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Abstract

With the remarkable success of deep learning, Deep Neu-

ral Networks (DNNs) have been applied as dominant tools

to various machine learning domains. Despite this suc-

cess, however, it has been found that DNNs are surprisingly

vulnerable to malicious attacks; adding a small, perceptu-

ally indistinguishable perturbations to the data can easily

degrade classification performance. Adversarial training

is an effective defense strategy to train a robust classifier.

In this work, we propose to utilize the generator to learn

how to create adversarial examples. Unlike the existing

approaches that create a one-shot perturbation by a de-

terministic generator, we propose a recursive and stochas-

tic generator that produces much stronger and diverse per-

turbations that comprehensively reveal the vulnerability of

the target classifier. Our experiment results on MNIST and

CIFAR-10 datasets show that the classifier adversarially

trained with our method yields more robust performance

over various white-box and black-box attacks.

1. Introduction

In the past decade, deep learning has achieved great

breakthroughs in various domains of machine learning such

as computer vision [22, 26, 49], speech recognition [18],

and reinforcement learning [37, 48]. In parallel to these

successes, Szegedy et al. [52] discovered that deep learn-

ing models are vulnerable to maliciously designed pertur-

bations added to the input data. It is shown that even a

small, perceptually indistinguishable perturbations can eas-

ily cause disastrous misprediction from the model. Later

study suggested that such perturbations exist over a wide

range of applications [27], and are even transferable across

different models [33, 41, 42].

To make deep learning models robust against such ma-

licious perturbations, various defense mechanisms [14, 19,

20, 23, 28, 34, 43, 47, 54, 58] have been proposed recently.

Adversarial training [28] is one of the most effective strate-
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gies to defend against various attacks. The idea is to train

the target neural network (e.g. classifier) jointly with clean

data samples and their adversaries. Such a framework can

be interpreted as a game between adversarial attack and de-

fense; the adversary constantly attacks the target model, and

the model learns to be robust against all attacks from the ad-

versary. In this work, we address the attack mechanism in

adversarial training, since its effectiveness is closely related

to the method of generating adversarial data.

To generate adversarial data, early approaches formu-

late the task as a constrained optimization problem and

utilize first-order gradient to generate adversarial perturba-

tions [6, 9, 17, 27, 43]. Despite its success, however, an

optimization in first-order methods is based on an over-

simplified loss landscape [31]. The performance of the

adversarially trained classifier is not guaranteed when it is

challenged by more complicated, higher-order attacks.

More recently, approaches based on learning-to-learn

framework have been proposed to improve adversarial train-

ing [7, 38, 44, 54]. The main idea is to learn a neural net-

work, or a generator, to seek adversarial examples that ef-

fectively fool the target neural network. With the expressive

power of DNNs, it is possible to discover attacks that cannot

be obtained with the first-order methods, which is also use-

ful to enhance the robustness of the classifier against future

attacks.

However, the existing generator-based approaches em-

ploy a simple generator, or a naive scheme, that generates

the perturbation in a single shot, leading to sub-optimal so-

lutions that are less valuable for adversarial training. Also,

such generators are often designed to produce deterministic

perturbations (i.e. one perturbation per data), which makes

adversarial training easily overfit to specific types of adver-

sarial examples.

In this work, we propose a novel generator-based ad-

versary to improve adversarial training. Based on recent

learning-to-learn (L2L) framework [7], we design a gener-

ator so that it can achieve stronger and diverse attacks that

lead to improving the robustness of the classifier. To build a

stronger attack, we design the generator to recursively con-

struct adversarial perturbations, which allows it to discover
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better optimization paths that lead to higher classification

loss than a one-shot generation. In addition, we propose

to regularize the generator to promote diversity in perturba-

tions, which is important for discovering the comprehensive

vulnerability of the classifier in adversarial training. From

an optimization perspective, we argue that diversity encour-

ages the generator to efficiently explore the space of possi-

ble perturbations, leading to more stable training.

The contributions of this paper are summarized below:

• We propose a novel defense mechanism based on the

learning-to-learn framework [7]. The proposed gen-

erator constructs adversarial examples in a recursive

manner, which utilize more informative optimization

signals and produce stronger attacks.

• We further regularize the generator to produce stochas-

tic and diverse outputs, to prevent the adversarial train-

ing from overfitting to specific attacks and to stabilize

the generator training.

• We show that both recursive and diverse perturba-

tions lead to significant improvements in the adversar-

ial training over the baseline L2L approach. We also

show that it leads to a non-trivial improvement over the

existing approaches in white-box attacks and achieves

competitive performance in black-box attacks.

