whereas

we assume more general wave models), and due to unavail-

ability of publicly released code. Also, we did not explic-

itly compare our results with the method in [15] for which

publicly released code is unavailable. However, we ob-

served that CS-PEOF outperformed the method of [15] on

Real2 (compare ‘Middle’, ‘Small’ and ‘Tiny’ in Table 1 to

‘Large’, ‘Medium’ and ‘Small’ respectively in Table 1 of

[15]).

3.3. Discussion of Results

The numerical results are presented in Table 1. The mean

images of three real videos restored by various methods are

presented in Figs. 3. The supplemental material

contains results on 14 videos (mean images and restored

videos) for all methods. From these results, it is clear that

our methods (CS, PEOF and CS-PEOF) yield results sur-
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Figure 1. Verification of Fourier domain sparsity of MVF d esti-

mated from a real sequence. Top row: original undistorted im-

age acquired in still water (left), mean of distorted video sequence

(right); Bottom row: mean of restored video sequence using CS

(left), scatter plot of frequencies which account for 99% of the

squared magnitude of the estimated MVF using CS (right).

passing SBR-RPCA, LWB and DL on synthetic as well as

real datasets, numerically and also in terms of visual qual-

ity. We also supplemented our method with a step involv-

ing RPCA [7] to remove sparse artifacts, which improved

video stability but had very little impact over the quality

of the mean image. Although PEOF produces superior nu-

merical results to CS, we have observed that CS produces

restored videos and mean images with superior visual qual-

ity as compared to PEOF - see Fig. 3 (grid lines on ‘Ele-

phant’, words ‘Imaging’, ‘Distortion’ in ‘Middle’) as well

as supplemental material. Additionally, we ob-

served that SBR-RPCA, DL and LWB did not preserve the

image structure as well as our method (see grid-lines in

‘Elephant’, the words ‘Fluctuation’ or ‘Distortion’ in ‘Mid-

dle’ and alphabets E, T, Z, large D in ‘Eye’ in Fig. 3. We

do believe the DL method [18] may yield improved results

if their network were trained to restore multiple frames to-

gether, as opposed to single frames individually (as done by

their current algorithm) - which ignores the temporal aspect

leading to loss in performance. All in all, our results show

that exploiting spatio-temporal properties of water waves

for this task is indeed useful.

Computational Time: The compute time for all methods

(measured on a 2.6GHz Intel Xeon machine with 32GB

RAM) are presented in Table 1. The DL method is the

fastest, whereas our methods are much faster than SBR-

RPCA and LWB. However for CS, the YALL1 solver uses

GPU support, which is unavailable in the authors’ code

for SBR-PCA and LWB. We note that although cross-

validation is an excellent way to pick the λ̂ parameter in

Figure 2. Effect of increase in number of frames T (top) and num-

ber of salient points N (bottom) on restoration performance for

CS method. Results shown on ‘Middle’ and ‘Small’ from Real2,

and a few sequences from Real1/Synthetic.

Eqn. 2, we found that the optimal choice of this parameter

did not change much across datasets. Also small changes in

λ̂ did not affect the performance much. Hence the time for

cross-validation is not included in Table 1.

Verification of Fourier Sparsity: Here, we demonstrate

the sparsity of the MVFs from real underwater sequences.

This is shown in Fig. 1 for the ‘Elephant’ sequence (sim-

ilar plots can be generated for all other sequences). We

note that the actual MVF can only be estimated. However,

we contend that the MVF estimated by our CS method is

a good approximation to the actual one. This is evident

when comparing the quality of the estimated mean image

with the original undistorted image (gathered in still wa-

ter). For further quantification, we also tracked the same

N points (from the distorted video Id) that were used for

the CS algorithm in Sec. 2.3.3, in the restored video (Ir)

produced by the CS step. This gave us new DTs {d̂i}Ni=1.
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Table 1. Comparison of various methods on synthetic and real video sequences w.r.t. compute time (h=hours,m=mins.,s=secs.), NMI,

SSIM, RMSE. Lower RMSE, higher SSIM and NMI are better.

