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Abstract

Distillation-based learning boosts the performance of
the miniaturized neural network based on the hypothesis
that the representation of a teacher model can be used as
structured and relatively weak supervision, and thus would
be easily learned by a miniaturized model. However, we
find that the representation of a converged heavy model is
still a strong constraint for training a small student model,
which leads to a higher lower bound of congruence loss.
In this work, we consider the knowledge distillation from
the perspective of curriculum learning by teacher’s rout-
ing. Instead of supervising the student model with a con-
verged teacher model, we supervised it with some anchor
points selected from the route in parameter space that the
teacher model passed by, as we called route constrained op-
timization (RCO). We experimentally demonstrate this sim-
ple operation greatly reduces the lower bound of congru-
ence loss for knowledge distillation, hint and mimicking
learning. On close-set classification tasks like CIFAR and
ImageNet, RCO improves knowledge distillation by 2.14%
and 1.5% respectively. For the sake of evaluating the gener-
alization, we also test RCO on the open-set face recognition
task MegaFace. RCO achieves 84.3% accuracy on one-to-
million task with only 0.8 M parameters, which push the
SOTA by a large margin.

1. Introduction

The performance of Convolutional Neural Network
(CNN) can be significantly improved by the deeper and
wider design of network structure. Whereas, it is hard to
deploy these heavy networks on energetic consumption pro-
cessor with limited memory. One way to deal with this situ-
ation is to make a trade-off between performance and speed
by designing a miniaturized model to reduce the compu-

*Equal contribution.

tational workload, at the cost of performance degradation.
Thus, narrowing the performance gap between heavy model
and miniaturized model becomes a research focus in recent
years. Many methods were proposed to tackle this problem,
such as model pruning [6, 15], quantization [12, 28] and
knowledge transfer [10, 24].
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Figure 1: Comparing to targeting only a converged teacher like

KD and Hint-based learning, RCO narrows the performance gap
by gradually mimicking the route sequence of teacher.

Among these approaches, knowledge distillation (KD)
performs as an essential way to optimize a static model by
mimicking the behavior (final predictions [10] or activations
of hidden layers [24]) of a powerful teacher network, as
shown in Figure 1(a) and Figure 1(b). Guided by this soft-
ened knowledge, a student network could pay more atten-
tion to extra supervision such as the probability correlation
between classes rather than the one-hot label.

Previous methods only consider the final converged
teacher model to teach small student network, which may
result that the student stucks in approximating teacher’s per-
formance along with the increasing gap (in capacity) be-
tween teacher and student [22]. We observe that student
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supervised by teacher’s early training stage has a much
smaller performance gap with its teacher than that super-
vised by teacher’s latter training stage. From the perspec-
tive of curriculum learning [1], a reasonable explanation be-
yond this observation is that teacher’s knowledge is gradu-
ally becoming harder along with the training process. We
claim that the intermediate states that teacher passed by are
also valuable knowledge for easing the learning process and
lowering the error bound of the student.

Based on this philosophy, we propose a new method
called RCO which supervises student with the teacher’s op-
timization route. Figure 1(c) shows the whole framework of
RCO. Comparing to the single converged model, the route
of teacher contains extra knowledge through providing an
easy-to-hard learning sequence. By gradually mimicking
such sequence, the student can learn more consistent with
the teacher, therefore narrowing the performance gap. Be-
sides, we analyze the impact of different learning sequence
on performance and propose an efficient method based on
a greedy strategy for generating sequence, which can be
used to shorten the training paradigm meanwhile maintain-
ing high performance.