The rest of this paper is organized as follows. We briefly

review related work in Section 2 and provide the back-

ground of this problem in Section 3. Our approach for de-

fense is introduced in Section 4. We discuss the experiment

results on MNIST and CIFAR-10 datasets in Section 5.

2. Related Work

Adversarial attack. Observed initially by Szegedy et al.

[52], modern deep neural networks are vulnerable against

maliciously designed imperceptible perturbations, and a se-

ries of attack methods have been presented. Goodfellow et

al. [17] proposed Fast Gradient Sign Method (FGSM)

which takes the sign of a gradient obtained from the clas-

sifier.

To generate an adversarial attack in a more conserva-

tive way, Kurakin et al. [27] and Madry et al. [34] present

Basic Iteration Method (BIM) and Projected Gradient De-

scent (PGD), respectively, which extend FGSM by apply-

ing it multiple times with a smaller step size. Because BIM

is essentially a special case of PGD on the negative cross-

entropy, we refer it as PGD throughout this paper.

In parallel to these gradient-based approaches, Paper-

not et al. [43], Dezfooli et al. [9] and Carlini and Wagner [6]

take a direct optimization approach to discover adversarial

examples. C&W attack [6] employs different forms of loss

functions and is shown to be extremely powerful against

many defense mechanisms.

Recent works propose stronger attacks compared to

PGD. Dong et al. [11] add the notion of momentum to the

PGD updates; Wang et al. [55] follow the distributional ap-

proach to adversarial training [50] and derive a stronger

update scheme from an energy functional based on PGD;

Wang et al. [55] introduce interval attack, claiming the mix-

trained model is on par with PGD trained model in terms of

test accuracy yet more verifiably robust. Following the lit-

erature, we use attacks from Madry et al. [34] and Carlini

and Wagner [6] as our benchmarks.

Adversarial defense. In the past three years, many tech-

niques have been proposed to improve the robustness of

DNNs [10, 14, 15, 19, 20, 23, 24, 32, 35, 36, 40, 47, 51,

57, 60], but they are later shown to be not robust against

the recent attacks [2, 4, 5, 39]. This hypothesizes that each

defense mechanism is only robust against certain classes of

attacks while being vulnerable to other attacks.

One of the most effective methods for training an adver-

sarially robust network is adversarial training [28], namely

training the model on adversarial attacks. Intuitively, the

model will become robust if it is trained on very power-

ful attacks. Madry et al. [34] claims that PGD attack is

the strongest attack obtainable from first-order methods, but

this claim is later challenged by Wang et al. [55].

Instead of focusing on a hand-designed adversary based

on the first-order gradient, our work aims to train a gen-

erator to learn how to create attacks through the mini-

max game between the classifier and the generator. Hamm

and Mehra [21] investigate the mini-max game between

the attacker and the defender from both generator-based

and gradient-based perspective and discover that a mini-

max classifier outperforms non-minimax optimal classi-

fiers. Xiao et al. [56] propose to use the GAN framework to

generate attacks with a generator and filter out low-quality

attacks with a discriminator. Similarly, Baluja and Fis-

cher [3] generate attacks with a generator that either adver-

sarially transforms images or adds adversarial perturbations

to the images; however, only static classifier is considered

in their experiments. Lee et al. [30] improve the supervised

learning by training the classifier with outputs from the gen-

erator. Wang and Yu [54] improve the robustness of their

classifier by training on generator-based adversarial attacks;

Chen et al. [7] improves the idea by feeding both inputs

and their gradients into the generator and show their adver-

sarially trained Wide-ResNet outperforms the PGD trained

Wide-ResNet on CIFAR-10/100.

3. Background

3.1. Problem Definition

The objective of this paper is to build a classifier robust

to adversarial perturbations. Formally, we consider a clas-
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sifier parameterized by θ and the labeled data (x,y). The

goal of the classifier is to produce the correct class label y

over adversarial examples xadv, obtained by adding a small

perturbation δ to x (i.e. xadv = x+ δ).

This task can be formulated as an optimization of the

following saddle point problem [34]:

min
θ

E(x,y)∼D

[

max
xadv∈S(x)

L(xadv,y; θ)

]

, (1)

where L(·) is a classification loss (i.e. cross-entropy) and

S(x) is a set of admissible attacks which constrains xadv to

be perceptually similar to x (i.e. ℓ∞-bounded ball).

