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Abstract

Temporal action proposals are a common module in ac-

tion detection pipelines today. Most current methods for

training action proposal modules rely on fully supervised

approaches that require large amounts of annotated tempo-

ral action intervals in long video sequences. The large cost

and effort in annotation that this entails motivate us to study

the problem of training proposal modules with less supervi-

sion. In this work, we propose a semi-supervised learning

algorithm specifically designed for training temporal action

proposal networks. When only a small number of labels

are available, our semi-supervised method generates sig-

nificantly better proposals than the fully-supervised coun-

terpart and other strong semi-supervised baselines. We val-

idate our method on two challenging action detection video

datasets, ActivityNet v1.3 and THUMOS14. We show that

our semi-supervised approach consistently matches or out-

performs the fully supervised state-of-the-art approaches.

1. Introduction

With millions of cameras in the world, a tremendous

amount of videos are generated and transmitted every day.

A very important subject in these videos is humans perform-

ing activities and actions. This has motivated the computer

vision community to study algorithms for understanding ac-

tions from video collections. An important task for action

understanding is action detection, or temporal action local-

ization, where the goal is to temporally localize all actions

of interest within long video sequences. A common ap-

proach to tackle this problem is to first generate temporal

action proposals to localize temporal intervals of interest,

which are then fed into a classifier to obtain the correspond-

ing action labels. In this paper, we focus on the temporal

action proposal module.

To achieve high prediction accuracy, most of the existing

state-of-the-art algorithms for temporal action proposals use

supervised deep learning approaches [3, 14, 15, 23]. Such

approaches require large amount of labeled videos. Differ-

ent from labeling in other vision tasks like image recogni-
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Figure 1. With only a part of training videos labeled with ground

truth proposals, our semi-supervised framework can generate tem-

poral action proposals with better quality than the state-of-the-art

fully-supervised approaches.

tion, labeling temporal boundaries of actions in untrimmed

videos is much more time-consuming. On the other hand

are unsupervised learning approaches [34] where no label

is needed for training. Although they are free from the bur-

den of labeling, the overall performance in many tasks is

usually inevitably poor than that of supervised approaches.

Semi-supervised learning is a well fit solution when

large amount of data is available but only a small portion

is labeled. Different from unsupervised learning, semi-

supervised learning still leverages labeled data as strong su-

pervision for high prediction accuracy. Compared to su-

pervised learning, semi-supervised learning is less likely to

overfit on the small labeled dataset because it can make use

of the unlabeled data. Semi-supervised learning has been

effective in image classification [21, 25, 29, 36], but has

never been explored to assist generating temporal action

proposals. In our problem setup (see Figure 1), we assume

that during training only a part of the videos come with tem-

poral boundary labels of actions for supervised learning. In

the meanwhile, other videos with no labels or annotations

are available to be leveraged by the training process. By ex-

tending the knowledge extracted from the labeled set to the

unlabeled set, we can obtain a more robust model due to the

regularization role that the unlabeled data can play.

One core philosophy behind semi-supervised learning

methods is to train the model with smooth and consistent
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classification boundaries that are robust to stochastic per-

turbation. To find a smooth manifold of data, Tarvainen et

al. [36] proposes Mean Teacher which averages the “stu-

dent” models at different training iterations into a “teacher”

model. We embrace this architecture into our model de-

sign. To improve the robustness of the model, it is critical

to introduce random perturbations on the input to the stu-

dent model. In particular for the task of temporal action

proposals in videos, the perturbations should be designed to

benefit sequence learning. However, the prior work has not

proposed appropriate perturbations for sequence data such

as videos.

We propose two types of sequential perturbations: Time

Warping and Time Masking. Time Warping is a resampling

layer which distorts video sequences along the temporal di-

mension, providing perturbations for time-sensitive tasks

like temporal action proposals. Time Masking randomly

masks some frames of the input videos. During training, the

masked student models only see parts of the videos while

they are encouraged to predict the same boundaries as the

unobstructed teacher model predicts. These sequential per-

turbations allow our optimized model to be more robust and

generalize better to unseen data.

