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Abstract

Distillation-based learning boosts the performance of

the miniaturized neural network based on the hypothesis

that the representation of a teacher model can be used as

structured and relatively weak supervision, and thus would

be easily learned by a miniaturized model. However, we

find that the representation of a converged heavy model is

still a strong constraint for training a small student model,

which leads to a higher lower bound of congruence loss.

In this work, we consider the knowledge distillation from

the perspective of curriculum learning by teacher’s rout-

ing. Instead of supervising the student model with a con-

verged teacher model, we supervised it with some anchor

points selected from the route in parameter space that the

teacher model passed by, as we called route constrained op-

timization (RCO). We experimentally demonstrate this sim-

ple operation greatly reduces the lower bound of congru-

ence loss for knowledge distillation, hint and mimicking

learning. On close-set classification tasks like CIFAR and

ImageNet, RCO improves knowledge distillation by 2.14%

and 1.5% respectively. For the sake of evaluating the gener-

alization, we also test RCO on the open-set face recognition

task MegaFace. RCO achieves 84.3% accuracy on one-to-

million task with only 0.8 M parameters, which push the

SOTA by a large margin.

1. Introduction

The performance of Convolutional Neural Network

(CNN) can be significantly improved by the deeper and

wider design of network structure. Whereas, it is hard to

deploy these heavy networks on energetic consumption pro-

cessor with limited memory. One way to deal with this situ-

ation is to make a trade-off between performance and speed

by designing a miniaturized model to reduce the compu-

∗Equal contribution.

tational workload, at the cost of performance degradation.

Thus, narrowing the performance gap between heavy model

and miniaturized model becomes a research focus in recent

years. Many methods were proposed to tackle this problem,

such as model pruning [6, 15], quantization [12, 28] and

knowledge transfer [10, 24].
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Figure 1: Comparing to targeting only a converged teacher like

KD and Hint-based learning, RCO narrows the performance gap

by gradually mimicking the route sequence of teacher.

Among these approaches, knowledge distillation (KD)

performs as an essential way to optimize a static model by

mimicking the behavior (final predictions [10] or activations

of hidden layers [24]) of a powerful teacher network, as

shown in Figure 1(a) and Figure 1(b). Guided by this soft-

ened knowledge, a student network could pay more atten-

tion to extra supervision such as the probability correlation

between classes rather than the one-hot label.

Previous methods only consider the final converged

teacher model to teach small student network, which may

result that the student stucks in approximating teacher’s per-

formance along with the increasing gap (in capacity) be-

tween teacher and student [22]. We observe that student
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supervised by teacher’s early training stage has a much

smaller performance gap with its teacher than that super-

vised by teacher’s latter training stage. From the perspec-

tive of curriculum learning [1], a reasonable explanation be-

yond this observation is that teacher’s knowledge is gradu-

ally becoming harder along with the training process. We

claim that the intermediate states that teacher passed by are

also valuable knowledge for easing the learning process and

lowering the error bound of the student.

Based on this philosophy, we propose a new method

called RCO which supervises student with the teacher’s op-

timization route. Figure 1(c) shows the whole framework of

RCO. Comparing to the single converged model, the route

of teacher contains extra knowledge through providing an

easy-to-hard learning sequence. By gradually mimicking

such sequence, the student can learn more consistent with

the teacher, therefore narrowing the performance gap. Be-

sides, we analyze the impact of different learning sequence

on performance and propose an efficient method based on

a greedy strategy for generating sequence, which can be

used to shorten the training paradigm meanwhile maintain-

ing high performance.

Extensive experiments on CIFAR-100, ImageNet-1K

and large scale face recognition show that RCO signifi-

cantly outperforms knowledge distillation and other SOTA

methods on all the three tasks. Moreover, our method can

be combined with previous knowledge transfer methods and

boost their performance. To sum up, our contribution could

be summarized into three parts:

• We rethink the knowledge distillation model from the

perspective of teacher’s optimization path and get an

significant observation that learning from the con-

verged teacher model is not the optimal way.