Eq. (1) implies that learning a robust classifier can be

achieved via an adversarial game between the attacker and

the classifier; the inner maximization corresponds to gener-

ating adversarial examples that maximize the classification

loss, and the outer minimization corresponds to training the

classifier with the augmented adversarial examples. If there

exists an optimal θ∗ that minimizes Eq. (1), the classifier

parameterized by θ∗ should be robust to any adversarial ex-

ample xadv ∈ S(x).
Unfortunately, direct optimization on Eq. (1) is practi-

cally intractable due to the challenges in optimizing (non-

concave) inner maximization over all training data. In prac-

tice, we instead approximate the optimal adversary with a

local maxima xadv that approximates the optimal adversary

x∗
adv = argmaxxadv∈S(x) L(xadv,y; θ). From this perspec-

tive, the success of learning a robust classifier depends on

the quality of the local maxima xadv.

In this work, we focus on the inner maximization prob-

lem of Eq. (1) to improve adversarial training. Specifically,

we consider strength and diversity as the important prop-

erties for informative adversarial examples. From an opti-

mization perspective, generating strong perturbation is im-

portant since we want to compute a better local maxima xadv

that minimizes L(x∗
adv,y; θ)− L(xadv,y; θ). To ensure the

robustness of the classifier, it is also important to train a

classifier with diverse adversarial examples revealing vari-

ous vulnerabilities of the model.

3.2. Previous Methods

In this section, we briefly review existing approaches on

optimizing the inner maximization problem of Eq. (1). For

notational simplicity, we drop the dependency of y and θ
from the loss L(x,y; θ) and refer to it as L(x) for the rest

of the paper.

Gradient-based methods. One simple and popular way

to approximate the inner maximization of Eq. (1) is to ex-

ploit the first-order loss gradient to create adversarial pertur-

bations. For instance, approaches such as First-order Gra-

dient Sign Method (FGSM) [17] creates an adversarial ex-

ample based on one-step gradient descent:

xadv = ProjX (x+ ǫsign(∇xL(x))) , (2)

where ProjX denotes the projection of its element to a

valid pixel value range, and ǫ denotes the size of ℓ∞-ball.

Madry et al. [34] show that approaches such as Projective

Gradient Descent (PGD) can build much stronger attacks

with iterative gradient descent:

x
(t+1)
adv = ProjS∩X

(

x
(t)
adv + ǫstepsign(∇xL(x

(t)
adv))

)

, (3)

where ProjS∩X (·) denotes the projection of its element to

ℓ∞-ball S and a valid pixel value range, and ǫstep denotes

a step size smaller than ǫ. The final adversarial example is

then obtained by xadv = x
(T )
adv . Note that FGSM [17] is a

special case of PGD with T = 1 and ǫstep = ǫ.

Generator-based methods. Instead of directly exploiting

the gradient, generator-based approaches utilize a parame-

terized generator gφ to learn how to create attacks to the tar-

get classifier [7, 38, 44, 54]. Among various approaches in

this category, we focus on the method proposed by Chen et

al. [7], which generates adversarial perturbations by

xadv = ProjX (x+ ǫgφ(x,∇xL(x))) , (4)

where gφ denotes our adversary, a neural network parame-

terized by φ. With the expressive power of deep neural net-

works, it can possibly generate more informative perturba-

tions that lead to higher classification loss than the gradient-

based methods.

However, one-shot generation, which is based solely on

a single gradient, may not be informative enough to com-

pute the optimal perturbation. It provides only a pointwise

estimate of the entire loss landscape, which is usually too

noisy to produce a reasonable solution. Also, the generator

in Eq. (4) lacks a stochastic component, which constrains it

to produce a deterministic perturbation for each data sam-

ple. Considering that there exist various perturbations cor-

responding to the local maxima of Eq. (1), as suggested by

[34], it is important for the generator to be able to explore

such perturbations to improve adversarial training.

4. Our Approach

The discussion about PGD attack [34] in Section 3.2 sug-

gests that generator-based methods have a potential to im-

prove adversarial training by generating stronger and more

diverse attacks, but such capability is limited due to the sim-

ple generator. To address this issue, we propose a novel

generator that produces both strong and diverse adversarial

examples that better optimizes the inner maximization term

of Eq. (1).
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Figure 1: Comparison of L2L [7] and our attack network.

4.1. Recursive Generator

For better optimization of the inner maximization in

Eq. (1), we define a recursive generator. Compared to

the generator which exploits the fixed-point gradient (Fig-

ure 1.(a)), our generator utilizes much richer information,

such as the trajectory of the perturbations and loss gradi-

ents, which is useful to estimate the loss landscape and the

next perturbation that leads to a higher classification loss.