CS PEOF CS+PEOF

Dataset Time NMI SSIM RMSE Time NMI SSIM RMSE Time NMI SSIM RMSE

Real1

Cartoon 0m 42s 1.227 0.902 0.065 0m 41s 1.216 0.913 0.062 1m 23s 1.255 0.928 0.057

Checker 1m 9s 1.206 0.884 0.104 0m 40s 1.196 0.89 0.105 1m 49s 1.22 0.892 0.104

Dices 1m 20s 1.172 0.937 0.067 0m 40s 1.139 0.905 0.075 2m 1s 1.188 0.956 0.059

Bricks 1m 1s 1.148 0.785 0.142 0m 34s 1.151 0.803 0.121 1m 36s 1.167 0.843 0.118

Elephant 0m 28s 1.128 0.801 0.141 0m 26s 1.102 0.763 0.152 0m 55s 1.132 0.808 0.143

Eye 1m 22s 1.266 0.961 0.052 0m 57s 1.26 0.975 0.042 2m 19s 1.303 0.982 0.037

Math 1m 19s 1.193 0.942 0.05 0m 37s 1.163 0.929 0.053 1m 56s 1.215 0.961 0.044

Synthetic

BlueTiles 0m 28s 1.141 0.792 0.256 0m 23s 1.141 0.816 0.204 0m 52s 1.161 0.871 0.182

BrickWall 0m 23s 1.094 0.667 0.144 0m 24s 1.098 0.69 0.142 0m 47s 1.1 0.703 0.141

Vision 29s 1.181 0.938 0.09 23s 1.162 0.916 0.113 52s 1.211 0.972 0.066

HandWritten 0m 37s 1.123 0.878 0.081 0m 23s 1.131 0.907 0.077 1m 0s 1.156 0.938 0.075

Real2

Middle 0m 13s 1.192 0.838 0.139 0m 7s 1.211 0.85 0.165 0m 20s 1.23 0.914 0.101

Small 0m 9s 1.169 0.763 0.164 0m 6s 1.182 0.772 0.206 0m 16s 1.195 0.849 0.133

Tiny 0m 11s 1.166 0.661 0.201 0m 7s 1.176 0.698 0.263 0m 19s 1.186 0.745 0.19

SBR-RPCA[20] LWB[29] DL[18]

