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Abstract

With the explosive growth of video data in real appli-

cations, near-duplicate video retrieval (NDVR) has become

indispensable and challenging, especially for short videos.

However, all existing NDVR datasets are introduced for

long videos. Furthermore, most of them are small-scale and

lack of diversity due to the high cost of collecting and la-

beling near-duplicate videos. In this paper, we introduce

a large-scale short video dataset, called SVD, for the ND-

VR task. SVD contains over 500,000 short videos and over

30,000 labeled videos of near-duplicates. We use multi-

ple video mining techniques to construct positive/negative

pairs. Furthermore, we design temporal and spatial trans-

formations to mimic user-attack behavior in real applica-

tions for constructing more difficult variants of SVD. Ex-

periments show that existing state-of-the-art NDVR method-

s, including real-value based and hashing based methods,

fail to achieve satisfactory performance on this challenging

dataset. The release of SVD dataset will foster research and

system engineering in the NDVR area. The SVD dataset is

available at https://svdbase.github.io.

1. Introduction

Over the past decades, we have witnessed the explosive

growth of video data in a variety of video sharing web-

sites like YouTube1, Instagram2, and TikTok3. For exam-

ple, 400 hours of new videos were uploaded to Youtube ev-

ery minute and one billion hours of content was watched

on YouTube every day in February 20174. With billions of

videos being available on the internet, it becomes a major

challenge to perform near-duplicate video retrieval (NDVR)

1https://www.youtube.com
2https://www.instagram.com
3https://www.tiktok.com
4https://en.wikipedia.org/wiki/YouTube

from a large-scale video database. NDVR aims to retrieve

the near-duplicate videos from a massive video database,

where near-duplicate videos are defined as videos that are

visually close to the original videos [32]. For example, the

videos might be slightly modified by the users to bypass

the detection, and the modified videos can be treated as

near-duplicate videos of the original videos. These modi-

fications can be caption insertion, border insertion and so

on. An NDVR system has been a necessity on content plat-

forms with many applications, including video recommen-

dation, video search, and copyright infringement detection.

Hence, NDVR has become a hot research topic, and there

have appeared a lot of methods for NDVR [32, 10, 8, 4, 33,

29, 1, 24, 16, 18, 2, 23, 13, 30, 19, 6].

Existing NDVR methods can be divided as video-level

methods and frame-level methods. Video-level method-

s, including layer-wise convolutional neural network (C-

NNL) [12], vector-wise convolutional neural network (C-

NNV) [12] and deep metric learning (DML) [13], try to

represent each video as a global feature. Frame-level meth-

ods, including spatio-temporal post-filtering [4], circulant

temporal encoding (CTE) [24] and temporal matching k-

ernel (TMK) [23], extract features for each frame of the

video. In the meantime, to advance the research of ND-

VR, several video datasets have been introduced in recen-

t years, including CCWEB [32], UQ VIDEO [29], VCD-

B [9], MUSCLE VCD [14], TRECVID [22] and so on.

However, all of them are for long videos with average dura-

tion longer than 60 seconds.

In recent years, short videos with duration less than 60

seconds have become increasingly popular on social me-

dia platforms. Users have strong incentive to copy a hot

short video and upload a modified version on these plat-

forms to gain attention. With the increasing in short video

data, there appear new difficulties and challenges for detect-

ing near-duplicate short videos. Some of the new difficul-

ties and challenges are listed as follows. Firstly, most long

videos are generated by professional photographers with
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cameras, while most short videos are generated by amateurs

with mobile devices. Hence, the short videos might contain

some new types of near-duplicates, e.g., horizontal/vertical

screen videos and camera shaking videos. Secondly, as the

cost of editing a short video is cheaper, users might prefer

to edit a short video. Hence, the number of near-duplicate

short videos is larger than that of near-duplicate long videos.

Therefore, there is an urgent need of a large-scale short

video dataset for NDVR task.