• Based on the observation, we propose a novel method

named RCO which utilizes the route in parameter

space teacher network passed by as a constraint to

bring a better optimization to student network.

• We demonstrate that the proposed RCO can be easily

applied to both knowledge distillation and hint learn-

ing. Under the same data and computational cost, RCO

outperforms KD by a large margin on CIFAR, Im-

ageNet and a one-to-million face recognition bench-

mark Megaface.

2. Related Work

Neural Network Miniaturization. Many works study

the problem of neural network miniaturization. They could

be categorized into two methods: designing small network

structure and improving the performance of small network

via knowledge transfer. As for the former, many modi-

fications on convolution were proposed since the original

convolution took up too many computation resources. Mo-

bileNet [11] used depth-wise separable convolution to build

block, ShuffleNet [31] used pointwise group convolution

and channel shuffle. These methods could maintain a de-

cent performance without adding too much computing bur-

den at inference time. Besides, many studies [7, 23, 19, 9]

focus on network pruning, which boosts the speed of infer-

ence through removing redundancy in a large CNN model.

Han et al. [7] proposed to prune nonsignificant connections.

Molchanov et al. [23] presented that they could prune fil-

ters with low importance, which were ranked by the im-

pact on the loss. They approximated the change in the loss

function with Taylor expansion. These methods typically

need to tune the compression ratio of each layer manually.

Most recently, Liu et al. [19] presented the network slim-

ming framework. They constrained the scale parameters of

each batch normalization [13] layer with sparsity penalty

such that they could remove corresponding channels with

lower scale parameters. He et al. [9] proposed to adopt re-

inforcement learning to exploit the design space of model

compression. They benefited more from replacing manu-

ally tuning with automatical strategies.

As for the latter, the most two popular knowledge

transfer methods are Knowledge Distillation [10] and Fit-

Net [24]. We mainly consider these situations in this work.

Knowledge Distillation for Classification. Efficiently

transferring knowledge from large teacher network to small

student network is a traditional topic which has drawn more

and more attention in recent years. Caruana et al. [2] advo-

cated it for the first time. They claimed that knowledge of an

ensemble of models could be transferred to the other single

model. Then Hinton et al. [10] further claimed that knowl-

edge distillation (KD) could transfer distilled knowledge to

student network efficiently. By increasing the temperature,

the logits (the inputs to the final softmax) contain richer in-

formation than one-hot labels. Afterward, [14] proposed to

learn the curriculum from data by a network called Mentor-

Net. [18] adopted a method to learn from noisy labels.

Learning Representation from Hint. Hint-based learn-

ing is often used for open-set classification such as face

recognition and person Re-identification. FitNet [24] firstly

introduced more supervision by exploiting intermediate-

level feature maps from the hidden layers of teacher to

guide training process of student. Afterward, Zagoruyko

et al. [30] proposed the method to transfer attention maps

from teacher to student. Yim et al. [29] defined the distilled

knowledge from teacher network as the flow of the solu-

tion process (FSP), which is calculated by the inner product

between feature maps from two selected layers.

Previous knowledge transfer methods only supervise stu-

dent with converged teacher, thus fail to capture the knowl-

edge during teacher’s training process. Our work differs

from existing approaches in that we supervise student with

the knowledge transferred from teacher’s training trajectory.
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Training Step for Student Network
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Figure 2: The overall framework of RCO. Previous knowledge transfer method only considers the converged teacher model. While RCO

aims to supervise student with intermediate training state of teacher.

