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Abstract

In recent years, the need for semantic segmentation has

arisen across several different applications and environ-

ments. However, the expense and redundancy of annotation

often limits the quantity of labels available for training in

any domain, while deployment is easier if a single model

works well across domains. In this paper, we pose the novel

problem of universal semi-supervised semantic segmenta-

tion and propose a solution framework, to meet the dual

needs of lower annotation and deployment costs. In con-

trast to counterpoints such as fine tuning, joint training or

unsupervised domain adaptation, universal semi-supervised

segmentation ensures that across all domains: (i) a single

model is deployed, (ii) unlabeled data is used, (iii) perfor-

mance is improved, (iv) only a few labels are needed and

(v) label spaces may differ. To address this, we minimize

supervised as well as within and cross-domain unsupervised

losses, introducing a novel feature alignment objective based

on pixel-aware entropy regularization for the latter. We

demonstrate quantitative advantages over other approaches

on several combinations of segmentation datasets across

different geographies (Germany, England, India) and envi-

ronments (outdoors, indoors), as well as qualitative insights

on the aligned representations.

1. Introduction

Semantic segmentation is the task of pixel level classifi-

cation of an image into a predefined set of categories. State-

of-the-art semantic segmentation architectures [35, 3, 8] pre-

train deep networks for a classification task on datasets like

ImageNet [13, 53] and then fine-tune on finely annotated la-

beled examples [12, 64]. The availability of such large-scale

labeled datasets has been crucial to achieve high accura-

cies for semantic segmentation in applications ranging from

natural scene understanding [18] to medical imaging [51].

However, performance often suffers even in the presence of

a minor domain shift. For example, a segmentation model
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Figure 1: Proposed universal segmentation model can be jointly

trained across datasets with different label spaces, making use

of the large amounts of unlabeled data available. Traditional

transfer learning based approaches typically require training

separate models for each domain.

trained on a driving dataset from a specific geographic loca-

tion may not generalize to a new city due to differences in

weather, lighting or traffic density. Further, a segmentation

model trained on traffic scenes for outdoor navigation may

not be applicable for an indoor robot.

While such domain shift is a challenge for any machine

learning problem, it is particularly exacerbated for segmen-

tation where human annotation is highly prohibitive and

redundant for different locations and tasks. Thus, there is

a growing interest towards learning segmentation represen-

tations that may be shared across domains. A prominent

line of work addresses this through unsupervised domain

adaptation from a labeled source to an unlabeled target do-

main [25, 61, 10, 42, 6]. But there remain limitations. For

instance, unsupervised domain adaptation usually does not

leverage target domain data to improve source performance.

Further, it is designed for the restrictive setting of large-scale

labeled source domain and unlabeled target domain. While
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some applications such as self-driving have large-scale an-

notated datasets for particular source domains (for example

synthetic datasets like Synthia [52]), the vast majority of

applications only have limited data in any domain. Finally,

most of the above works assume that the target label set

matches with the source one, which is often not the case in

practice. For example, road scene segmentation across dif-

ferent countries, or segmentation across outdoor and indoor

scenes, have domain-specific label sets.

In this paper, we propose and address the novel prob-

lem of universal semi-supervised semantic segmentation

as a practical setting for many real-world applications. It

seeks to aggregate knowledge from several different domains

during training, each of which has few labeled examples

but several unlabeled examples. The goal is to simultane-

ously limit training cost through reduced annotations and

deployment cost by obtaining a single model to be used

across domains. Label spaces may be partially or fully non-

overlapping across domains. While fine-tuning a source

model on a small amount of target data is a possible counter-

point, it usually requires plentiful source labels and necessi-

tates deployment of a separate model in every domain due to

catastrophic forgetting [40]. Another option is joint training,

which does yield a unified model across domains, but does

not leverage unlabeled data available in each domain. Our

semi-supervised universal segmentation approach leverages

both limited labeled and larger-scale unlabeled data in every

domain, to obtain a single model that performs well across

domains. Table 1 presents the advantage of the proposed

semi-supervised universal segmentation over some of the

existing approaches.