In this paper, we introduce a new large-scale short video

dataset, called SVD, to foster research of NDVR for short

videos. The main contributions of this paper are listed as

follows:

• The introduced SVD dataset contains over 500,000

short videos and over 30,000 labeled videos for ND-

VR task. To the best of our knowledge, SVD is the first

large-scale short video dataset for NDVR task. Com-

pared with existing NDVR datasets, SVD dataset is the

largest one.

• With hard labeled positive/negative videos mined by

multiple strategies, SVD dataset is challenging for

NDVR. Furthermore, we design some temporal and s-

patial transformations to mimic user behavior in real

applications and construct more difficult and challeng-

ing variants of SVD.

• We perform two categories of retrieval to evaluate the

performance of existing state-of-the-art NDVR meth-

ods on SVD dataset, i.e., real-value based retrieval and

hashing based retrieval. Experiments demonstrate that

these NDVR methods cannot achieve satisfactory re-

trieval performance on SVD dataset. Hence, the re-

lease of SVD dataset will foster the research of the

NDVR area.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly review the related work. In Section 3,

we describe the dataset collection strategies in detail. In

Section 4, we introduce some temporal and spatial trans-

formations applied to SVD dataset. In Section 5, we carry

out experiments on SVD dataset. At last, we conclude our

paper in Section 6.

2. Related Work

We briefly review the datasets for NDVR task in this sec-

tion. Specifically, related datasets include CCWEB [32],

UQ VIDEO [29], VCDB [9], MUSCLE VCD [14], and

TRECVID [22] datasets.

CCWEB [32] dataset contains 24 query videos and

12,790 labeled videos. The authors utilize 24 text queries,

e.g., “The lion sleeps tonight” and “Evolution of dance”, to

retrieve the videos from Youtube, Google Video, and Ya-

hoo! Video. The returned videos contain 27% redundant

videos. Then the authors collect 12,790 videos as labeled

set. The average duration for this dataset is 151.02 seconds.

In this dataset, over half of the queries are about dancing

and singing, which is lack of diversity.

UQ VIDEO [29] is an extended dataset of CCWEB. The

authors utilize 24 query videos and 12,790 labeled videos

of CCWEB as the query set and labeled set for UQ VIDEO

dataset, respectively. Then the authors construct a back-

ground distraction set with 119,833 videos. The videos in

background distraction set are usually treated as negative,

but the labels are not verified by humans. In the end, the au-

thors collect 132,647 videos in total. Although UQ VIDEO

is larger than CCWEB, it is also lack of diversity due to the

limited number of queries. Furthermore, for all background

distraction videos, this dataset only provides HSV [26] fea-

tures and LBP [7] features of all key frames, and the original

videos are not publically available.

VCDB [9] dataset utilizes the same 528 videos to con-

struct both query set and labeled set. Furthermore, the au-

thors provide 100,000 background distraction videos. Thus

this dataset contains 100,528 videos in total. Furthermore,

VCDB dataset is originally proposed for copyright detec-

tion task, and only provides 9,236 copied segment label-

s. However, for NDVR task, we need video-level pair-

wise labels to denote whether a candidate video is the

near-duplicate video of the query video or not. Hence,

we filter redundant copied segment pairwise labels and get

6,139 video-level pairwise labels for NDVR task. Please

note that all 6,139 video-level pairwise labels are positive.

The average duration of the VCDB dataset is 72.77 seconds.

MUSCLE VCD [14] collects 18 videos to construc-

t query set. Then the authors utilize query videos to gen-

erate 101 videos as labeled set based on some predefined

transformations. Thus MUSCLE VCD dataset collects 119

videos in total.

TRECVID [22] dataset utilizes 11,256 query videos to

construct query set. Then the authors use query videos to

generate 11,503 videos as labeled set based on some pre-

defined transformations. Thus TRECVID dataset collects

22,759 videos in total.