3. Route Constrained Optimization

3.1. Teacher­Student Learning Mechanism

For better illustration, we refer teacher network as φt

with parameters Wt, and student network as φs with pa-

rameters Ws. Pt = softmax(zt) and Ps = softmax(zs)
represent output predictions of teacher and student re-

spectly, zt and zs for logits of teacher and student. The

idea beyond KD is to let the student mimic the behavior

of teacher by minimizing the cross-entropy loss and Kull-

back–Leibler divergence between predictions of teacher and

student as follows:

LKD = H(Ps, y) + λKL(P τ
s , P

τ
t ), (1)

where τ is a relaxation hyperparameter (referred as Temper-

ature in [10]) for softening the output of teacher network,

and λ is a hyper-parameter for balancing cross-entropy and

KL divergence loss. In several works [26, 17] the KL diver-

gence is replaced by euclidean distance,

Lmimic =
1

n

n∑

i=1

‖fs − ft‖
2

2
, (2)

f represents the feature representations.

3.2. Difficulty in Optimizing Student

In common, the teacher invokes a larger and deeper net-

work for arriving at a lower local minimum and achieving

higher performance. It is hard for a smaller and shallower

student to mimic such a large teacher due to the huge gap (in

capacity) between teacher and student[22]. Usually, the net-

work is trained to minimize the objective function by using

stochastic gradient descent. Due to the high non-convex of

the loss function, there are many local minima in the train-

ing process of deep neural networks. When the network

converges to a certain local minimum, its training loss will

converge to a certain (or similar) value regardless of differ-

ent initializations.

Network Epoch 10 40 120 240

ResNet-50
T top-1(%) 53.07 56.53 77 79.52

T loss 1.680 1.199 0.067 0.009

MobileNetV2
S top-1(%) 51.21 57.62 66.05 68.71

S loss 0.511 1.189 3.758 4.218

Table 1: The performance of student network trained with different

epochs from teacher’s training trajectory on CIFAR-100 dataset.

“T” and “S” stand for teacher and student separately. “loss” repre-

sents training loss.

Could we reach a better local-minimal than this con-

dition? We consider changing the optimization objective.

More specifically, the student is trained by mimicking less

deterministic target first, then moving forward to determin-

istic one, hoping in this way the student has a smaller gap

with the teacher. To validate this, we use different interme-

diate states of teacher to supervise student, and use the train-

ing loss and top-1 accuracy to evaluate the difference be-

tween target teacher and converged student. MobileNetV2

[25] is adopted as student and ResNet-50 [8] as teacher. The

teacher network is trained by cross-entropy loss, and the

student network is trained by KD loss. We select check-

points of teacher at 10th epoch, 40th epoch, 120th epoch,

and 240th epoch as the target to train student network sepa-

rately. The checkpoint at 240th epoch is the final converged

model, and checkpoint at 10th epoch is least deterministic

in the analysis.

Table 1 summarizes the results. It can be observed from

the table that the student guided by the less deterministic

target has lower training loss, and more convergent target

brings larger gap in performance. In other words, the more
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convergent teacher means a harder target for the student to

approach.

Inspired by curriculum learning [1] that the local min-

ima can be promoted by the easy-to-hard learning process,

we take the sequence of teacher’s intermediate states as the

curriculum to help the student reach a better local minimum.

3.3. RCO

For better illustration, we refer the intermediate train-

ing states (checkpoints) used to form the learning sequence

as anchor points. Suppose there are n anchor points on

the teacher’s trajectory. The overall framework of RCO is

shown in Figure 2.

Without loss of generality, let C = C1, C2, ..., Cn repre-

sent the anchor points set, and the correpsonding outputs

are φt(x;WC1
), φt(x;WC2

), ..., φt(x;WCn
) . The train-

ing process for student is started from random initialization.

Then we train the student step-by-step to mimic the anchor

point on teacher’s trajectory until finishing training with the

last anchor point. At ith step, the learning target of student

is switched to the output φt(x;WCi
) of ith anchor point.

The optimization goal of ith step is as follows:

LKD(Ws,WCi
) =H(φs(x;Ws), y)+

λH(φs(x;Ws), φt(x;WCi
)),

(3)

where i ∈ {1, 2, ..., n}. The parameter Ws is optimized by

learning to these anchor points sequentially. Algorithm 1

describes the details of the whole training paradigm.