Our main contributions are as follows: (1) To the best

of our knowledge, we are the first to incorporate semi-

supervised learning in temporal action proposals to achieve

label efficiency. (2) We have designed two essential types

of sequential perturbations for this semi-supervised frame-

work and validated them against strong semi-supervised

baselines in key experiments of temporal action proposals.

2. Related Work

Temporal Action Detection and Proposals. Given a long,

untrimmed video, temporal action detection aims to localize

each action instance with its start and end times as well as

its action class [4, 12, 14, 16, 22, 33, 40].

Traditionally, many approaches address the problem by

exhaustively applying an action classifier in a sliding win-

dows fashion [13, 19, 26, 27, 37, 39]. These methods are

typically inefficient in terms of computation cost, since they

need to cover temporal windows of different lengths at each

location throughout the whole untrimmed video.

Inspired by recent success in proposal-plus-classification

approaches of image object detection, another group of two-

stage methods first propose action-agnostic temporal seg-

ment in video, then classify the action of the trimmed clips.

Buch et al. [3] propose a network that performs single-

stream temporal action proposal generation, avoiding com-

putation cost brought by sliding window. Shou et al. [32]

use 3D ConvNets to generate temporal proposals. There are

also end-to-end frameworks that enable joint optimization

of proposal generation and action classification. Buch et al.

[2] introduce semantics constraints for curriculum training

in end-to-end temporal action localization. Chao et al. [8]

adopt Faster R-CNN [30] for action localization task.

The proposals generated in the above methods are often

dependent on pre-defined anchors, lacking flexibility and

preciseness of temporal bounds. Instead, Zhao et al. [41]

simplify the proposal generation problem into classifying

the actionness of every short video snippet, post-processed

by a watershed algorithm. Gao et al. [15] and the Boundary

Sensitive Network (BSN) [23] further infer whether a video

snippet is the start or end of an action to obtain more pre-

cise boundaries, in which the BSN has become the state-of-

the-art on the temporal action proposal task on ActivityNet

Challenge [5].

Previous research is dedicated to develop better action

proposal models trained with labeled videos. In parallel, we

explore how to utilize unlabeled videos to further improve

proposal and detection performance. In this work, we focus

on evaluating our semi-supervised framework with the BSN

due to its superior performance, though our framework’s

flexibility allows it to be combined with other temporal ac-

tion proposal architectures as well.

Semi-supervised Deep Learning. Semi-supervised learn-

ing has a rich history that spans decades [9, 42]. Instead

of a comprehensive review, our focus is limited to semi-

supervised deep learning. A common approach is to train a

neural network by jointly optimizing a supervised classifi-

cation loss on labeled data and an additional unsupervised

loss on both labeled and unlabeled data [21, 25, 29, 36].

Consistency regularization has been widely used for the un-

supervised loss, which encourages the model to generate

consistent outputs when the raw inputs or intermediate fea-

ture maps are perturbed.

Here we summarize some examples of semi-supervised

deep learning using consistency regularization. Ladder Net-

works [29] incorporate a reconstruction branch as the unsu-

pervised task; they enforce consistency losses between en-

coded and decoded activation maps at each training step. Π-

Model [21] simplifies Ladder Networks and only imposes

consistency loss between outputs with different perturba-

tions on data. Next, Temporal Ensembling [21] applies a

consistency loss to model outputs and a more stable tar-

get: the exponential moving average of model outputs at

each epoch. Instead of averaging outputs, the more pow-

erful Mean Teacher [36] averages the weights of models

at each training step (a.k.a. “student” models) into a sep-

arate “teacher” model, whose outputs serve as the target in

the consistency loss. Orthogonal to the above approaches,

Virtual Adversarial Training (VAT) [25] proposes using vir-

tual adversarial noise instead of random noise as the data

perturbation. In our work, we also impose consistency reg-

ularization between outputs of student and teacher models,

and propose Time Warping and Time Masking as the data

perturbations specifically for video data.
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Figure 2. Overview of our method. Given an untrimmed video as input, we first encode it into a feature sequence Φ. Next, sequential