The above datasets have been widely used for ND-

VR task. All of these datasets are long video datasets

and have different shortcomings. Specifically, the videos

of TRECVID and UQ VIDEO datasets are not publicly

available. MUSCLE VCD and TRECVID datasets are

small-scale and the labeled videos of these two datasets are

generated by the authors of the datasets rather than the users

of real video platforms. CCWEB and UQ VIDEO datasets

are lack of diversity. VCDB dataset only contains positive

pairwise labels. The second to the sixth columns of Table 1

list the statistics of the aforementioned datasets. From Ta-

ble 1, we can find that all existing NDVR datasets are long

videos with average duration longer than 60 seconds.
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Table 1. Comparison between SVD and existing datasets. As the original videos in background distraction set of UQ VIDEO are not

publiclly available and we cannot access MUSCLE VCD and TRECVID datasets, some statistics of these three datasets are N/A.

Item CCWEB UQ VIDEO VCDB MUSCLE VCD TRECVID SVD

#query videos 24 24 528 18 11,256 1,206

#labeled videos 12,790 12,790 528 101 11,503 34,020

#positive pairs 3,481 3,481 6,139 N/A N/A 10,211

#negative pairs 9,311 9,311 0 N/A N/A 26,927

#background distraction videos 0 119,833 100,000 0 0 0

#probable negative unlabeled videos 0 0 0 0 0 526,787

#total videos 12,814 132,647 100,528 119 22,759 562,013

Average duration (in second) 151.02 N/A 72.77 3,564.36 131.44 17.33

Total duration (in hour) 539.95 N/A 2027.60 100 420 2704.96

Video publically available
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Figure 1. Video duration comparison on CCWEB, VCDB and SVD datasets. Note the average duration of our constructed SVD is signifi-

cantly shorter than that of CCWEB and VCDB.

3. SVD: A Large-Scale Short Video Dataset

In this section, we describe the dataset collection strate-

gies for constructing our large-scale short video dataset

called SVD.

All videos in SVD dataset are crawled from a large video

website Douyin5 and the video format is “.mp4”. The dura-

tion of most videos is less than 60 seconds. We crawled

an ambient set containing over 100 million short videos,

from which we select videos and construct SVD. The SVD

dataset is divided into three subsets, i.e., the query set, the

labeled set and the probable negative unlabeled set. First,

we collect 1,206 videos as the query set. Then we uti-

lize multiple strategies to mine hard positive/negative can-

didate videos for annotation. Unlike the candidate videos

which are randomly crawled in existing datasets, the candi-

date videos in SVD are hard by using multiple strategies for

selection. Hence, we call these candidate videos as hard

positive/negative candidate videos. After human annota-

tion, we collect 34,020 labeled videos to get the labeled

set, which includes 10,211/26,927 labeled positive/negative

video pairs. Besides this, by utilizing a pairwise similari-

ty filtering strategy, we collect 526,787 videos as probable

negative unlabeled set rather than background distraction

set. Here, the videos in probable negative unlabeled set are

the negative videos which aren’t verified by humans. Unlike

background distraction videos which are crawled randomly

5http://www.douyin.com

in UQ VIDEO and VCDB datasets, we utilize a filtering s-

trategy to ensure that the videos in the probable negative un-

labeled set are not near-duplicate videos of the query videos

with high probability. Hence, the videos in probable nega-

tive unlabeled set are more suitable to be treated as negative

than those in background distraction set. In the last colum-

n of Table 1, we present the statistics about SVD dataset.

From Table 1, we can find that the average duration of the

SVD dataset is only 17.33 seconds, which is shorter than

other datasets. Furthermore, SVD is the largest dataset a-

mong all datasets in Table 1. In Figure 1, we further illus-

trate the distribution of durations for CCWEB, VCDB and

SVD datasets. From Figure 1, we can see that most of the

videos are short in SVD dataset compared with CCWEB

and VCDB. In the rest of this section, we will describe the

detailed construction strategies.