Extensive experiments on CIFAR-100, ImageNet-1K
and large scale face recognition show that RCO signifi-
cantly outperforms knowledge distillation and other SOTA
methods on all the three tasks. Moreover, our method can
be combined with previous knowledge transfer methods and
boost their performance. To sum up, our contribution could
be summarized into three parts:

e We rethink the knowledge distillation model from the
perspective of teacher’s optimization path and get an
significant observation that learning from the con-
verged teacher model is not the optimal way.

e Based on the observation, we propose a novel method
named RCO which utilizes the route in parameter
space teacher network passed by as a constraint to
bring a better optimization to student network.

e We demonstrate that the proposed RCO can be easily
applied to both knowledge distillation and hint learn-
ing. Under the same data and computational cost, RCO
outperforms KD by a large margin on CIFAR, Im-
ageNet and a one-to-million face recognition bench-
mark Megaface.

2. Related Work

Neural Network Miniaturization. Many works study
the problem of neural network miniaturization. They could
be categorized into two methods: designing small network
structure and improving the performance of small network
via knowledge transfer. As for the former, many modi-
fications on convolution were proposed since the original
convolution took up too many computation resources. Mo-

bileNet [11] used depth-wise separable convolution to build
block, ShuffleNet [31] used pointwise group convolution
and channel shuffle. These methods could maintain a de-
cent performance without adding too much computing bur-
den at inference time. Besides, many studies [7, 23, 19, 9]
focus on network pruning, which boosts the speed of infer-
ence through removing redundancy in a large CNN model.
Han et al. [ 7] proposed to prune nonsignificant connections.
Molchanov et al. [23] presented that they could prune fil-
ters with low importance, which were ranked by the im-
pact on the loss. They approximated the change in the loss
function with Taylor expansion. These methods typically
need to tune the compression ratio of each layer manually.
Most recently, Liu et al. [19] presented the network slim-
ming framework. They constrained the scale parameters of
each batch normalization [13] layer with sparsity penalty
such that they could remove corresponding channels with
lower scale parameters. He et al. [9] proposed to adopt re-
inforcement learning to exploit the design space of model
compression. They benefited more from replacing manu-
ally tuning with automatical strategies.

As for the latter, the most two popular knowledge
transfer methods are Knowledge Distillation [10] and Fit-
Net [24]. We mainly consider these situations in this work.

Knowledge Distillation for Classification. Efficiently
transferring knowledge from large teacher network to small
student network is a traditional topic which has drawn more
and more attention in recent years. Caruana et al. [2] advo-
cated it for the first time. They claimed that knowledge of an
ensemble of models could be transferred to the other single
model. Then Hinton er al. [10] further claimed that knowl-
edge distillation (KD) could transfer distilled knowledge to
student network efficiently. By increasing the temperature,
the logits (the inputs to the final softmax) contain richer in-
formation than one-hot labels. Afterward, [14] proposed to
learn the curriculum from data by a network called Mentor-
Net. [18] adopted a method to learn from noisy labels.

Learning Representation from Hint. Hint-based learn-
ing is often used for open-set classification such as face
recognition and person Re-identification. FitNet [24] firstly
introduced more supervision by exploiting intermediate-
level feature maps from the hidden layers of teacher to
guide training process of student. Afterward, Zagoruyko
et al. [30] proposed the method to transfer attention maps
from teacher to student. Yim et al. [29] defined the distilled
knowledge from teacher network as the flow of the solu-
tion process (FSP), which is calculated by the inner product
between feature maps from two selected layers.

Previous knowledge transfer methods only supervise stu-
dent with converged teacher, thus fail to capture the knowl-
edge during teacher’s training process. Our work differs
from existing approaches in that we supervise student with
the knowledge transferred from teacher’s training trajectory.
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Figure 2: The overall framework of RCO. Previous knowledge transfer method only considers the converged teacher model. While RCO

aims to supervise student with intermediate training state of teacher.