perturbations including Time Warping and Time Masking are applied to Φ and the student proposal model takes this perturbed sequence

as the input. Instead, the teacher model predicts directly on the unobstructed Φ. In the end, the student model is jointly optimized with a

supervised loss applied to labeled videos and a consistency loss to all videos.

Semi-supervised learning has been applied to sequence

learning as well. Dai et al. [11] propose a sequence autoen-

coder for text classification. Prémont-Schwarz et al. [28]

combine Ladder Networks with recurrent neural networks

and evaluate their model on image classification on the Oc-

cluded Moving MNIST dataset. Clark et al. [10] propose

cross-view training for multiple language tasks. Miyato et

al. [24] apply VAT [25] on text classification. Although not

designed for video analysis, some of the above approaches

[10, 28] also embrace the idea of masking either on patches

in images or words in sentences, and they inspire our Time

Masking.

There is also work on weakly supervised learning for

temporal action detection [1, 7, 17, 31], which differs from

our semi-supervised setting. In the weakly supervised tem-

poral action detection, part of the training data are fully la-

beled with the temporal boundaries and action classes while

the rest of data are annotated with “weak” labels, either

video-level classes or order lists of actions in the video. In-

stead, we do not assume availability of any kind of labels for

the unlabeled videos used in our semi-supervised training,

which entails a harder but more label-efficient task.

3. Technical Approach

Our main goal is to generate high-quality temporal ac-

tion proposals with a relatively small amount of labels. This

requires us to best utilize the labeled data with a powerful

supervised proposal model while, at the same time, leverag-

ing unlabeled data with an unsupervised auxiliary task de-

signed for video understanding. Although our approach is

agnostic to specific proposal methods, to validate the semi-

supervised framework, we build our model on top of a state-

of-the-art fully-supervised proposal generation network, the

Boundary Sensitive Network [23]. We extend the Mean

Teacher framework [36] with two types of sequential per-

turbations for training the proposal model: Time Warping

and Time Masking. See Figure 2 as an overview of our

method.

3.1. Video Encoding

The purpose of video encoding is to obtain a condensed

video representation, which captures the appearance and

motion patterns of a video. Given an untrimmed video

with N frames as the input, we first divide it into non-

overlapping short snippets which contain δ frames each,

forming a sequence of snippets S = {X1, X2, ..., XT },

where T = N/δ. As illustrated in prior work [6, 38],

both appearance and motion features contribute to action

understanding, so we encode both the RGB frames and

the optical flows of each video, then concatenate the en-

coded vectors. In particular, we use [38] as the video

encoder φ as in the fully-supervised baseline [23]. The

encoder generates a sequence of feature vectors Φ =
{φ(X1), φ(X2), ..., φ(XT )} ∈ R

T×D. Then we feed se-

quences of feature vectors into the following modules in

mini-batches. Labeled and unlabeled videos share the same

video encoder φ and they co-exist in the same mini-batch.

3.2. Temporal Action Proposal Model

Our semi-supervised model is sufficiently flexible that it

can be built upon various fully-supervised temporal action

proposal networks as long as they take sequential data as

input. Specifically, we choose Boundary Sensitive Network

(BSN) [23], a top performer in the temporal action proposal

task in ActivityNet challenge 2018.