Also, such a recursive update makes our generator more ro-

bust against noisy predictions, since the incorrect update at

a certain step can be corrected by further updates.

We recursively generate an adversarial example by

δ(t+1) = ProjS

(

δ(t) + ǫstepgφ(x,y, z, δ
(t),∇xL(x

(t)
adv))

)

,

x
(t+1)
adv = ProjX

(

x+ δ(t+1)
)

, (5)

where δ(t) denotes the adversarial perturbation accumulated

up to the t-th step, which is initialized with zero (δ(0) = 0).

To introduce stochasticity in the generation process, we ad-

ditionally employ a random variable z ∼ N (0, I). It allows

our generator to produce diverse perturbations through vari-

ous optimization paths, helping the classifier become robust

against diverse adversaries. The final adversarial example is

then obtained by xadv = x
(T )
adv . Figure 1 presents the overall

framework of L2L-DA.

4.2. Loss Functions

To train our generator gφ to produce stronger and more

diverse perturbations, we employ two losses: the classifica-

tion loss Lcls and the diversity loss Ldiv. The classification

loss Lcls is employed to ensure that each generator update

leads to a stronger perturbation. This is simply achieved

by making each perturbation increase the loss of the target

classifier by

Lcls =
1

T

T
∑

t=1

L(x
(t)
adv). (6)

Eq. (6) encourages the perturbations created by our gen-

erator to learn stronger attacks at all steps, which roughly

satisfy L(x
(1)
adv) ≤ L(x

(2)
adv) ≤ ... ≤ L(x

(T )
adv ). Consider-

ing the existing generator-based methods such as Chen et

al. [7] as the special case of ours with T = 1, it is then

evident that our method produces a stronger adversarial at-

tack than these methods since L(x
(1)
adv) ≤ L(x

(T )
adv ). In Sec-

tion 4.3, we show that attacks generated by our method

indeed makes the classification loss worse than existing

gradient- and generator-based methods.

On the other hand, the diversity loss Ldiv encourages the

generator to produce diverse perturbations. Although the

generator is supposed to produce stochastic outputs by sam-

pling different latent variables z, the generator trained with

Eq. (6) tends to ignore z in the generation process; this phe-

nomenon is known as mode-collapse [1, 16, 46]. To avoid

the mode-collapse issue, we employ one of the most recent

techniques from Yang et al. [59] that explicitly forces the

generator outputs to be sensitive to the latent variables:

Ldiv =
1
T

∑T

t=1 ‖x
(t)
adv(z1)− x

(t)
adv(z2)‖1

‖z1 − z2‖1
, (7)

where x
(t)
adv(z) denotes the adversarial examples generated

by Eq. (5) using the latent variable z, and z1, z2 are two i.i.d.

samples of z. Note that Eq. (7) encourages the diversity in

the entire perturbation trajectory {x
(t)
adv}

T
t=1, rather than the

final adversarial output x
(T )
adv .

Overall, we set our objective function as

max
φ

Lgφ = Lcls + λLdiv. (8)

where λ is a hyperparameter to balance Lcls and Ldiv. The

overall training pipeline is described in Algorithm 1.

4.3. Analysis of Our Approach

As discussed in Section 3.1, training with powerful and

diverse attacks, leads a model to be more robust to any ad-

versarial sample xadv. In this section, we analyze the effec-

tiveness of our recursive generation scheme and diversity

loss that encourages stochastic perturbations.

Effectiveness of recursive generation. We employ

PGD [34] and L2L-DA adversarially trained classifiers on
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Algorithm 1 L2L-DA Training Algorithm

1: Input: Image x, ground-truth label y,∇xL(x), z1, z2
2: x← [x;x], y← [y;y], z← [z1; z2] ([·; ·]: concatenation)

3: for t in range [0, T) do

4: δ(t+1) ← Proj
S

(

δ(t) + ǫstepgφ(x,y, z, δ
(t),∇xL(x

(t)
adv))

)

5: x
(t+1)
adv ← Proj

X

(

x+ δ(t+1)
)

6: end for

7: Lcls ←
1
T

∑T

t=1 L(x
(t)
adv)

8: Ldiv ←
1
T

∑T

t=1 ‖x
(t)
adv(z1)− x

(t)
adv(z2)‖1

‖z1 − z2‖1
9: φ← φ+∇gφ(Lcls + λLdiv)