3. Route Constrained Optimization
3.1. Teacher-Student Learning Mechanism

For better illustration, we refer teacher network as ¢;
with parameters W;, and student network as ¢ with pa-
rameters Ws. P, = softmax(z;) and Ps = softmax(zs)
represent output predictions of teacher and student re-
spectly, z; and z, for logits of teacher and student. The
idea beyond KD is to let the student mimic the behavior
of teacher by minimizing the cross-entropy loss and Kull-
back-Leibler divergence between predictions of teacher and
student as follows:

Lip = H(Pyy) + AKL(PL,P]), (1

where T is a relaxation hyperparameter (referred as Temper-
ature in [10]) for softening the output of teacher network,
and A is a hyper-parameter for balancing cross-entropy and
KL divergence loss. In several works [26, 17] the KL diver-
gence is replaced by euclidean distance,

1 « 2
Lmimic:ﬁzl”fs*f”b, (2)

f represents the feature representations.
3.2. Difficulty in Optimizing Student

In common, the teacher invokes a larger and deeper net-
work for arriving at a lower local minimum and achieving
higher performance. It is hard for a smaller and shallower
student to mimic such a large teacher due to the huge gap (in
capacity) between teacher and student[22]. Usually, the net-
work is trained to minimize the objective function by using
stochastic gradient descent. Due to the high non-convex of
the loss function, there are many local minima in the train-
ing process of deep neural networks. When the network

converges to a certain local minimum, its training loss will
converge to a certain (or similar) value regardless of differ-
ent initializations.

Network Epoch 10 40 120 240
Ttop-1(%) | 53.07 | 56.53 | 77 | 79.52
ResNet-50 Tloss | 1.680 | 1.199 | 0.067 | 0.009

. Stop-1(%) | 51.21 | 57.62 | 66.05 | 68.71
MobileNetV2 | =" e~ | 0.511 | 1.189 | 3.758 | 4.218

Table 1: The performance of student network trained with different
epochs from teacher’s training trajectory on CIFAR-100 dataset.
“T” and “S” stand for teacher and student separately. “loss” repre-
sents training loss.

Could we reach a better local-minimal than this con-
dition? We consider changing the optimization objective.
More specifically, the student is trained by mimicking less
deterministic target first, then moving forward to determin-
istic one, hoping in this way the student has a smaller gap
with the teacher. To validate this, we use different interme-
diate states of teacher to supervise student, and use the train-
ing loss and top-1 accuracy to evaluate the difference be-
tween target teacher and converged student. MobileNetV2
[25] is adopted as student and ResNet-50 [8] as teacher. The
teacher network is trained by cross-entropy loss, and the
student network is trained by KD loss. We select check-
points of teacher at 10th epoch, 40th epoch, 120th epoch,
and 240th epoch as the target to train student network sepa-
rately. The checkpoint at 240th epoch is the final converged
model, and checkpoint at 10th epoch is least deterministic
in the analysis.

Table 1 summarizes the results. It can be observed from
the table that the student guided by the less deterministic
target has lower training loss, and more convergent target
brings larger gap in performance. In other words, the more
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convergent teacher means a harder target for the student to
approach.

Inspired by curriculum learning [1] that the local min-
ima can be promoted by the easy-to-hard learning process,
we take the sequence of teacher’s intermediate states as the
curriculum to help the student reach a better local minimum.

3.3.RCO

For better illustration, we refer the intermediate train-
ing states (checkpoints) used to form the learning sequence
as anchor points. Suppose there are n anchor points on
the teacher’s trajectory. The overall framework of RCO is
shown in Figure 2.

Without loss of generality, let C' = C4, Cy, ..., C,, repre-
sent the anchor points set, and the correpsonding outputs
are ¢ (x; Wey), de(x; Wey ), -y de(x; We,) . The train-
ing process for student is started from random initialization.
Then we train the student step-by-step to mimic the anchor
point on teacher’s trajectory until finishing training with the
last anchor point. At 4, step, the learning target of student
is switched to the output ¢;(x; Wc,) of i, anchor point.
The optimization goal of i, step is as follows:

LKD(Wsa WCl) :H(¢s(x§ Ws)7y)+

3
AH(¢S(z;W;§)’¢t(I;WCi))7 ( )

where i € {1,2,...,n}. The parameter W is optimized by
learning to these anchor points sequentially. Algorithm 1
describes the details of the whole training paradigm.