The same video encoding as in [23] is performed as

the first step, then Φ is directly fed into the BSN proposal

model. The BSN is composed of a sequence of two train-

able modules: a Temporal Evaluation Module (TEM) and

a Proposal Evaluation Module (PEM). After the video en-

coding, TEM takes the snippet feature sequence Φ as the

input. The sequence Φ is passed through temporal convolu-

7075



w/o Time Warping

w/ Time Warping

MTND pdf

MTND Sampler

Sample 

a distribution

Φ

t

Grid G

t

WG(Φ)

t

Generate

a Grid

warp

(a) (b)

Figure 3. Time Warping. (a) With Time Warping, we can sample more snippet features in the encoded space. Here we show a simple

example of binary classification for each snippet feature (dimension reduced to 1). Resampling new feature points (the empty circles)

among labeled snippet features (the filled circles) encourages the student model to generate a smoother manifold for prediction.(b) To

perform Time Warping, we first sample a mixed truncated normal distribution for generating the 1-D grid G. Then we apply grid sampling

on the feature sequence Φ to augment the data for training.

tional layers to generate three series of probability signals:

actionness pa ∈ R
T , starting ps ∈ R

T and ending pe ∈ R
T .

Then proposals are generated according to these three sig-

nal sequences. Finally, PEM predicts a confidence score

pconf for each proposal indicating how overlapped a pro-

posal is with the closest ground truth interval, to decide if

the proposal is accepted or rejected. Please refer to [23] or

our supplementary materials for more details of BSN.

3.3. Mean Teacher Framework

Now we introduce how we construct the semi-supervised

learning framework for temporal action proposals. When

only a small number of labeled training samples are avail-

able, deep models like BSN tend to over-fit and not able

to extract enough knowledge from the training set to gen-

eralize to unseen videos. This can be mitigated by semi-

supervised learning where unlabeled videos can also be

used for training. Without ground truth labels, the super-

vised classification loss is undefined upon unlabeled videos.

Instead, we need to introduce an unsupervised auxiliary task

to leverage information from unlabeled videos.

As a baseline, we can directly adapt the Mean Teacher
method on the temporal action proposal model to form the
semi-supervised learning framework. In this framework,
there are two models: a student proposal model fθ and a
teacher proposal model fθ′ . The student learns as in fully-
supervised learning, with its weights θ optimized by the su-
pervised classification losses applied on labeled videos. The
teacher proposal model has the identical neural network ar-
chitecture as the student, while its weights θ′ are generated
by averaging θ from different iterations of training:

θ
′

i = αθ
′

i−1 + (1− α)θi (1)

where α is a smoothing coefficient parameter and i denotes

the training iteration. As an ensembled model, the teacher

embeds input snippet features into a smooth manifold and

outputs more consistent predictions than students. Then the

unsupervised task is to impose consistency regularization

between the outputs from the student and the teacher model,

with both labeled and unlabeled videos as input.

3.4. Sequential Perturbations

Beyond the Mean Teacher framework, stochastic pertur-

bations have been found crucial for learning robust models

by many semi-supervised learning works [21, 25, 29, 36]. A

typical way of perturbation is adding noise to feature maps.

Mean Teacher [36] adds Gaussian noise to intermediate fea-

ture maps of both student and teacher models, whereas VAT

[25] adds adversarial noise to the input. In video analysis,

we further explore what other specific perturbations are nec-

essary for sequential learning. We propose two sequential

perturbations: Time Warping and Time Masking.

Time Warping. Time Warping is essentially a resam-

pling layer, which resamples a sequence of feature vectors

Φ ∈ R
T×D along the time dimension guided by a randomly

generated 1-D flow-field grid. Time Warping is vital for

semi-supervised temporal action proposals: First, by propa-

gating labels to unlabeled locations in the feature space, re-

sampling leads to smoother predictions (Figure 3 (a)); sec-

ond, Time Warping serves as a way of data augmentation,

providing more labeled data for training, which is especially

helpful in the case when we have few labels; third, stretch-

ing and compressing input signals can generate more vari-

ants to learn in certain tasks, like temporal action proposals,

which require accurate starting/ending location prediction.