Dataset Time NMI SSIM RMSE Time NMI SSIM RMSE Time NMI SSIM RMSE

Real1

Cartoon 3h 2m 1.173 0.843 0.111 0h 54m 1.152 0.836 0.095 3s 1.203 0.803 0.162

Checker 4h 9m 1.158 0.791 0.239 1h 37m 1.105 0.66 0.322 3s 1.129 0.544 0.384

Dices 3h 58m 1.1 0.758 0.17 1h 26m 1.086 0.783 0.126 3s 1.085 0.637 0.242

Bricks 3h 43m 1.128 0.686 0.192 1h 24m 1.118 0.673 0.225 3s 1.058 0.49 0.422

Elephant 3h 7m 1.075 0.516 0.257 0h 59m 1.068 0.584 0.204 3s 1.075 0.378 0.347

Eye 4h 4m 1.179 0.913 0.104 1h 22m 1.155 0.903 0.089 3s 1.141 0.804 0.191

Math 4h 34m 1.1 0.841 0.102 3h 0m 1.067 0.766 0.1 3s 1.073 0.678 0.139

Synthetic

BlueTiles 2h 5m 1.142 0.763 0.372 0h 55m 1.104 0.72 0.204 3s 1.091 0.365 1.067

BrickWall 2h 30m 1.093 0.666 0.158 1h 0m 1.066 0.481 0.19 3s 1.079 0.479 0.218

Vision 3h 4 1.115 0.739 0.216 36m 1.021 0.446 0.266 3s 1.095 0.599 0.215

HandWritten 0h 0m 1.112 0.851 0.12 0h 52m 1.073 0.678 0.147 3s 1.074 0.546 0.177

Real2

Middle 1h 28m 1.189 0.782 0.204 0h 54m 1.163 0.761 0.194 3s 1.122 0.512 0.307

Small 1h 21m 1.153 0.741 0.181 0h 33m 1.151 0.688 0.198 3s 1.114 0.418 0.323

Tiny 1h 6m 1.161 0.657 0.395 0h 34m 1.167 0.654 0.238 3s 1.144 0.492 0.306

We computed a measure of the motion reduction given as

MR , mediani∈{1,...,N}
‖d̂i−di‖2

‖di‖2

. We note that in most

cases, we achieve more than 90% motion reduction by the

CS step - see Table 2. We have included a few videos in

the supplemental material for the visual compari-

son of the estimated MVF w.r.t. the ground truth MVF.

Effect of number of frames T : In the absence of at-

tenuation, a large T helps improve the performance of our

algorithm, due to better Fourier sparsity and better approxi-

mation of the COT. In practice, we observed on real datasets

that just 100 frames were sufficient to yield good recon-

struction results. Further increase in T had an insignificant

impact on the result quality. A graph showing the effect of

T on reconstruction from real sequences is shown in Fig. 2.

Effect of number of tracked points N : The number and

accuracy of DTs affects the performance of the CS algo-
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Dataset N MR σmotion

Cartoon (Real1) 1029 94.11% 7.42

Checker (Real1) 3149 85.25% 8.5

Dices (Real1) 2230 91.9% 7.75

Bricks (Real1) 1300 87.38% 7.42

Elephant (Real1) 3670 97.7% 7.34

Eye (Real1) 1647 81.66% 7.84

Math (Real1) 2309 96.12% 5.64

BlueTiles (Synth.) 2192 94.77% 5.71

BrickWall (Synth.) 3134 94.57% 8.68

Vision (Synth.) 5266 93.49% 6.77

HandWritten (Synth.) 3789 95.82% 4.33

Middle (Real2) 785 96.34% 5.65

Small (Real2) 993 97.26% 4.22

Tiny (Real2) 155 87.84% 5.03
Table 2. #salient points N , motion reduction MR, and σmotion

for different videos

rithm. The number of DTs varied across datasets, depend-

ing on the number of available salient feature points, but

was always less than 0.03NxNy . The slightly lower perfor-

mance of CS on the ‘Tiny’ sequence for example (see Table

1) is due to the small number of available salient points,

less than 0.002NxNy - see Table 2. A graph showing the

positive impact of increase in the number of good quality

tracks (upto a point, beyond which the performance satu-

rates) is shown in Fig. 2. We note that we have ensured

good quality of the trajectories for further stages of our al-

gorithms, as mentioned in Sec. 2.3.1. We considered global

sparsity in this work, as opposed to sparsity of small spatial

or spatio-temporal patches, since there could exist many

patches without any salient points.

4. Conclusion

We have presented two methods for correction of refrac-

tive deformations due to a wavy water surface, one based

on a novel application of CS for interpolating MVFs start-

ing from a small set of salient PTs (and their DTs), and

the other based on polynomial image expansions. In both

cases, we obtain results superior to the state of the art at

low computational cost. Avenues for future work include

(1) extending the CS algorithm to handle moving objects;

(2) studying the effect of depth variation, perspective pro-

jection or wave attenuation on the results of our algorithms;

and (3) exploring MVF sparsity in other bases instead of the

DFT.
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Figure 3. Left to right, top to bottom order in each of the 3 groups

of images: ground truth, distorted sample frame; mean frame re-

stored by SBR-RPCA [20], DL [18], LWB [29]; and by CS, PEOF,

CS-PEOF. Zoom into pdf for better view. See supplemental

material for more results. Notice geometric distortions in other

methods unlike with our methods. The three groups are for ‘Ele-

phant’ (Real1), ‘Middle’ (Real2) and ‘Eye’ (Real1)
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