Algorithm 1 Route Constrained Optimization

Require: anchor points set from pre-trained teacher net-
work: C1,Cs,...,Cy, student network with parameter
W;
i=1
Randomly initialize W;
while 7 < n do

Initialize teacher network with C; anchor, get W¢,
if 1 > 1 then
Initialize W; with W, _4
end if
update the W; by optimizing Ly p(W;, W¢,)
1=1+1
end while
get W, as the final weights of student.

3.4. Rationale for RCO

From the perspective of curriculum learning, the easy-to-
hard learning sequence can help the model get a better local
minimum [1]. RCO is similar to curriculum learning but
different in that it provides an easy-to-hard labels sequence
on teacher’s trajectory.

Let ); be the output of iy, anchor point. The outputs
of whole anchor points constrcut the space Q@ = {Y;|i =
1,2,...,n}. The results shown in Table 1 premises that the
intermediate states on teacher’s trajectory construct an easy-
to-hard sequence, e.g. ); is easier to mimic than ); ;1 while
Yn, the converged model, is the hardest objective for a small
student.

Let the X be the training data. The training data and
output of i, anchor pair (X', );) provide a lesson. Then the
curriculum sequence can be formulated as follows:

{(X, V)i =1,..,n}. “)

Without loss of generality, let £(X;0) represents a
single-parameter family of cost functions such that L; can
be easily optimized, while L is the criterion that we ac-
tually wish. During the sequential training of RCO, in-
creasing A means adding the hardness of learning through
switching anchor points. Let D represent the hardness met-
ric for a learning target. As shown in Section 3.2, more con-
vergence of anchor means more hardness of learning target,

D(H(X, We,) < D(B(X, We,,,) Yi>0.  (5)

In curriculum learning [1] the sequence of learning is gener-
ated by spliting the X in to several “lessons” with different
hardness depending on a predefined criterion. While RCO
can be seen as a more flexible approach, which gradually
changes the hardness of target labels ). Both curriculum
learning and RCO work by easy-to-hard learning to move 6
gradually into the basin of attraction of a dominant (if not
global) minimum [1].

3.5. Strategy for Selecting Anchor Points

Equal Epoch Interval Strategy. Typically, the teacher
network could produce tremendous checkpoints during the
training process. To find the optimal learning sequence, one
can search it with brute force. However, given n possible
intermediate states, there are 2" possible sequences, which
is impractical to implement. A straightforward strategy is
supervising the student by every state (epoch/iteration) on
teacher’s trajectory. However, mimicking every state is dis-
pensable and time-consuming since adjacent training states
are very close to each other. Given limited time, a more ef-
ficient way is to sample epochs with equal epoch interval
(EEI), e.g. select one for every four epochs.

Although efficient in time, EEI is a quite simple ad-hoc
method that ignores the hardness between different anchor
points, and it would lead to an improper curriculum se-
quence. The desirable property of the curriculum sequence
should be efficient to quickly learn and smooth in hardness
to better bridge the gap between teacher and student.

Greedy Search Strategy. To delve into optimization
route of student when learning to teacher, we count the KL
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Figure 3: The curve of KL divergence loss between student su-
pervised by teacher’s different epochs (30th, 100th, 180th) and
teacher’s all 240 epochs on validation set.

divergence between outputs of student and different target
states of teacher on validation set, which consists of 10k
examples random sampled from training set. The teacher
is trained by dropping learning rate at 60th,120th,180th
epochs. We choose 30th, 100th, and 180th epochs as tar-
get states to supervise the student respectively. Figure 3
shows the KL divergences curve between student and in-
termediate states of teacher. From the figure we can ob-
serve that the student supervised by teacher’s 30th epoch
is very close with teacher’s 30th epoch, but has large gap
with teacher’s latter epochs, especially after teacher drop-
ping learning rate. The same observations can be found
from student supervised by teacher’s other epochs.