To perform warping on the input feature sequence Φ,

each output feature vector is computed by applying linear

sampling on Φ according to a dense 1-D grid G = {gt},

where gt is the temporal location to sample an output fea-

ture vector. Critical in performing Time Warping, the

grid should include long-term distortion which slows down

some parts of the video while speeds up the other parts; it
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Figure 4. Time Masking. Unlike dropout which randomly zero-

outs some of the neurons in the input, Time Masking drops the

entire feature vectors from the randomly selected time steps.

should also contain short-term stochastic noise. With these

considerations, we propose a Mixed Truncated Normal Dis-

tribution (MTND) sampler (Figure 3 (b)) to generate grids.

A MTND is formed by mixing n truncated normal distri-

butions N T
0
(µi, σi), i ∈ {1, 2, ..., n} by different weights.

Since we only want to interpolate the input sequence, the

distribution is truncated at the starting (0) and ending (T )

locations. The means µi’s are sampled from a uniform dis-

tribution and the standard deviations σi’s are sampled from

a log-uniform distribution. Given a MTND, we sample T
locations from it as the grid G, then we perform the warp-

ing and obtain WG(Φ) ∈ R
T×D.

Time Masking. Besides Time Warping, we propose a Time

Masking operation as another source of sequential pertur-

bations during training. In our pipeline, Time Masking fol-

lows Time Warping and takes WG(Φ) as input. The idea

of Time Masking is simple: some snippets in the input se-

quence are masked out from the student model, while the

teacher model can see the whole unobstructed video se-

quence. We denote the output of the Time Masking as

WG(Φ) . During the training, the masked student models

at each iteration are encouraged to generate the same out-

puts as the teacher does, even though they could not access

the entire information of input videos.

Time Masking can be viewed as a special Dropout layer

(Figure 4). In the regular Dropout layer, the neurons in one

snippet are not likely to be entirely dropped, which gives

the model a chance to peek some information from every

snippet in the receptive field. Instead, in Time Masking,

no information of the dropped snippet will be passed to the

next layers. The student model will be forced to aggregate

information from temporal context to make prediction on

dropped snippets. Such capability of temporal context ag-

gregation will be learned both from supervised losses on the

labeled videos and the consistency with the teacher model

on all training data.

3.5. Training

Training our semi-supervised framework includes two

parts: minimizing the supervised losses on labeled data and

the consistency loss on all training data. Although we have

student and teacher models, only weights in student mod-

els are optimized via back-propagation, and weights in the

teacher model are the averaged weights of students.

Supervised Losses. Aligned with the fully-supervised

proposal model, our semi-supervised framework uses the

same supervised losses for training as in BSN. Please re-

fer to [23] or our supplementary materials for details of

the losses. In our semi-supervised framework, the out-

put of the student proposal model corresponds to the se-

quential input distorted by Time Warping. Thus the labels

y also need to be resampled according to the same grid

generated by the MTND sampler. With the warped labels

WG(y), we enforce the supervised losses on the student out-

put fθ(WG(Φ)). Note that the supervised losses can only

be applied on labeled videos in the training set.

Consistency Regularization. The consistency loss treats
the outputs of the teacher model as labels and encourages
the student to learn a smooth manifold like the teacher’s.
Unlike the supervised losses, the consistency loss can be
applied to both labeled and unlabeled videos in the train-
ing set. Similar to how we handle the labels in super-
vised losses, we also warp the outputs of the teacher to be
WG(fθ′(Φ)). The consistency loss then measures the dis-
tance between the student outputs and the warped teacher
outputs:

Lcons = D(fθ(WG(Φ)),WG(fθ′(Φ))) (2)

For the distance function D, we use Mean Squared Error in

all experiments. Same as the supervised optimization, only

weights in the student model are trained. The consistency

loss and the supervised losses are summed as the total loss.