10: θ ← θ − ∇fθ (L(x) + L(x
(T )
adv ))

CIFAR-10 dataset (Please refer to Section 5.2 for details

on PGD10 and L2L-DA, as well as the generator used for

training the L2L-DA classifier (full). Note that our gen-

erator was not finetuned in Figure 2.(a)). Then, we per-

form a white-box attack with L2L [7], PGD [34], and L2L-

DA method. We collect 10 attacks per data sample from

each method, by using random initializations (restarts) for

L2L and PGD, and randomly sampling z for L2L-DA. We

compute the maximum and standard deviation of the losses

from 10 attacks per image and calculate the mean over test

data. We plot the values of the average maximum loss over

10 iterations in Figure 2, along with the corresponding av-

erage standard deviation as the lower error bar.

Both plots in Figure 2.(a) and (b) show that our method

generates a more effective attack compared to L2L. More-

over, the loss increases as the time step increases, which

empirically supports our argument about Eq. (6) that

L(x
(1)
adv) ≤ L(x

(2)
adv) ≤ ... ≤ L(x

(T )
adv ): the strength of our

attack is boosted over iterations. Our method also provide

superior updates compared to the naive PGD scheme: PGD

updates by the sign of the loss gradient to guarantee that the

magnitude of the update is not too small, but it may deviate

from the true gradient, resulting in an inferior performance;

we train an adversary that knows how to update the pertur-

bation optimally.

Effectiveness of stochastic perturbation. When the per-

turbation given by Eq. (5) reaches to the edge of ℓ∞-ball

at t < T , the deterministic generator could eventually get

stuck in a local optima and produces the same perturbation

over the remaining iterations (i.e. x
(t)
adv = x

(t+1)
adv ). Eq. (7)

encourages diversity in the entire perturbation trajectory

{x
(t)
adv}

T
t=1, to explore different optimization paths and dis-

cover rich and diverse perturbations that achieves a high

classification loss. In Figure 2.(b), the standard deviations

of the loss over the adversarial attacks generated on L2L-

DA classifier are near zero, meaning the performance of our
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(a) Attacks on the classifier adversarially trained with PGD.
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Iteration

0.8
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ss

PGD
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(b) Attacks on the classifier adversarially trained with L2L-DA.

Figure 2: Classification loss on (a) PGD (b) L2L-DA ad-

versarially trained classifier. For each of the classifier, we

perform three attack methods (PGD, L2L-DA, L2L) and

plot its loss value. We additionally plot a gray dotted line

in Loss=1.64 for a better comparison. L2L-DA attacks are

generated by gφ of L2L-DA (Eq.(5)).

classifier trained with diverse attacks is not influenced by

the stochasticity of the attack methods. Madry et al. [34]

also observe that for CIFAR-10, the optimization trajecto-

ries of PGD and final loss values are fairly concentrated,

especially for adversarially trained models that are more ro-

bust.

The scales in Figure 2 also imply that our model is more

robust than PGD trained model. Recall that our objective is

to minimize Eq.(1) over θ; we can quantify the robustness of

a model θ from the expected loss E [L(x∗
adv,y; θ)] over data

distribution (empirically the average loss). Assuming our

attack at the 10th iteration x
(10)
Ours is a good approximation

to x∗
adv, we can compare the robustness of each classifier

by comparing its loss value. From Figure 2, we can see

E

[

L(x
(10)
Ours ,y; θOurs)

]

≈ 1.64 < E

[

L(x
(10)
Ours ,y; θPGD)

]

≈

1.90, which demonstrates that L2L-DA classifier is more

robust than PGD classifier.

5. Experiments

In a high level, an adversarial is categorized as a white-

box or black-box attack. White-box attack refers to the

case that an adversary has full knowledge of the classifier
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and training data, while black-box attack does not have

knowledge about the classifier. [33, 42]. In this section,

we first perform a white-box attack to show the effective-

ness of our approach in Section 4. We then compare the

robustness of our method with other baseline models by

performing both white-box attack and black-box attack.

The source codes used in the experiments are available at

http://github.com/YunseokJANG/l2l-da.

5.1. Settings

Datasets. We evaluate our method for both white-

box [17] and black-box settings [42] on MNIST [29]

and CIFAR-10 [25] datasets. The MNIST dataset contains

70,000 28 × 28 gray-scale images of a single digit. The

CIFAR-10 dataset contains a subset of the 80 million tiny

images dataset [53] with 60,000 32×32 images from 10 ob-

ject classes. For both datasets, we use the original train/test

splits for training and evaluation.