In particular, we use the labeled examples in each do-

main to supervise the universal model, akin to multi-tasking

[31, 39, 30], albeit with limited labels. We simultaneously

make use of the large number of unlabeled examples to

align pixel level deep feature representations from multiple

domains using entropy regularization based objective func-

tions. Entropy regularization uses unsupervised examples

and helps in encouraging low density separation between

the feature representations and improve the confidence of

predictions. Moreover models trained on one domain typ-

ically result in noisy predictions and high entropy output

maps when deployed in a different domain, and the proposed

cross dataset entropy minimization encourages refined pre-

diction maps across datasets. We calculate the similarity

score vector between the encoder outputs at each pixel and

the label embeddings (computed from class prototypes [58]),

and minimize the entropy of this discrete distribution to pos-

itively align similar examples between the labeled and the

unlabeled images. We do this unsupervised alignment both

within domain, as well as across domains.

We believe such within and cross-domain alignment is

fruitful even with non-overlapping label spaces, particularly

Source

Unlabeled

Data

Target

Unlabeled

Data

Joint

Model

Mixed

Labels

Support

Fine Tuning ✗ ✗ ✗ ✓

Semi-supervised [28, 60] ✓ ✗ ✗ NA

CyCADA [24] ✗ ✓ ✓ ✗

Joint Training ✗ ✗ ✓ ✓

Our Approach ✓ ✓ ✓ ✓

Table 1: Comparison of Universal Semi-Supervised Segmenta-

tion against existing methods.

so for semantic segmentation, since label definitions often

encode relationships that may positively reinforce perfor-

mance in each domain. For instance, two road scene datasets

such as Cityscapes [12] and IDD [64] might have different

labels, but share similar label hierarchies. Even an outdoor

dataset like Cityscapes and an indoor one like SUN [59] may

have label relationships, for example, between horizontal

(road, floor) and vertical (building, wall) classes. Similar

observations have been made for multi-task training [70].

We posit that our pixel wise entropy-based objective dis-

covers such alignments to improve over joint training, as

demonstrated quantitatively and qualitatively in our exper-

iments. Specifically, our experiments lend insights across

various notions of domain gaps. With Cityscapes [12] as

one of domains (road scenes in Germany), we derive univer-

sal models with respect to CamVid (roads in England) [4],

IDD (roads in India) [64] and SUN (indoor rooms) [59]. In

each case, our semi-supervised universal model improves

over fine-tuning and joint training, with visualizations of the

learned feature representations demonstrating conceptually

meaningful alignments. We use dilated residual networks in

our experiments [69], but the framework is equally applica-

ble to any of the existing deep encoder-decoder architectures

for semantic segmentation.

Our Contributions

• We propose a universal segmentation framework to train

a single joint model on multiple domains with disparate

label spaces to improve performance on each domain.

This framework adds no extra parameters or significant

overhead during inference compared to existing methods

for deep semantic segmentation.

• We introduce a pixel-level entropy regularization scheme

to train semantic segmentation architectures using datasets

with few labeled examples and larger quantities of unla-

beled examples (Section 3).

• We demonstrate the effectiveness of our alignment over

a wide variety of indoor [59] and outdoor [12, 64, 4] seg-

mentation datasets with various degrees of label overlaps.

We also compare our results with other semi-supervised

approaches, based on adversarial losses, giving improved

results (Section 4).
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2. Related Work

Semantic Segmentation Semantic segmentation in com-

puter vision is the task of assigning semantic labels to each

pixel of an image. Most of the state of the art models for

semantic segmentation [69, 35, 43, 3, 8, 50] have been pos-

sible largely due to breakthroughs in deep learning that have

pushed the boundaries of performance in image classifica-

tion [32, 22, 23] and related tasks. The pioneering work

in [35] proposes an end-to-end trainable network for seman-

tic segmentation by replacing the fully connected layers of

pretrained AlexNet [32] and VGG Net [57] with fully con-

volutional layers that aggregate spatial information across

various resolutions. Noh et al. [43] use transpose convolu-

tions to build a learnable decoder module, while DeepLab

network [8] uses artrous convolutions along with artrous

spatial pyramid pooling for better aggregation of spatial

features. Segmentation architectures based on dilated convo-

lutions [68] for real time semantic segmentation have also

been proposed [69, 50].

Semi Supervised Learning Most of the existing semantic

segmentation architectures require large scale annotation of

labeled data for achieving good results. To address this limi-

tation, various semi supervised learning methods have been

proposed in [60, 46, 28, 26, 66], which make use of easily

available large scale unsupervised or weakly supervised data

during training. While these approaches deliver competitive

results when trained and deployed on a specific dataset, the

need for learning efficient segmentation models transferable

across domains and environments having limited training

data remains.