3.1. Query Set

We crawl 1,206 videos, each with more than 30,000

“likes”, as the query set. All of these queries were upload-

ed in November 2018. To ensure diversity, the contents and

types of these query videos are made as diverse as possible.

Specifically, the video contents of the query videos contain

portrait, landscape, game video, animation and so on. The

query videos also contain a variety of video types includ-

ing vertical screen video, horizontal screen video and so on.

Figure 2 illustrates some randomly sampled query videos.
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Portrait, multiple screens Landscape, horizontal screen Game video, vertical screen Building, vertical screen

Animation, vertical screen Pet, vertical screen Portrait, vertical screen Animation, horizontal screen

Figure 2. Example of query videos in SVD. Each block represents a video with multiple frames.

3.2. Labeled Set

To construct the labeled set, we first choose some videos

as candidate videos for annotation. All candidate videos

are divided into positive (near-duplicate) candidate videos

and negative candidate videos, which respectively denote

the videos we expect to be annotated (labeled) as positive

and negative videos of the corresponding query videos.

To mine hard positive/negative candidate videos for an-

notation, we utilize multiple strategies to select candidate

videos from the ambient set. The strategies include iterative

retrieval, transformed retrieval, and feature based mining.

Among these strategies, the first two strategies are mainly

used for mining hard positive candidate videos and the last

strategy is used for mining hard negative candidate videos.

We collect nearly 50,000 video pairs for annotation.

These video pairs are labeled by human annotators. Annota-

tion costs over 800 hours in total. After removing the videos

inappropriate for public release, we collect 1,206 queries

and 34,020 labeled videos. In the rest of this subsection, we

will describe the details of the three strategies for selecting

candidate videos.

Iterative Retrieval To mine hard positive candidate videos,

we utilize an interactive retrieval method to annotate the

positive candidate videos. This method can be divided in-

to the following three steps. Firstly, for a given query

video, it retrieves through the ambient set to get the can-

didates by using a variety of methods, including LBP [21]

and BSIFT [35] feature based retrieval methods. Secondly,

human annotators label these candidates for each query and

select the positive ones. Lastly, the selected positive videos

are further fed into the first step to retrieve more positive

candidates. The whole process is repeated for several times

until no more positive videos can be found for a given query.

Because the interactive retrieval procedure requires low

latency, we only employ LBP [21] and BSIFT [35] features

during this procedure. More advanced features and similar-

ity calculation methods are utilized for the following trans-

formed retrieval procedure.

Transformed Retrieval We also apply various transforma-

tions, such as rotation and cropping, on query videos to

get transformed videos. And then we use the transformed

Query video Positive candidate

Query video Positive candidate

Query video Positive candidate

Figure 3. Example of hard positive candidate videos. Top row:

side mirrored, color-filtered, and watermasked. Middle row: hori-

zontal screen changed to vertical screen with large black margins.

Bottom row: rotated.

videos as queries to search over the ambient set. Specifical-

ly, we utilize LBP, BSIFT, and deep features based retrieval

methods to select the candidate videos. Then we select the

top-5 to top-10 results as candidate videos for further hu-

man annotation.

In Figure 3, we show some query videos and their hard

positive candidate videos mined by interactive retrieval and

transformed retrieval. In Figure 3, the candidate videos are

near-duplicate videos by various transformations including

mirror transformation, color-filtered transformation, black

border insertion, and rotation transformation.

Feature based Mining To mine hard negative candidate

videos, we select 30,000 videos as candidate videos from

the ambient set which were uploaded from June 2018 to

August 2018. As the uploading dates of these candidate

videos are earlier than those of the videos in our query

set, we can expect that most candidate videos are not near-

duplicate videos of the query videos. We extract different

types of features to calculate the similarity between candi-

dates and query videos. The features include hand-crafted

features (LBP and BSIFT) and deep features. For each
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Query video Negative candidate

Query video Negative candidate

Query video Negative candidate

Figure 4. Example of hard negative videos. All the candidates are

visually similar to the query but not near-duplicates.

query video, we select the top-5 to top-10 similar videos

as candidate videos for human annotation.