Implementation. For the generator, we employ a convo-

lutional encoder-decoder network based on the U-Net archi-

tecture [44, 45]. We first concatenate the accumulated per-

turbation and the loss gradient with the input image. Then,

we feed the latent variable z to the input and the first two

convolutional layers through spatial padding and concate-

nation. The class label y is injected by class-conditional

batch normalization [8, 12]. For the target classifier, we em-

ploy LeNet-5 [29] for MNIST dataset and ResNet-20 [22]

for CIFAR-10 dataset. We initialize the classifier with the

weights pre-trained with the original data, and train both the

generator and classifier jointly (Algorithm 1) by Stochas-

tic Gradient Descent (SGD) with a momentum of 0.9 and

weight decay of 0.00001 for 100K iterations with a batch

size of 100. Following the literature [34], we set the size of

ℓ∞ ball as ǫ = 0.3 for MNIST, and ǫ = 8/255 for CIFAR-

10 datasets. We use the step size of perturbation ǫstep = ǫ/4.

Baselines. We compare our method against the classi-

fiers that are adversarially trained upon existing gradient-

and generator-based attack methods. We employ adver-

sarially trained classifiers using FGSM [17], PGD [34],

and C&W [6] as the gradient-based methods, and the one

trained using L2L* [7] as the generator-based method 1.

Metric. To evaluate the robustness of the adversarially

trained classifier, we measure its classification perfor-

mance over the adversarial examples generated by exist-

ing gradient-based attack methods, such as FGSM [17],

PGD [34], and C&W [6]. Since the iterative methods

1 We reproduced L2L [7] since there is no publicly available source

code, but with additional skip-connection adhering to the advice from the

authors. Our implementation is based on the draft submission on Nov. 3,

2018.

such as PGD and C&W tend to generate stronger attacks

by running more iterations, we evaluate its performance

over multiple versions with a different number of iterations

(e.g. PGD10 and PGD100 for 10- and 100-step updates,

respectively). For PGD, we employ random initialization

without restart. In addition to the gradient-based attacks,

we employ three generator-based attacks, AdvGAN [56],

GAP [44], and L2L-DA, to measure the robustness of the

classifier. As these methods are considered as a proxy for

the real-world attack, we additionally report the lowest clas-

sifier accuracy among all attacks to gauge the robustness of

the classifier in the worst case [13].

5.2. White Box Experiments

In this section, we present the results on a white-box at-

tack. In this setting, the attacker has direct access to the tar-

get classifier parameters to create adversarial examples. We

first conduct an ablation study to validate the effectiveness

of the proposed regularization and architecture. Then we

take the classifier adversarially trained with our best method

to compare with the benchmarks.

5.2.1 Ablation Study

To understand how each component of the proposed method

contributes to the robustness of adversarial training, we first

conduct an ablation study on the MNIST dataset. In this

experiment, we adversarially train the classifier by adding

each component to our method and evaluate its performance

based on the classification accuracy over various attacks.

Table 1 summarizes the results.

Recursive generation. To understand the impact of the

regularization terms, we first compare the second and fourth

rows in Table 1.(a). By comparing them, we observe that

our model achieves 7.85%p higher classification accuracy

by recursively constructing adversarial examples. As dis-

cussed in Section 4.1, this is because the recursive genera-

tion utilizes richer optimization signals such as step-wise

loss gradients to construct a stronger attack. This result

is also consistent with our claim in Section 4.3 that the

stronger attack improves the robustness of the adversarially

trained classifier.

Diversity loss. We observe that the diversity loss im-

proves the robustness of adversarial training. Comparing

the second and third row in Table 1.(a), the ‘Min’ score

is improved by 4.33%p. This improvement is observed

across the recursive generation (the fourth and fifth rows

by 1.18%p), showing that the contribution of diversity loss

is orthogonal to the recursive generation. Interestingly, the

improvement by the diversity loss seems to be more criti-

cal in a single-step generation. We believe this is because
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Defense

Attack
Natural FGSM PGD100 C&W1000 Min

L2L* 98.95 36.59 0.02 2.46 0.02

L2L-DA (R X, D X) 98.81 97.02 87.86 86.12 86.12

L2L-DA (R X, D O) 98.94 97.46 91.40 90.45 90.45

L2L-DA (R O, D X) 98.51 96.91 93.97 94.68 93.97

L2L-DA (R O, D O) 98.47 97.87 95.15 95.26 95.15

(a) Impact of the regularization terms.