Table 1 and Figure 3 give us two insights: a particular
student has the ability to learn harder target limited in a cer-
tain range; supervised by a better teacher would promote
the ability of student.

Inspired by these insights, we propose a greedy search
strategy (GS) to find efficient and hardness-smooth curricu-
lum sequence. The goal of greedy strategy is to find the one
which is on the boundary of range that student can learn. To
find those boundary anchor points, a metric is introduced as
follows:

%zg efi+1,i+2,.,N},
Hi = H(9u (X, Wa), (X, W), ©

Hj = H(¢5(X/7W5)7 ¢t(X/7 Wtj)’

Tij =

where H is the KL divergence, and X " is the validation set.
r;; evaluates the hardness of j;;, epochs of teacher for a stu-
dent guided by 7,5, epochs. Then we refer a hyper-parameter
0 as the threshold which indicates the learning ability of stu-
dent. When r;; > 6, it means that j;;, epoch is hard for
student trained by ¢, to learn, and r;; < ¢ means inverse.

Based on the above philosophy, we give the complete GS
strategy in Algorithm 2.

It seems the anchor points that near the point of tuning
learning rate are more important than other anchor points.
Intuitively, according to Algorithm 2, the optimal learning
sequence must contain at least one anchor point from dif-
ferent learning rate stage. Since this section mainly focuses
on the strategy for anchor points selection, we provide the
empirical value of § = 0.8 for MobileNetV2 to achieve a
better balance between performance and training cost. Note
that although our experiments are based on SGD, GS is also
applicable for other optimization methods like SGDR[20],
since prerequisites are still true.

Algorithm 2 Greedy Search

Require: Student network with parameter W after mim-
icking former 4;, anchor point C;, where ¢ &
{1,2,..., N}, relaxation factor 4.
compute KL divergence H;
j=1+1
while 7 < N do

compute #; on validation set
compute 7;; = H%H
if r;; > ¢ then '
Return j-1;
end if
j=Jj+1
end while
Return N;

4. Experiments

Common Settings. The backbone network for teacher
in all experiments is ResNet-50. For the student structure,
instead of using smaller ResNet, we use more compact Mo-
bileNetV?2 as well as its variants with different FLOPs, since
MobileNetV2 has proven to be highly effective in keeping
high accuracy while maintaining low FLOPs in many tasks.
Expansion ratio and width multiplier are two tunable pa-
rameters to control the complexity of the MobileNetV2. We
make default configuration by setting expansion ratio to 6
and width multiplier to 0.5. The relaxation is 5 in KD loss.
Note that all these experiments are based on GS that usually
produces about 4 anchor points.

4.1. Experiment on CIFAR-100

The CIFAR-100 dataset contains 50 000 images in train-
ing set and 10 000 images in validation set with size 32 x32.
In this experiment, for the teacher network we set initial
learning rate to 0.05 and divide it by 10 at 150th, 180th,
210th epochs and we train for 240 epochs. We set weight
decay to Se-4, batch size to 64 and use SGD with momen-
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tum. For the student network, the setting is almost identical
with teacher’s except that the initial learning rate is 0.01.

We compare the top-1 accuracy of CIFAR-100 dataset
and show the result in Table 2. From the result we can find
that our method improves about 2.1% on top-1 compared
with KD.