Figure 4 illustrates some examples of query videos and

the corresponding negative candidate videos, where the can-

didate videos are mined based on deep features. In the ex-

ample at the top row, a man is casting a net into the water. In

the example at the middle row, a girl is doing her hairstyle

in a barbershop. In the example at the bottom row, a girl is

playing in a room decorated with illuminations. However,

as the persons in each video pair are different, all of these

video pairs are not near-duplicate videos although they are

very similar.

3.3. Probable Negative Unlabeled Set

We first select a subset of 700,000 videos from the ambi-

ent set as candidates for probable negative unlabeled videos,

which are defined as negative videos without human annota-

tion. After extracting a variety of frame and video features,

we calculate the pairwise similarity between query videos

and the candidate videos. The candidate videos which

might be the near-duplicate videos of query videos with

high probability will be filtered. Then the remaining can-

didate videos are selected as probable negative unlabeled

videos. Specifically, we utilize BSIFT features and aggre-

gated deep features to calculate similarity between query

videos and candidate videos. The BSIFT features are used

to calculate the Jaccard similarity, and only those videos

whose similarities to all queries are 0 can be selected as

candidate videos. Then the aggregated deep features are

used to calculate video-level similarity based on Euclidean

distance, and we further filter about 5% videos which have

the smallest similarities to all queries. In the end, we obtain

526,787 videos for the probable negative unlabeled set.

To verify that the videos obtained by the above proce-

dure are truly probable negative, we randomly sample 100

videos from the probable negative unlabeled set and invite

human annotators to label them against each of the query

videos. None of these videos is labeled as near-duplicate of

the queries. Therefore, the videos in the probable negative

unlabeled set are not near-duplicates of the query videos

with high probability.

4. Transformations

In real applications, users might prefer to copy hot

videos to gain attention. At the same time, these users usu-

ally choose to modify their copied videos slightly to bypass

the detection. These modifications contain video cropping,

border insertion and so on.

To mimic such user behavior, we define one temporal

transformation, i.e., video speeding, and three spatial trans-

formations, i.e., video cropping, black border insertion, and

video rotation. Specifically, the video speeding transforma-

tion contains video speeding up and speeding down. This

type of transformation is designed to simulate video accel-

eration or deceleration. In real applications, users might

crop the videos to zoom in or out the original videos, which

can be performed by frame cropping. Furthermore, users

might insert borders, like black borders, to fit different video

size. In addition, there exist many mobile-phone videos

which are taken horizontally or vertically. When users u-

pload these videos, they might rotate their videos.

These transformations are widely applied in the video

re-creation procedure. By performing these transformation-

s, harder candidates can be generated and we can construct

more challenging datasets. Please note that the above trans-

formations are used as illustrating examples, and users can

define their own transformations based on their needs.

5. Experiments

We perform experiments to study the retrieval perfor-

mance on SVD dataset and other NDVR datasets. We adop-

t two categories of NDVR methods, i.e., real-value based

NDVR methods and hashing based NDVR methods. In real

applications, real-value based NDVR methods usually suf-

fer from high storage cost and low query speed. To avoid

high storage cost and enable fast query speed, hashing based

methods [3, 31, 34, 29, 11, 27, 6] have also been adopted for

NDVR.

5.1. Datasets

As TRECVID and MUSCLE VCD are too smal-

l and the original videos in background distraction set

are not available for UQ VIDEO, we select CCWE-

B [32] and VCDB [9] for comparison with SVD.

We adopt four transformations defined in Section 4 to

construct more challenging variants of SVD. Specifi-
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cally, we utilize SVDtransformation to denote a vari-

ant of the SVD dataset, where the labeled positive

videos are replaced by the corresponding transformed

videos. Here the transformation denotes the transfor-

mations defined in Section 4, i.e., transformation ∈
{Cropping,BlackBorder,Rotation, Speeding}. Please

note that we adopt acceleration transformation for

SVDSpeeding . For all datasets, the groundtruth videos of a

given query video are defined as the labeled positive videos.