Defense

Attack
Natural FGSM PGD100 C&W1000 Min

L2L-DA (δ O, y O) 98.47 97.87 95.15 95.26 95.15

L2L-DA (δ O, y X) 98.51 96.75 93.44 94.02 93.44

L2L-DA (δ X, y O) 98.50 95.73 92.46 93.59 92.46

L2L-DA (δ X, y X) 98.40 95.58 92.36 93.24 92.36

(b) Impact of the generator architecture.

Table 1: Ablation study on MNIST dataset [29]. We measure the classification accuracy of adversarially trained classifiers

(rows) against various attack methods (columns). R and D refer to the usage of recursive generation (Eq. (5)) and diversity

loss (Eq. (7)) in our method. δ and y refer to the inputs in Eq. (5). Please check the footnote1 for the details of L2L*.

Defense

Attack
Natural FGSM PGD10 PGD100 C&W100 C&W1000 AdvGAN GAP L2L-DA Min

MNIST [29]

Plain 99.14 0.90 0.00 0.00 63.14 0.85 0.47 3.94 0.00 0.00

PGD10 98.52 96.14 92.21 90.22 96.66 88.92 98.30 96.56 89.49 88.92

PGD100 98.29 94.07 90.15 88.93 96.48 89.76 95.00 96.79 89.95 88.93

C&W100 99.09 17.54 0.25 0.25 69.99 0.05 4.90 3.74 34.51 0.05

L2L* 98.95 36.59 0.18 0.02 81.63 2.46 10.87 2.01 3.89 0.02

L2L-DA (full) 98.47 97.87 95.70 95.15 97.26 95.26 95.72 96.92 94.61 94.61

CIFAR-10 [25]

Plain 91.73 17.63 0.00 0.00 0.00 0.00 24.13 17.42 0.04 0.00

PGD10 87.43 72.00 41.77 37.37 35.12 34.81 69.96 67.38 0.32 0.32

PGD100 81.11 44.96 37.60 35.80 36.25 35.85 77.79 77.97 36.95 35.80

C&W100 88.36 25.76 9.44 6.82 8.27 6.97 83.11 72.94 8.88 6.82

L2L* 88.96 59.48 0.00 0.00 0.00 0.00 30.13 19.36 0.00 0.00

L2L-DA (full) 78.91 45.77 39.69 38.39 37.75 37.40 75.31 76.35 39.20 37.40

Table 2: The result of White-box attacks on MNIST [29] and CIFAR-10 [25] datasets. We measure the classification accuracy

of adversarially trained classifiers (rows) against various attack methods (columns).

optimization in a single-step is much more difficult than a

recursive generation, and our diversity-sensitive term helps

the optimization by exploring various optimization paths as

discussed in Section 4.3.

Generator architecture. In addition to the regulariza-

tion, we also analyze the impact of network architecture

for generating adversarial attacks. The main difference be-

tween our base model (second row of Table 1.(a)) and L2L*

(first row of Table 1.(a)) is that our method utilizes the addi-

tional class label y and the noise δ, and normalizes the input

gradient (by dividing it by its Frobenius norm). Surpris-

ingly, we observe that such architectural difference leads to

substantially more robust model against strong attacks such

as PGD100 and C&W1000.

To verify the effect of additional information, we train

our model (i.e., R and D) without y, δ and gradient normal-

ization operation. We first note that the performance drops

significantly without gradient normalization to the gradient

input (≈ 1% accuracy against PGD10 attack on CIFAR-10),

which shows its importance in guiding the generator to pro-

duce meaningful attacks.

Comparing the first and third row in Table 1.(b), we

observe that the performance drops by 2.69%p without δ.

This is because being aware of the current state within ℓ∞-

ball via δ can help our model to explore the adversarial

space more efficiently. Similarly, we observe 1.71%p gap

when we compare the first and second row in Table 1.(b).

This result implies that class-conditional batch normaliza-

tion [8, 12] can also help our model to focus more on class-

specific statistics.

The above ablation studies show that the regularization

terms and the architecture change in our method comple-

mentary benefits the robustness in adversarial training. For

the rest of the paper, we denote our full method (R O,

D O) as L2L-DA (full).