Although the base student network is small and fast, it
is common that some specific cases or applications require
the model to be smaller and faster. To further investigate
the effectiveness of the proposed method, we conduct ex-
tensive experiments by applying RCO to a series of Mo-
bileNetV2 with different width multipliers and expansion
ratios. We set expansion ratio to 4, 6, 8, 10 and width mul-
tiplier to 0.35, 0.5, 0.75, 1.0 separately, which forms to-
tally 16 different combinations. The FLOPs of these mod-
els are shown at Table 3. We rank the model according to
the width multiplier and draw the result on Figure 4. From
the figure we can make the following observations: (i) The
proposed method exhibits consistently superiority in all set-
tings. (ii) The student network with smaller capacity(e.g.
MobileNetV2 with T=4, Width=0.35) generally gains more
improvement from RCO. (iii) Although the model with ex-
pansion ratio set to 10 and width multiplier set to 0.35 has
larger FLOPs than the model with expansion ratio set to 4
and width multiplier set to 0.5, the former setting shows
performance reduction among all three methods. It indi-
cates that parameterizing expansion ratio with 10 and width
multiplier to 0.35 largely limits representation power.

T=4 T=6
75 75
<
370 > 70
o o
é 65 § 65
<< <<
+—Softmax +— Softmax
60 o 60 +—KD
o Ours — Ours
55 55
035 05 075 1 035 05 0.75 1
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Figure 4: CIFAR-100 top-1 accuracy of MobileNetV2 with dif-
ferent settings. The “Width” in z-axis represents width multiplier
and “T” in the title stands for the expansion ratio. The proposed
method acquires more promotion with smaller student network.

at 15k, 30k and 45k iterations and we train for 50k itera-
tions. We set weight decay to 5e-4, batch size to 3072 and
use SGD with momentum. As for the student network, we
set initial learning rate to 0.1 and drop by 0.1 at 45k, 75k
and 100k iterations and we train for 130k iterations. We set
weight decay to 5e-4, batch size to 3072 and use SGD with
momentum. In order to keep training stable, we use warm-
up suggested by [4] when training with large batch size. We
compare the top-1 and top-5 accuracy of ImageNet dataset
and show the result in Table 4. From the result we can find
that our method improves about 1.5%/0.7% on top-1/top-5
compared with KD, which verifies that RCO is applicable
to large-scale classification.

Method Network top-1  top-5
Teacher-Softmax ResNet-50 7549 9248
Student-Softmax | MobileNetV2 | 64.2 85.4

Student-KD MobileNetV2 | 66.75 87.3
Student-RCO MobileNetV2 | 68.21 88.04

Table 4:

Results on ImageNet

Method Network MFlops | top-1 | Loss
T-Softmax ResNet-50 2.6k 79.34 -
S-Softmax | MobileNetV2 13.5 61.88 -

S-KD MobileNetV?2 13.5 68.71 | 1.59

S-RCO MobileNetV2 13.5 70.85 | 1.45

Table 2: Results on CIFAR-100
Expansion ratio Width multiplier
035 05 075 1.0
4 54 9.8 193 32.1
6 73 135 272 456
8 9.1 17.1 35 59.1
10 11 208 428 726

Table 3: Complexity (MFLOPs) for MobileNetV2 with different
settings

4.2. Experiment on ImageNet

The ImageNet dataset contains 1000 classes of images
with various sizes. It is the most popular dataset in classi-
fication task. In this experiment, for the training of teacher
network, we set initial learning rate to 0.4 and drop by 0.1

4.3. Experiment on Face Recognition

Unlike classification, the network in face recognition
usually contains a feature layer implemented as a fully-
connected layer to represent the projection of each identity.
Empirical evidence [21] shows that mimicking the feature
layer as the way used in FitNet [24] could bring more im-
provements for student network. We follow this setting in
our baseline experiments.

We take two popular face recognition datasets MS-
Celeb-1M [5] and IMDb-Face [27] as our training set and
validate our method on MegaFace. The MS-Celeb-1M
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is a large public face dataset which contains one million
identities with different age, sex, skin, and nationality and
is widely used in face recognition area. The IMDb-Face
dataset contains about 1.7 million faces, 59k identities. All
images are obtained from IMDb website. The MegaFace is
one of the most popular benchmarks that could perform face
recognition under up to 1 million distractors. This bench-
mark is evaluated through probe and gallery images from
FaceScrub.