Algorithm 1 Route Constrained Optimization

Require: anchor points set from pre-trained teacher net-

work: C1, C2, ..., Cn, student network with parameter

Wi

i = 1
Randomly initialize Wi

while i ≤ n do

Initialize teacher network with Ci anchor, get WCi

if i > 1 then

Initialize Wi with Wi−1

end if

update the Wi by optimizing LKD(Wi,WCi
)

i = i+ 1
end while

get Wn as the final weights of student.

3.4. Rationale for RCO

From the perspective of curriculum learning, the easy-to-

hard learning sequence can help the model get a better local

minimum [1]. RCO is similar to curriculum learning but

different in that it provides an easy-to-hard labels sequence

on teacher’s trajectory.

Let Yi be the output of ith anchor point. The outputs

of whole anchor points constrcut the space Ω = {Yi|i =
1, 2, ..., n}. The results shown in Table 1 premises that the

intermediate states on teacher’s trajectory construct an easy-

to-hard sequence, e.g. Yi is easier to mimic than Yi+1 while

Yn, the converged model, is the hardest objective for a small

student.

Let the X be the training data. The training data and

output of ith anchor pair (X ,Yi) provide a lesson. Then the

curriculum sequence can be formulated as follows:

{(X ,Yi)|i = 1, ..., n}. (4)

Without loss of generality, let Lλ(X ; θ) represents a

single-parameter family of cost functions such that L1 can

be easily optimized, while LN is the criterion that we ac-

tually wish. During the sequential training of RCO, in-

creasing λ means adding the hardness of learning through

switching anchor points. Let D represent the hardness met-

ric for a learning target. As shown in Section 3.2, more con-

vergence of anchor means more hardness of learning target,

D(φ(X ,WCi
) < D(φ(X ,WCi+1

) ∀i > 0. (5)

In curriculum learning [1] the sequence of learning is gener-

ated by spliting the X in to several “lessons” with different

hardness depending on a predefined criterion. While RCO

can be seen as a more flexible approach, which gradually

changes the hardness of target labels Y . Both curriculum

learning and RCO work by easy-to-hard learning to move θ

gradually into the basin of attraction of a dominant (if not

global) minimum [1].

3.5. Strategy for Selecting Anchor Points

Equal Epoch Interval Strategy. Typically, the teacher

network could produce tremendous checkpoints during the

training process. To find the optimal learning sequence, one

can search it with brute force. However, given n possible

intermediate states, there are 2n possible sequences, which

is impractical to implement. A straightforward strategy is

supervising the student by every state (epoch/iteration) on

teacher’s trajectory. However, mimicking every state is dis-

pensable and time-consuming since adjacent training states

are very close to each other. Given limited time, a more ef-

ficient way is to sample epochs with equal epoch interval

(EEI), e.g. select one for every four epochs.

Although efficient in time, EEI is a quite simple ad-hoc

method that ignores the hardness between different anchor

points, and it would lead to an improper curriculum se-

quence. The desirable property of the curriculum sequence

should be efficient to quickly learn and smooth in hardness

to better bridge the gap between teacher and student.

Greedy Search Strategy. To delve into optimization

route of student when learning to teacher, we count the KL
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Figure 3: The curve of KL divergence loss between student su-

pervised by teacher’s different epochs (30th, 100th, 180th) and

teacher’s all 240 epochs on validation set.

divergence between outputs of student and different target

states of teacher on validation set, which consists of 10k

examples random sampled from training set. The teacher

is trained by dropping learning rate at 60th,120th,180th

epochs. We choose 30th, 100th, and 180th epochs as tar-

get states to supervise the student respectively. Figure 3

shows the KL divergences curve between student and in-

termediate states of teacher. From the figure we can ob-

serve that the student supervised by teacher’s 30th epoch

is very close with teacher’s 30th epoch, but has large gap

with teacher’s latter epochs, especially after teacher drop-

ping learning rate. The same observations can be found

from student supervised by teacher’s other epochs.