5.2. Benchmark and Evaluation Protocol

5.2.1 Benchmark

For real-value based methods, we adopt four widely used

real-valued NDVR methods, including three video-level

methods, i.e., layer-wise convolutional neural network (C-

NNL) [12], vector-wise convolutional neural network (C-

NNV) [12] and deep metric learning (DML) [13], and

one frame-level method, i.e., circulant temporal encod-

ing (CTE) [24].

In real applications, real-value based methods might be

impractical for massive videos. Hence, we also adopt some

hashing methods for evaluation. Specifically, we adopt four

hashing methods, including one data-independent method,

i.e., locality sensitive hashing (LSH) [3], two unsuper-

vised hashing methods, i.e., iterative quantization (ITQ) [5]

and isotropic hashing (IsoH) [11], and one supervised

hashing method, i.e., Hamming distance metric learn-

ing (HDML) [20], for evaluation. In this paper, we just use

four hashing methods for demonstration, although more so-

phisticated hashing methods can be adopted to further im-

prove the performance [15].

For real-value based NDVR methods, following the set-

ting of DML [13], we utilize VGG16-Net [28] pre-trained

on ImageNet [25] to extract 4096D deep features for every

frame. For all datasets, we set fps = 1 for fair compari-

son6. After extracting deep features for each frame, we uti-

lize the same normalization strategy as that in DML, i.e.,

zero-mean and L2-normalization, to generate video-level

deep features. DML is a triplet-based deep metric learning

method. For all datasets, we utilize hard triplets sampling

strategy proposed by [13]. For CNNL and CNNV methods,

we also utilize 4096D deep features extracted by VGG16-

Net pre-trained on ImageNet. For all datasets, we randomly

sample 50,000 frames to learn 300 centers by k-means al-

gorithm for CNNL and CNNV methods. For hashing based

methods, we also use the 4096D deep features extracted

by VGG16-Net to perform hashing learning for fair com-

parison. For all baselines except CNNL, CNNV and CTE,

source code is kindly provided by their authors. For CNNL,

CNNV and CTE, we carefully implement these methods.

6CTE achieves higher accuracy with fps = 15 on CCWEB dataset. In

this paper, we set fps = 1 for fair comparison.

For real-value based NDVR methods, Euclidean distance

is used to rank the retrieved data points. For hashing based

NDVR methods, we learn a binary code for each video.

Then the Hamming distance is used as the metric to rank

the retrieved data points.

To further improve the retrieval accuracy for hashing

methods, we can utilize reranking strategy. Specifically, we

first use Hamming distance to generate a ranked list for all

returned videos. Then we select top-N returned videos to

run reranking algorithm. During the reranking procedure,

we calculate Euclidean distance between query video and

the selected top-N videos based on deep features and get

the final ranked list for the selected N videos based on the

Euclidean distance.

5.2.2 Evaluation Protocol

For CCWEB and VCDB datasets, following the setting of

DML [13], we utilize the query set and labeled set as train-

ing set. During testing procedure, we utilize the query set as

test set and the labeled set as database for CCWEB dataset.

Then the retrieval procedure is performed by adopting test

set to retrieve database. For VCDB dataset, we select query

set as test set. Furthermore, we utilize the labeled set and

background distraction set as database. For SVD dataset,

we randomly select 1,000 query videos from query set and

their labeled videos as training set. During testing proce-

dure, we utilize the remaining 206 query videos from query

set as test set. Furthermore, the corresponding labeled set

and the whole probable negative unlabeled set are utilized

as database.