In this experiment, for the teacher network, we set ini-
tial learning rate to 0.1 and drop by 0.1 at 100k, 140k, 170k
iterations and we train for 220k iterations. We set weight
decay to 5e-4, batch size to 1024 and use SGD with mo-
mentum. We resize the input image to 224 x224 without
augmentation. We use ArcFace [3] to train the teacher net-
work. As for the student network, we set initial learning
rate to 0.05 and drop by 0.1 at 180k, 210k iterations and we
train for 240k iterations. The rest settings are identical to
the teacher.

We show our result on Table 5. From the table we can see
that on this challenging face recognition task, RCO largely
boosts the performance of MobileNetV?2 [25] compared to
original hint-based learning.

top-1 @ distractor size

Method el €2 e3 et P €l

Teacher | 99.78 99.67 99.38 98.86 97.70 94.83

Softmax | 99.20 96.37 91.49 8445 75.60 6591
FitNet | 99.62 98.80 96.83 93.53 88.28 81.02
RCO |99.69 99.01 97.52 94.84 90.55 84.3

Table 5: Results on MegaFace

4.4. Ablation Studies

Although RCO achieves decent result in previous experi-
ments, the extra training time that it brings is not negligible.
Even if we just construct the learning sequence with 4 an-
chor points, it still needs 4 times training epochs compared
with KD or Softmax. Since training time plays an impor-
tant role in either research or industrial, we consider using
the same time as KD to verify the robustness of RCO. Note
that we set expansion ratio to 4 and width multiplier to 0.35
for the backbone MobileNetV2 in this section.

Comparison under Limited Training Epochs. Pre-
vious experiments commonly need more training epochs
than KD. Consider performing RCO with EEI strategy on
CIFAR-100. Let Mg, be the epoch interval used in EEL
To get 4 anchor points, we can set My, to 60. Then the
selected anchor points should be 60th, 120th, 180th, and
240th epoch. The student trained with the learning sequence
needs 960 epochs in total since each anchor point is trained
for 240 epochs to ensure convergence.

We then speed up the EEI strategy from multi-stage to
one stage (one-stage EEI), where we only train student for
240 epochs, by simply modifying the training paradigm as
follows: the student is initially supervised by 60th epoch of
teacher for the student’s first 60 epochs, then supervised by
teacher’s 120 epoch for the next 60 epochs, and so on.

In one-stage EEI, it is natural to evaluate the impact of
different number of anchor points. Let K be the size of
training set. We start the Mg,, from the smallest case,
where M4, is 1/(K /BatchSize) (Itis 1.28E-3 in Table 6,
which means student mimic teacher’s every iteration). Then
gradually increase M, to the largest case, where M, is
the maximum epoch (240) and RCO degrades into KD.

From the perspective of optimization route, we find
method in [33] could be regarded as a particular case of
RCO when setting M, to the smallest value, and match-
ing logits with KD loss instead of MSE loss. Besides, We
also follow [32] to implement DML and make a comparison
with KD. The result in Table 6 shows that RCO outperforms
other methods in all settings. By properly selecting My, to
10, RCO gets 4.2% and 3.8% improvement on CIFAR-100
compared with KD and DML respectively.

Method Mgyqp | Anchor Number | top-1
DML [32] - - 61.13
RL[33] | 1.28E-3 187500 61.63
1 240 62.74
2 120 63.78

4 60 64.21
RCO 10 24 65.01
20 12 63.88

60 4 64.5
KD 240 1 60.79

Table 6: Comparison of RCO based on One-stage EEI with other
knowledge transfer methods under limited training epochs. It
clearly shows RCO outperforms other methods by using same
training epochs.