Table 1 and Figure 3 give us two insights: a particular

student has the ability to learn harder target limited in a cer-

tain range; supervised by a better teacher would promote

the ability of student.
Inspired by these insights, we propose a greedy search

strategy (GS) to find efficient and hardness-smooth curricu-
lum sequence. The goal of greedy strategy is to find the one
which is on the boundary of range that student can learn. To
find those boundary anchor points, a metric is introduced as
follows:

rij =
Hj −Hi

Hi

, i, j ∈ {i+ 1, i+ 2, ..., N},

Hi = H(φs(X
′

,Ws), φt(X
′

,Wti),

Hj = H(φs(X
′

,Ws), φt(X
′

,Wtj ),

(6)

where H is the KL divergence, and X
′

is the validation set.

rij evaluates the hardness of jth epochs of teacher for a stu-

dent guided by ith epochs. Then we refer a hyper-parameter

δ as the threshold which indicates the learning ability of stu-

dent. When rij > δ, it means that jth epoch is hard for

student trained by ith to learn, and rij < δ means inverse.

Based on the above philosophy, we give the complete GS

strategy in Algorithm 2.

It seems the anchor points that near the point of tuning

learning rate are more important than other anchor points.

Intuitively, according to Algorithm 2, the optimal learning

sequence must contain at least one anchor point from dif-

ferent learning rate stage. Since this section mainly focuses

on the strategy for anchor points selection, we provide the

empirical value of δ = 0.8 for MobileNetV2 to achieve a

better balance between performance and training cost. Note

that although our experiments are based on SGD, GS is also

applicable for other optimization methods like SGDR[20],

since prerequisites are still true.

Algorithm 2 Greedy Search

Require: Student network with parameter Ws after mim-

icking former ith anchor point Ci, where i ∈
{1, 2, ..., N}, relaxation factor δ.

compute KL divergence Hi

j = i+ 1
while j < N do

compute Hj on validation set

compute rij =
Hj−Hi

Hi

if rij > δ then

Return j-1;

end if

j = j + 1
end while

Return N;

4. Experiments

Common Settings. The backbone network for teacher

in all experiments is ResNet-50. For the student structure,

instead of using smaller ResNet, we use more compact Mo-

bileNetV2 as well as its variants with different FLOPs, since

MobileNetV2 has proven to be highly effective in keeping

high accuracy while maintaining low FLOPs in many tasks.

Expansion ratio and width multiplier are two tunable pa-

rameters to control the complexity of the MobileNetV2. We

make default configuration by setting expansion ratio to 6

and width multiplier to 0.5. The relaxation is 5 in KD loss.

Note that all these experiments are based on GS that usually

produces about 4 anchor points.

4.1. Experiment on CIFAR­100

The CIFAR-100 dataset contains 50 000 images in train-

ing set and 10 000 images in validation set with size 32×32.

In this experiment, for the teacher network we set initial

learning rate to 0.05 and divide it by 10 at 150th, 180th,

210th epochs and we train for 240 epochs. We set weight

decay to 5e-4, batch size to 64 and use SGD with momen-
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tum. For the student network, the setting is almost identical

with teacher’s except that the initial learning rate is 0.01.

We compare the top-1 accuracy of CIFAR-100 dataset

and show the result in Table 2. From the result we can find

that our method improves about 2.1% on top-1 compared

with KD.