4. Experiments

Datasets. We use ActivityNet v1.3 and THUMOS14 for all

experiments. ActivityNet v1.3 [5] is a large database for

temporal action proposals and detection. It contains 19,994

videos of 200 activity classes and has been used in the Ac-

tivityNet Challenge 2016 to 2019. ActivityNet v1.3 is di-

vided into training, validation and testing sets by a ratio of

2:1:1, and temporal boundaries of action instances are an-

notated in all videos. THUMOS14 [18] contains 200 and

213 temporal annotated untrimmed videos with 20 action

classes in validation and testing sets, separately. The train-

ing set of THUMOS14 is the UCF-101 [35], which con-

tains trimmed videos for action classification task. Instead

of training on these trimmed videos, we train our model on

the untrimmed videos in validation set, and report perfor-

mance on the test set.
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Evaluation Metrics. We evaluate our method on two tasks:

temporal action proposals and temporal action localization.

For proposals, we report Average Recall (AR) at various

Average Number of Proposals per Video (AN). AR is de-

fined as the average of all recall values with tIoU thresholds

from 0.5 to 1 with a step size of 0.05. On ActivityNet v1.3,

area under the AR vs. AN curve (AUC) is also used as a

measurement, where AN varies from 0 to 100. For action

localization, we calculate mean Average Precision (mAP)

with different tIoU thresholds.

Implementation Details. We follow the same pre- and

post-processing as the BSN [23], including parameters used

in Soft-NMS. For feature extraction on ActivityNet v1.3,

we use the two-stream network [38] pre-trained on Kinetics

[20]. Different from the BSN’s setting, our features are not

pre-trained on ActivityNet classification task to avoid us-

ing extra labels which will contaminate the semi-supervised

setup. We use the same video features as the BSN for all

THUMOS14 experiments. For the semi-supervised train-

ing, we use EMA decay α = 0.999. Masking probability in

Time Masking is fixed to 0.3.

4.1. Temporal Action Proposals

Taking a long, untrimmed video as input, our method

aims to generate temporal boundaries determining the start-

ing and ending time of each action instances. In this sec-

tion, we compare the temporal action proposals generated

by our model on ActivityNet v1.3 and THUMOS14 with

fully-supervised BSN and other state-of-the-art methods to

verify the effectiveness of our semi-supervised framework.

Comparison to fully-supervised methods. We first com-

pare the action proposal results on ActivityNet-1.3 valida-

tion set under two training setups: (1) Our semi-supervised

framework, where x percent of training videos are labeled

with temporal boundaries and 100 − x percent of training

videos are not; (2) State-of-the-art fully-supervised learn-

ing, where the same amount of labeled videos are used for

training while no other data are used. With this comparison,

we can see how our semi-supervised framework performs

against the fully-supervised counterpart under different la-

beled/unlabeled ratio.

To validate the label efficiency of our method, we vary

the amount of labels for training, then measure the AUC

and AR@100 of proposals generated by our method and

the original BSN (Figure 5). With only a part of the training

set labeled, our method outperforms the fully-supervised

baseline consistently under different ratio of labeled train-

ing videos. Notably, with only 60% of the videos labeled,

our semi-supervised model outperforms the state-of-the-art

fully-supervised BSN trained with all labels in both met-

rics of AUC and AR@100 (Table 1). Similarly, we examine

the label efficiency on THUMOS14 (Figure 6), and observe

consistent superior performance as well.

AUC AR@100

Figure 5. Label efficiency experiments on ActivityNet v1.3. Vary-

ing the percentages of labels for training, we compare the AUC

and AR@100 of the proposals generated by our semi-supervised

method and the fully-supervised BSN counterpart.

Method SSN[41] CTAP[15] BSN[23] Ours@60%

AR@100 63.52 73.17 74.16 75.07

AUC 53.02 65.72 66.17 66.35

Table 1. Comparison between our method and other state-of-the-

art proposal generation methods on ActivityNet v1.3 in terms of

AR@100 and AUC. We outperform all other methods while using

only 60% of the labels.