Comparison on Different Strategies. Since the strat-
egy is the most crucial part of RCO, we make a compari-
son between these strategies. For practical considerations,
we limit the training epoch to no more than four times the
epochs of KD. We have chosen the following strategies to
compare: one-stage EEI, EEI-x, GS, where the “x” in
“EEI-x” represents the number of selected anchor points
with EEI strategy. The results are shown in Table 7. From
the result we make the following observations: 1) all strate-
gies show great superiority to KD, 2) GS is the best strategy
among them, thus should be used when training time is not
a constraint.

4.5. Visualization

Visualization of Trajectory. In order to further analyze
our method, we plot student’s training trajectory using PCA
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Strategy one-stage | Mg,y | Total Epoch | top-1
KD v 240 240 60.79
one-stage EEI v 10 240 65.01
EEI-2 X 120 480 61.43
EEI-3 X 80 720 63.34
EEI-4 X 60 960 65.27
GS X - 720 65.41

Table 7: Comparison of RCO based on different strategies on
CIFAR-100. GS achieves the best result among all strategies.

Figure 5: Visualization of student’s training trajectories by PCA
directions for MobileNetV2 on CIFAR-100 dataset. These stu-
dent networks are trained by different methods (SoftMax, KD, and
Ours) and initialized with the same random parameters. The red
curve stands for student trained with RCO, the blue dot on the line
represents the location guided by intermediate anchor point. The
red curve arrives at the lowest local minimum among them.

directions suggested by Li et al. [16]. The process is as
follows: Given n training epochs, let W,,. denote model
parameters at epoch ¢ and the final estimate as W,,, . Then
we apply PCA to the matrix (Wi, — Wi 5 oos Wi, —
W, ] and choose the most two principal directions.

In Figure 5 the training trajectory of MobileNetV2 on
CIFAR-100 is plotted for student in three modes: 1) Soft-
max, 2) KD, 3) the proposed method (Ours). For a fair com-
parison, three students are initialized with the same param-
eters (marked as red dot) and are trained for 240 epochs
each, where RCO uses one-stage EEI with three anchor
points. For the curve of RCO, the blue dots on the line show
the epochs where student is guided by intermediate anchor
points. For KD or Softmax, epochs where the learning rate
was decreased are shown as black dots.

The first anchor point keeps the student away from
the direction suggested by Softmax or KD and arrives at
an intermediate state. The state itself may not lie in a
well-performed parameter space, but with the guidance of

Cup
Girl

Rocket

Streetcar  |yh'e fqh e | e ) i
- - o = .ﬂ

= s

i 5 i
Figure 6: The curve of loss gap between KD loss and RCO loss
along with Gaussian noise. J represents the scale of Gaussian
noise. Aj,ss represents the loss gap between KD loss to RCO loss.
Larger Ao means lower loss of RCO than KD. The bottom row
shows part of noised images.

succeeding anchor points the student network eventually
reaches to a deeper local minimum, which has adequately
demonstrated the importance of optimization route from
teacher network.

Visualization of Robustness to Noise. Besides the vi-
sualization of optimization trajectory, we also observe that
the new local minimum has better generalization capacity
and is more robust to random noise in input space. We con-
sider bringing noise to the testing image. Firstly we calcu-
late the standard deviation o;,, for each image and set the
0 ranging from 0.0 to 1.0 by step 0.1. The noise is sam-
pled from N(0,02), where o = 0y, * 6. We choose some
noised images and show them at the bottom row of Figure
6. The images are clear at first column, but as the § in-
creases, the images become illegible, especially for the last
column. We ran this experiment on model trained both with
KD and RCO and compared their loss. The loss gap from
KD to RCO becomes more significant as the increasing of J,
which suggests that model trained with RCO is more robust
to noise than KD. The result is on top of Figure 6.

5. Conclusion

We have proposed a simple but effective and generally
applicable method to boost the performance of small stu-
dent network. By constructing an easy-to-hard sequence
of learning target, student network could achieve much
higher performance compared with other knowledge trans-
fer methods. Moreover, we offer two available strategies to
construct the sequence of anchor points. For future work,
we would like to explore the strategy to design the learning
sequence automatically.
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