Although the base student network is small and fast, it

is common that some specific cases or applications require

the model to be smaller and faster. To further investigate

the effectiveness of the proposed method, we conduct ex-

tensive experiments by applying RCO to a series of Mo-

bileNetV2 with different width multipliers and expansion

ratios. We set expansion ratio to 4, 6, 8, 10 and width mul-

tiplier to 0.35, 0.5, 0.75, 1.0 separately, which forms to-

tally 16 different combinations. The FLOPs of these mod-

els are shown at Table 3. We rank the model according to

the width multiplier and draw the result on Figure 4. From

the figure we can make the following observations: (i) The

proposed method exhibits consistently superiority in all set-

tings. (ii) The student network with smaller capacity(e.g.

MobileNetV2 with T=4, Width=0.35) generally gains more

improvement from RCO. (iii) Although the model with ex-

pansion ratio set to 10 and width multiplier set to 0.35 has

larger FLOPs than the model with expansion ratio set to 4

and width multiplier set to 0.5, the former setting shows

performance reduction among all three methods. It indi-

cates that parameterizing expansion ratio with 10 and width

multiplier to 0.35 largely limits representation power.

Method Network MFlops top-1 Loss

T-Softmax ResNet-50 2.6k 79.34 -

S-Softmax MobileNetV2 13.5 61.88 -

S-KD MobileNetV2 13.5 68.71 1.59

S-RCO MobileNetV2 13.5 70.85 1.45

Table 2: Results on CIFAR-100

Expansion ratio
Width multiplier

0.35 0.5 0.75 1.0

4 5.4 9.8 19.3 32.1

6 7.3 13.5 27.2 45.6

8 9.1 17.1 35 59.1

10 11 20.8 42.8 72.6

Table 3: Complexity (MFLOPs) for MobileNetV2 with different

settings

4.2. Experiment on ImageNet

The ImageNet dataset contains 1000 classes of images

with various sizes. It is the most popular dataset in classi-

fication task. In this experiment, for the training of teacher

network, we set initial learning rate to 0.4 and drop by 0.1

Figure 4: CIFAR-100 top-1 accuracy of MobileNetV2 with dif-

ferent settings. The “Width” in x-axis represents width multiplier

and “T” in the title stands for the expansion ratio. The proposed

method acquires more promotion with smaller student network.

at 15k, 30k and 45k iterations and we train for 50k itera-

tions. We set weight decay to 5e-4, batch size to 3072 and

use SGD with momentum. As for the student network, we

set initial learning rate to 0.1 and drop by 0.1 at 45k, 75k

and 100k iterations and we train for 130k iterations. We set

weight decay to 5e-4, batch size to 3072 and use SGD with

momentum. In order to keep training stable, we use warm-

up suggested by [4] when training with large batch size. We

compare the top-1 and top-5 accuracy of ImageNet dataset

and show the result in Table 4. From the result we can find

that our method improves about 1.5%/0.7% on top-1/top-5

compared with KD, which verifies that RCO is applicable

to large-scale classification.

Method Network top-1 top-5

Teacher-Softmax ResNet-50 75.49 92.48

Student-Softmax MobileNetV2 64.2 85.4

Student-KD MobileNetV2 66.75 87.3

Student-RCO MobileNetV2 68.21 88.04

Table 4: Results on ImageNet

4.3. Experiment on Face Recognition

Unlike classification, the network in face recognition

usually contains a feature layer implemented as a fully-

connected layer to represent the projection of each identity.

Empirical evidence [21] shows that mimicking the feature

layer as the way used in FitNet [24] could bring more im-

provements for student network. We follow this setting in

our baseline experiments.

We take two popular face recognition datasets MS-

Celeb-1M [5] and IMDb-Face [27] as our training set and

validate our method on MegaFace. The MS-Celeb-1M
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is a large public face dataset which contains one million

identities with different age, sex, skin, and nationality and

is widely used in face recognition area. The IMDb-Face

dataset contains about 1.7 million faces, 59k identities. All

images are obtained from IMDb website. The MegaFace is

one of the most popular benchmarks that could perform face

recognition under up to 1 million distractors. This bench-

mark is evaluated through probe and gallery images from

FaceScrub.