We utilize mean average precision (MAP) and top-K

MAP as evaluation metrics. Specifically, for each query

video vq , the average precision (AP) is calculated according

to the following equation:

AP (vq) =
1

Rq

M∑

k=1

Pq(k)1k, (1)

where Rq is the number of labeled positive videos, M de-

notes the number of videos in the database, Pq(k) is the

precision at cut-off k in the ranked list for video vq and 1k

is an indicator function which equals 1 if the k-th returned

video is the groundtruth of query video, otherwise 1k = 0.

Then given n query videos, we can calculate MAP as fol-

lows:

MAP =
1

n

n∑

q=1

AP (vq).

The top-K MAP can be calculated similarly by setting

M = K in Equation (1). Furthermore, we also compare

the storage cost and retrieval time for real-value based ND-

VR methods and hashing based NDVR methods.
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Table 2. MAP (%) for real-value based NDVR methods.

Method CCWEB VCDB SVD SVDCropping SVDBlackBorder SVDRotation SVDSpeeding

DML 97.01 78.98 78.47 54.07 68.17 15.59 76.70

CNNL 95.47 49.87 55.55 15.61 18.63 0.15 51.80

CNNV 95.60 45.19 19.09 6.31 6.94 0.22 15.45

CTE 90.08 41.42 50.97 16.48 32.66 2.84 16.23

Figure 5. Bad cases of DML method.

5.3. Real­Value based NDVR

Accuracy We report MAP for DML, CNNL, CNNV, and

CTE on CCWEB, VCDB and SVD datasets in Table 2.

From Table 2, we can find that on CCWEB dataset, DML,

CNNL, and CNNV methods can achieve similar promising

retrieval accuracy. Furthermore, we can also find that the

retrieval accuracy on SVD is far from satisfactory, which is

similar to the phenomenon on VCDB dataset.

The MAP results on SVDtransformation datasets are al-

so presented in Table 2. From Table 2, we can see that for

all transformations, the accuracy will be deteriorated, espe-

cially for spatial transformations.

Bad Case Analysis We present some bad cases of the best

baseline (DML) on SVD dataset in Figure 5. In Figure 5,

each element is a video which is shown as three represen-

tative frames. Each row contains a query video q(i) and its

first returned video c
(i)
1 and second returned video c

(i)
2 ac-

cording to the ranked list of DML. In all cases, the first re-

turned video c
(i)
1 isn’t the groundtruth of q(i) but the second

returned video c
(i)
2 is the groundtruth of q(i).

For the first example shown in the first row, the query

video q(1) and its groundtruth video c
(1)
2 show that a girl is

walking in a room which is decorated with illuminations.

Compared with c
(1)
2 , the query video q(1) might be a video

recorded by a smart-phone and its groundtruth video c
(1)
2 is

edited by cropping. The video c
(1)
1 shows that another girl

in a black T-shirt is walking in a room which is very similar

to the room of query video q(1). This case might not occur

for some long videos, e.g., a movie.

For the second example shown in the second row, the

query video q(2) shows that a girl is doing her hairstyle in a

barbershop. The query video q(2) and its groundtruth video

c
(2)
2 are very similar. The video c

(2)
2 is a video clip of the o-

riginal video. The video c
(2)
1 shows that another girl is doing

her hairstyle in a similar barbershop. As the clipping trans-

formation is applied on the videos, the query video and its

near-duplicate video are confused with other videos which

are not near-duplicate.

For the third example shown in the third row, the query

video q(3) shows that two men are shouting. These videos

might be a clip of a movie. The query video and it-

s groundtruth video are edited by inserting two differen-

t video templates. The content of these two videos is the

same. But detecting these near-duplicate videos might be

very challenging due to the different video templates.

From these examples, we can see that new challenges

and difficulties might be introduced by the new types of

near-duplicate videos and hard positive/negative videos in

SVD dataset.
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Table 3. MAP (%) for hashing based NDVR methods.