5.2.2 Comparison to other methods

In this section, we compare our model to existing ap-

proaches. We use three popular attack methods in the lit-

erature, PGD [34], C&W [6], and L2L [7], as the baselines

for adversarial training. The results on MNIST and CIFAR-

10 datasets are presented in Table 2.
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Defense

Attack A B C A B C A B C
Min

L2L-DA PGD10 PGD100

Plain 0.00 42.70 90.36 0.01 44.46 86.04 0.00 42.36 84.54 0.00

PGD10 94.13 94.61 96.52 94.90 95.45 95.85 94.89 95.52 95.49 94.13

PGD100 94.23 94.91 96.32 94.91 95.52 95.29 95.05 95.59 94.91 94.23

CW100 15.15 41.76 93.49 23.55 41.72 89.30 21.47 39.10 88.63 15.15

L2L* 59.29 70.62 94.79 69.36 75.01 93.43 66.83 72.91 93.13 59.29

L2L-DA (full) 95.08 95.40 96.65 95.72 96.00 96.31 95.63 96.09 96.03 95.08

Table 3: The result of Black-box attack on MNIST dataset [29]. We first employ three surrogate models to perform a black-

box attack, (A): PlainLeNet-5 (B): FGSMLeNet-5 (C): PGD10LeNet-5, which stands for the classifier that is adversarially

trained over clean test data, FGSM, PGD10 respectively. We perform a set of White-box attack with L2L-DA, PGD10,

PGD100 to those surrogates, and we report the accuracy by feeding the result of the white-box attack to the adversarially

trained classifiers (rows).

First, we observe that the classifier trained with our

method outperforms the others by a significant margin

in both MNIST and CIFAR-10 datasets (5.68%p gap in

MNIST and 1.60%p gap in CIFAR-10). Although the net-

work trained with PGD10 achieves the best classification

accuracy against similar attacks it is trained on, it experi-

ences a noticeable performance drop against the unseen and

stronger attacks, such as PGD100 and C&W1000, indicat-

ing an overfit to the attack used for training. On the other

hand, our method avoids such problems by generating both

stronger and diverse adversarial examples, leading to more

efficient adversarial training that significantly improves the

robustness of the classifier.

Also, we report the attack performance of Adv-

GAN [56], GAP [44] and L2L-DA, each of which are fine-

tuned to its corresponding classifier. We observe that L2L-

DA outperforms other generator-based attack methods [44,

56] in most cases. Therefore, the ability to generate strong

adversarial samples helps improve classifier robustness.

5.3. Black Box Experiments

We call a phenomenon that some adversarial examples

generated for one model is also misclassified by another

model as transferability [33, 42]. We evaluate the ro-

bustness against transferability of the attacks by designing

black-box attacks following Liu et al. [33]: to attack the

targeted model f trained on the dataset D, we first take a

surrogate model f ′ pretrained on the same training data and

perform white-box attacks to the surrogate model f ′ with

test data to get adversarial examples. Then we measure the

accuracy of the target classifier f on these adversarial test

data. The results of the black-box experiment on MNIST

dataset is shown in Table 3.

We use three surrogate models on MNIST dataset and

name them as (A) PlainLeNet-5, (B) FGSMLeNet-5 and

(C) PGD10LeNet-5. Each model is trained on LeNet-5 net-

work, with (B: FSGM, C: PGD) or without (A: Plain test

data) adversarial examples. Then, we generate adversar-

ial attacks on the surrogate models with L2L-DA generator,

PGD10, and PGD100, and feed them to the networks that

are adversarially trained with the baseline methods.

Interestingly, black-box attacks generated from the sur-

rogate model C (trained with PGD10) results in the best

classification accuracy of the plain network, which is not in-

tended for adversarial examples. One possible explanation

is that black-box attacks are most effective when the same

type of target models are used as the surrogate [33, 54].

Table 3 shows that our model outperforms the baselines

for all tested cases. In particular, our model achieves the

best ‘Min’ score (95.08%) across all tested adversarial at-

tacks and networks. This implies that our model is more

robust against various black-box attacks, i.e., transferability

fails more often in L2L-DA.

6. Conclusion

In this work, we proposed a novel defense mechanism

to learn a robust classifier against adversarial perturbation.

Our defense mechanism utilizes the generator to create ad-

versarial examples and trains the classifier with the adver-

sarial generator to optimize the minimax objective. To

make the classifier more robust against various and unex-

plored attacks, we design our generator to produce strong

and diverse perturbations through the recursive generation

and diversity-promoting regularization. Our experiment on

two popular benchmark datasets demonstrates that both the

strength and diversity of the perturbation play an impor-

tant role in improving the robustness of the classifier. We

also show that the classifier adversarially trained with our

method is more robust against various white-box and black-

box attacks.
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