In this experiment, for the teacher network, we set ini-

tial learning rate to 0.1 and drop by 0.1 at 100k, 140k, 170k

iterations and we train for 220k iterations. We set weight

decay to 5e-4, batch size to 1024 and use SGD with mo-

mentum. We resize the input image to 224×224 without

augmentation. We use ArcFace [3] to train the teacher net-

work. As for the student network, we set initial learning

rate to 0.05 and drop by 0.1 at 180k, 210k iterations and we

train for 240k iterations. The rest settings are identical to

the teacher.

We show our result on Table 5. From the table we can see

that on this challenging face recognition task, RCO largely

boosts the performance of MobileNetV2 [25] compared to

original hint-based learning.

top-1 @ distractor size

Method e1 e2 e3 e4 e5 e6

Teacher 99.78 99.67 99.38 98.86 97.70 94.83

Softmax 99.20 96.37 91.49 84.45 75.60 65.91

FitNet 99.62 98.80 96.83 93.53 88.28 81.02

RCO 99.69 99.01 97.52 94.84 90.55 84.3

Table 5: Results on MegaFace

4.4. Ablation Studies

Although RCO achieves decent result in previous experi-

ments, the extra training time that it brings is not negligible.

Even if we just construct the learning sequence with 4 an-

chor points, it still needs 4 times training epochs compared

with KD or Softmax. Since training time plays an impor-

tant role in either research or industrial, we consider using

the same time as KD to verify the robustness of RCO. Note

that we set expansion ratio to 4 and width multiplier to 0.35

for the backbone MobileNetV2 in this section.

Comparison under Limited Training Epochs. Pre-

vious experiments commonly need more training epochs

than KD. Consider performing RCO with EEI strategy on

CIFAR-100. Let Mgap be the epoch interval used in EEI.

To get 4 anchor points, we can set Mgap to 60. Then the

selected anchor points should be 60th, 120th, 180th, and

240th epoch. The student trained with the learning sequence

needs 960 epochs in total since each anchor point is trained

for 240 epochs to ensure convergence.

We then speed up the EEI strategy from multi-stage to

one stage (one-stage EEI), where we only train student for

240 epochs, by simply modifying the training paradigm as

follows: the student is initially supervised by 60th epoch of

teacher for the student’s first 60 epochs, then supervised by

teacher’s 120 epoch for the next 60 epochs, and so on.

In one-stage EEI, it is natural to evaluate the impact of

different number of anchor points. Let K be the size of

training set. We start the Mgap from the smallest case,

where Mgap is 1/(K /BatchSize) (It is 1.28E-3 in Table 6,

which means student mimic teacher’s every iteration). Then

gradually increase Mgap to the largest case, where Mgap is

the maximum epoch (240) and RCO degrades into KD.

From the perspective of optimization route, we find

method in [33] could be regarded as a particular case of

RCO when setting Mgap to the smallest value, and match-

ing logits with KD loss instead of MSE loss. Besides, We

also follow [32] to implement DML and make a comparison

with KD. The result in Table 6 shows that RCO outperforms

other methods in all settings. By properly selecting Mgap to

10, RCO gets 4.2% and 3.8% improvement on CIFAR-100

compared with KD and DML respectively.

Method Mgap Anchor Number top-1

DML[32] - - 61.13

RL[33] 1.28E-3 187500 61.63

RCO

1 240 62.74

2 120 63.78

4 60 64.21

10 24 65.01

20 12 63.88

60 4 64.5

KD 240 1 60.79

Table 6: Comparison of RCO based on One-stage EEI with other

knowledge transfer methods under limited training epochs. It

clearly shows RCO outperforms other methods by using same

training epochs.