AR@200AR@100AR@50

Figure 6. Label efficiency experiments on THUMOS14. We re-

port AR@50, @100, and @200 of the proposals generated by our

method and the vanilla BSN when trained with different percent-

ages of labels in the training set.

We then compare the proposal generation on THU-

MOS14 with strong baseline models. Table 2 shows the

comparison measured by average recall at various average

number of proposals per video. Again, we outperform the

BSN when trained with only 60% of labels. Moreover,

when 100% of labels are available, our framework can fur-

ther increase the average recalls.

Comparison to semi-supervised baselines. Next, we in-

vestigate the performance of our framework against mul-

tiple semi-supervised baselines on THUMOS14 proposals
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Feature Method @50 @100 @200

C3D DAPs [14] 13.56 23.83 33.96

C3D SCNN-prop [32] 17.22 26.17 37.01

C3D SST [3] 19.90 28.36 37.90

C3D TURN [16] 19.63 27.96 38.34

C3D BSN [23] 29.58 37.38 45.55

2-Stream TAG [41] 18.55 29.00 39.61

Flow TURN [16] 21.86 31.89 43.02

2-Stream CTAP [15] 31.03 40.23 50.13

2-Stream BSN@60% [23] 30.28 40.79 49.03

2-Stream BSN@100% [23] 37.46 46.06 53.21

2-Stream Ours@60% 37.73 46.87 53.37

2-Stream Ours@100% 38.46 47.53 54.10

Table 2. Comparison between our method and other state-of-

the-art proposal generation methods on THUMOS14 in terms of

AR@50, AR@100 and AR@200.

AN @50 @100 @200 @500 @1000

Vanilla BSN 30.28 40.79 49.03 57.58 62.35

VAT [25] 32.48 43.13 49.18 57.61 62.49

MT [36] 35.61 44.20 51.51 58.66 62.55

MT + VAT 35.63 44.21 51.49 58.64 62.56

MT + Dropout 35.73 44.25 51.56 58.67 62.58

Ours -TW 36.31 44.79 52.30 58.97 62.82

Ours -TM 37.24 45.37 52.65 59.74 63.10

Ours 37.73 46.87 53.37 60.81 64.59

Table 3. Comparison between fully-supervised and semi-

supervised baselines trained with 60% of the labels. We report

AR at various AN on THUMOS14. Abbreviations: VAT for Vir-

tual Adversarial Training, MT for Mean Teacher, TW for Time

Warping, and TM for Time Masking. Our full model outperforms

strong semi-supervised baselines.

with 60% labels for training (Table 3). We first implement

and evaluate VAT [25] combined with BSN. The key idea of

VAT is to improve model robustness to the approximately

worst case perturbations instead of random ones. Similar

to the VAT application to text classification [24], we ap-

ply the adversarial noise to each video snippet embeddings,

rather than directly to the raw input. VAT does not improve

average recall by much, partly because that the worst case

perturbations on video snippet embeddings are not signifi-

cantly different to random noises.

We also investigate different variants of Mean Teacher

[36]. The vanilla Mean Teacher with only random noises

and no dropout layers outperforms VAT. Also, adding VAT

to Mean Teacher does not help much on better proposals.

Mean Teacher with regular dropout further improves the

quality of proposals, but not as powerful as our approach

with Time Masking. With the same dropout/masking prob-

ability, although the regular dropout zeros the same amount

of neurons as Time Masking per training step, it formulates

an easier task for student models to learn since the student

can rely on more snippets to do inference.

Figure 7. Ablation experiments. We assess the effects of Time

Warping and Time Masking under different hyper-parameter

choices to find sweet points for better performance.