Dataset
LSH ITQ IsoH HDML

16 bits 32 bits 16 bits 32 bits 16 bits 32 bits 16 bits 32 bits

CCWEB 68.12 83.15 70.16 87.14 72.24 86.75 82.72 90.23

VCDB 10.33 30.88 10.68 33.31 10.60 33.30 35.96 68.92

SVD 4.34 28.36 5.16 30.14 4.85 30.88 6.47 31.59

SVDCropping 0.32 2.65 0.70 4.41 0.96 4.01 1.23 5.39

SVDBlackBorder 0.76 4.61 1.18 7.08 1.15 5.58 1.61 10.54

SVDRotation 0.06 0.09 0.04 0.43 0.07 0.24 0.54 1.95

SVDSpeeding 3.34 23.56 4.42 25.82 4.14 26.63 4.56 28.60

Table 4. Top-100 MAP (%), storage cost and retrieval time on all datasets.

Methods Dim/#bits
Top-100 MAP Storage Cost Retrieval Time (ms)

CCWEB VCDB SVD CCWEB VCDB SVD CCWEB VCDB SVD

DML 500D 97.93 84.60 81.27 48.83M 0.40G 2.25G 41.2 278.3 2203.5

CNNL 4096D 97.88 84.48 61.04
99.96M 3.29G 18.42G 266.6 2290.3 15887.3

CNNV 4096D 97.86 79.44 25.10

LSH+

16 bits

98.29 66.55 76.02

0.06M 0.60M 3.37M 1.4 17.8 88.2
ITQ+ 98.11 66.65 77.96

IsoH+ 97.92 66.58 78.19

HDML+ 97.74 77.96 76.29

LSH+

32 bits

97.81 67.19 78.80

0.09M 0.80M 4.49M 2.5 24.8 174.8
ITQ+ 97.75 66.65 78.92

IsoH+ 97.79 67.01 79.00

HDML+ 97.69 78.36 78.63

5.4. Hashing based NDVR

Accuracy In this section, we present the retrieval results of

hashing based methods on all datasets. The MAP results

are reported in Table 3. From Table 3, we can find that the

retrieval accuracy of hashing based methods are not as good

as that of real-value based NDVR methods on all datasets.

Compared with CCWEB and VCDB dataset, the retrieval

accuracy on SVD dataset is the worst. Furthermore, the

MAP results on SVDtransformation are much worse than

those on SVD in all cases.

Reranking We also carry out experiments by utilizing r-

eranking to improve the retrieval accuracy of hashing based

methods. For reranking, we set N = 0.1×M , where M is

the number of videos in database7 for each query. Here the

videos in database contain labeled videos and background

distraction videos or probable negative unlabeled videos

In Table 4, we report the top-100 MAP, storage cost for

database and average retrieval time per query. The “LSH+”

denotes the LSH algorithm with reranking and the other no-

tations are defined similarly. From Table 4, we can find

that after reranking, the retrieval accuracy of hashing based

methods is comparable with real-value based methods in

most cases. Furthermore, the storage cost for hashing based

methods is much smaller than that of real-value based meth-

7As the number of labeled videos for different query videos is different,

the M for different query videos is also different.

ods. In addition, we can see that hashing based methods

are much faster than real-value based methods. Hence, for

large-scale applications, hashing based methods are usually

more practical than real-value based methods.

6. Conclusion

In this paper, we introduce a novel large-scale short

video dataset, called SVD, for NDVR. This dataset contain-

s over 500,000 short videos collected from a large video

platform and over 30,000 labeled videos of near-duplicate

videos. We utilize multiple mining strategies to mine hard

positive/negative samples from massive short videos. Fur-

thermore, we design some temporal and spatial transforma-

tions to mimic users’ copy-and-edit behavior in real appli-

cations and construct more challenging variants of SVD.

SVD is the first short video dataset, and it is also the largest

dataset for NDVR. The release of SVD will foster the re-

search of NDVR, especially NDVR for short videos.
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and Georges Quénot. TRECVID 2010 - an overview of the

goals, tasks, data, evaluation mechanisms and metrics. In

TRECVID workshop, 2010.
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