Comparison on Different Strategies. Since the strat-

egy is the most crucial part of RCO, we make a compari-

son between these strategies. For practical considerations,

we limit the training epoch to no more than four times the

epochs of KD. We have chosen the following strategies to

compare: one-stage EEI, EEI-x, GS, where the “x” in

“EEI-x” represents the number of selected anchor points

with EEI strategy. The results are shown in Table 7. From

the result we make the following observations: 1) all strate-

gies show great superiority to KD, 2) GS is the best strategy

among them, thus should be used when training time is not

a constraint.

4.5. Visualization

Visualization of Trajectory. In order to further analyze

our method, we plot student’s training trajectory using PCA
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Strategy one-stage Mgap Total Epoch top-1

KD ✓ 240 240 60.79

one-stage EEI ✓ 10 240 65.01

EEI-2 ✗ 120 480 61.43

EEI-3 ✗ 80 720 63.34

EEI-4 ✗ 60 960 65.27

GS ✗ - 720 65.41

Table 7: Comparison of RCO based on different strategies on

CIFAR-100. GS achieves the best result among all strategies.

Figure 5: Visualization of student’s training trajectories by PCA

directions for MobileNetV2 on CIFAR-100 dataset. These stu-

dent networks are trained by different methods (SoftMax, KD, and

Ours) and initialized with the same random parameters. The red

curve stands for student trained with RCO, the blue dot on the line

represents the location guided by intermediate anchor point. The

red curve arrives at the lowest local minimum among them.

directions suggested by Li et al. [16]. The process is as

follows: Given n training epochs, let Wmi
denote model

parameters at epoch i and the final estimate as Wmn
. Then

we apply PCA to the matrix [Wm0
− Wmn

; ...;Wmn−1
−

Wmn
] and choose the most two principal directions.

In Figure 5 the training trajectory of MobileNetV2 on

CIFAR-100 is plotted for student in three modes: 1) Soft-

max, 2) KD, 3) the proposed method (Ours). For a fair com-

parison, three students are initialized with the same param-

eters (marked as red dot) and are trained for 240 epochs

each, where RCO uses one-stage EEI with three anchor

points. For the curve of RCO, the blue dots on the line show

the epochs where student is guided by intermediate anchor

points. For KD or Softmax, epochs where the learning rate

was decreased are shown as black dots.

The first anchor point keeps the student away from

the direction suggested by Softmax or KD and arrives at

an intermediate state. The state itself may not lie in a

well-performed parameter space, but with the guidance of

ẟ

Figure 6: The curve of loss gap between KD loss and RCO loss

along with Gaussian noise. δ represents the scale of Gaussian

noise. ∆loss represents the loss gap between KD loss to RCO loss.

Larger ∆loss means lower loss of RCO than KD. The bottom row

shows part of noised images.

succeeding anchor points the student network eventually

reaches to a deeper local minimum, which has adequately

demonstrated the importance of optimization route from

teacher network.

Visualization of Robustness to Noise. Besides the vi-

sualization of optimization trajectory, we also observe that

the new local minimum has better generalization capacity

and is more robust to random noise in input space. We con-

sider bringing noise to the testing image. Firstly we calcu-

late the standard deviation σin for each image and set the

δ ranging from 0.0 to 1.0 by step 0.1. The noise is sam-

pled from N (0, σ2), where σ = σin ∗ δ. We choose some

noised images and show them at the bottom row of Figure

6. The images are clear at first column, but as the δ in-

creases, the images become illegible, especially for the last

column. We ran this experiment on model trained both with

KD and RCO and compared their loss. The loss gap from

KD to RCO becomes more significant as the increasing of δ,

which suggests that model trained with RCO is more robust

to noise than KD. The result is on top of Figure 6.

5. Conclusion

We have proposed a simple but effective and generally

applicable method to boost the performance of small stu-

dent network. By constructing an easy-to-hard sequence

of learning target, student network could achieve much

higher performance compared with other knowledge trans-

fer methods. Moreover, we offer two available strategies to

construct the sequence of anchor points. For future work,

we would like to explore the strategy to design the learning

sequence automatically.
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