Method 0.7 0.6 0.5 0.4 0.3

SST [3] + UNet 4.7 10.9 20.0 31.5 41.2

TURN [16] + UNet 6.3 14.1 24.5 35.3 46.3

BSN [23] + UNet 20.0 28.4 36.9 45.0 53.3

Ours@60% + UNet 20.5 29.5 37.2 45.2 53.4

Ours@100% + UNet 20.7 29.9 37.9 46.3 55.1

Table 4. Action detection results on the testing set of THUMOS14

in terms of mAP@tIoU. We compare with proposal + classi-

fication methods, where classification results are generated by

UntrimmedNet [33].

Finally, we examine the contributions of the two pro-

posed sequential perturbations by removing them respec-

tively. Both of them contribute to the proposals while Time

Warping appears to play a major role.

Qualitative Results. We visualize some temporal action

proposals generated by our semi-supervised approach. Fig-

ure 8 shows that our approach is able to generate more pre-

cise temporal boundaries than the fully-supervised baseline

on THUMOS14 when both are trained with 60% of labels.

4.2. Ablation Experiments

To assess the functionality of the two proposed sequen-

tial perturbations, we run experiments on THUMOS14 with

60% of the labels with different hyper-parameters used in

Time Warping and Time Masking.

Degree of distortion in Time Warping. The effect of Time

Warping depends on the grid sampled from MTND sam-

pler. Varying the number of truncated normal distributions

and their scales, the MTND can go from a nearly uniform

distribution to a very uneven one which will greatly distort

the input sequence. We examine the impact of different de-

gree of distortion in Time Warping on generated proposals.

The degree of distortion is measured by the KL-divergence

DKL(P ‖ Q) between the sampled MTND as P and a uni-

form distribution as Q. Figure 7 (a) shows a sweet spot

with DKL at an order of magnitude of 0.01. When DKL ap-

proaches to 0, the effect of Time Warping diminishes; when

the degree of distortion is too large, many parts of videos

can hardly get sampled, equivalently decreasing the num-

ber of labels for training.

Masking probability in Time Masking. We experiment

with different probabilities of zeroing feature vectors in the
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199.6

32.4

161.4

199.2 206.6 212.2 212.3211.8 801.0800.0 807.5 808.5806.6

37.2 37.6 91.3 95.291.1 99.6

161.3 162.6 167.0 167.1 243.7229.9 231.5

24.423.6 27.4 31.6 31.8 80.7 81.2 83.8 88.2 88.6 89.2

Ground Truth Semi Full Time

Figure 8. We compare THUMOS14 proposals generated by our semi-supervised method with the fully-supervised BSN trained using 60%

of the labels. We also show ground truth intervals for reference.

sequence fed to Time Masking. As shown in Figure 7 (b),

p = 0.3 appears to be an optimal operating point, bring-

ing appropriate difficulty to the students. Thus we fix this

masking probability in all our experiments.

4.3. Temporal Action Localization

The end goal of generating temporal action proposal is

temporal action localization, so we further evaluate our pro-

posals for the localization task on THUMOS14. We fol-

low the proposal-plus-classification two-stage approach as

in [3, 16, 23]. As the BSN does, we use the top-2 video-

level classes predicted by UntrimmedNet [33] on top of the

proposals generated by different approaches. We report the

mean Average Precision at different temporal IoU thresh-

olds with 200 proposals per video on THUMOS14 (Table

4). The direct comparison is with the fully-supervised BSN

trained with all labels, where we achieve better performance

on different temporal IoU thresholds from 0.3 to 0.7. When

trained with all labels, our model further improves perfor-

mance on action localization.

5. Conclusion

We show that temporal proposal models can be

trained with higher label efficiency by adopting our semi-

supervised approach to learn their parameters. Our semi-

supervised framework extends the Mean Teacher model

with two proposed sequential perturbations for video un-

derstanding. We show empirically that our model achieves

similar performance as the fully-supervised approach when

trained with only 60% of the labels, outperforming other

semi-supervised baselines as well. Furthermore, we show

that our semi-supervised proposals can be effectively ap-

plied to the problem of temporal action localization.
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