Transfer Learning and Domain Adaptation Transfer

learning [67] involves transferring deep feature represen-

tations learned in one domain or task to another domain

or task where labeled data availability is low. Previous

works demonstrate transfer learning capabilities between

related tasks [14, 71, 45, 48] or even completely differ-

ent tasks [19, 49, 35]. Unsupervised domain adaptation

is a related paradigm which leverages labeled data from

a source domain to learn a classifier for a new unsuper-

vised target domain in the presence of a domain shift.

Various generative and discriminative domain adaptation

methods have been proposed for classification tasks in

[16, 17, 63, 62, 47, 5] and for semantic scene segmentation

in [25, 61, 10, 24, 9, 27, 72].

Most of these works in domain adaptation assume equal

source and target dataset label spaces or a subset target la-

bel space, which is not the most general case for real world

applications. To address this limitation with the domain

adaptation approaches, we propose a method similar to [37]

which works in the extreme case of non-intersecting label

spaces. Moreover, pixel level adaptation based methods are

typically focused on using knowledge from a large labeled

source domain (eg. Synthia [52]) to improve performance

on a specific target domain, while we propose a joint train-

ing framework to train a single model that delivers good

performance on both the domains.

Universal Segmentation Multitask learning [7] is shown

to improve performance for many tasks that share useful

relationships between them in computer vision [56, 31, 70],

natural language processing [11, 39, 30] and speech recog-

nition [55]. Universal Segmentation builds on this idea by

training a single joint model that is useful across multiple

semantic segmentation domains with possibly different label

spaces to make use of transferable representations at lower

levels of the network. Liang et al. [34] first propose the idea

of universal segmentation by performing dynamic propaga-

tion through a label hierarchy graph constructed from an

external knowledge source like WordNet. We propose an

alternative method to perform universal segmentation with-

out the need for any outside knowledge source or additional

model parameters during inference, and instead make effi-

cient use of the large set of unlabeled examples in each of the

domains for unsupervised feature alignment. Following the

success of metric learning based approaches in tasks such

as fine grained classification [2, 1], latent hierarchy learning

[54] and zero-shot prediction [44, 15, 33], we use pixel level

class prototypes [58] for performing semantic transfer across

domains.

3. Problem Description

In this section, we explain the framework used to train

a single model across different segmentation datasets with

possibly disparate label spaces using a novel pixel aware

entropy regularization objective.

We have d datasets {D(i)}di=1, each of which has few la-

beled examples and many unlabeled examples. The labeled

images and corresponding labels from D(i) are denoted by

{X
(i)
l ,Y(i)}

N
(i)
l

i=1 , where Y(i) ∈ Yi, and N
(i)
l is the num-

ber of labeled examples. The unlabeled images are repre-

sented by {X
(i)
u }

N(i)
u

i=1 , and N
(i)
u is the number of unlabeled

examples. We work with domains with very few labeled

examples (N
(i)
u ≫ N

(i)
l ), and consider the general case of

non-intersecting label spaces, so that Yp 6= Yq for any p, q.

The label spaces might still have a partial overlap between

them, which is common in the case of segmentation datasets.

For ease of notation, we consider the special case of two

datasets {D(1),D(2)}, but similar idea can be applied for the

case of multiple datasets as well.

The proposed universal segmentation model is summa-

rized in Figure 2. Deep semantic segmentation architectures

generally consist of an encoder module which aggregates the
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Figure 2: Different modules in the proposed universal semantic segmentation framework. {X
(1)
l

,Y(1)} , {X
(2)
l

,Y(2)} are the set of labeled

examples and X
(1)
u , X

(2)
u are the set of unlabeled examples. The entropy module uses the unlabeled examples to perform alignment of

pixel wise features from multiple domains by calculating pixel wise similarity with the labels, and minimizing the entropy of this discrete

distribution.

spatial information across various resolutions and a decoder

module that consists of a classifier and an up sampler to

enable pixel wise predictions at a resolution that matches the

input. In order to enable joint training with multiple datasets,

we modify this encoder decoder architecture by having a

shared encoder module F and different decoder layers G1(.),
G2(.) for prediction in different label spaces. For a labeled

input image xl, the pixel wise predictions are denoted by

ŷ(k) = Gk(F(xl)) for k = 1, 2 which, along with the la-

beled annotations, gives us the supervised loss. To make use

of the semantic information from the unlabeled examples

Xu, we propose an entropy regularization module E . This

entropy module takes as input the output of the encoder F(.)
to give pixel wise representation outputs in an embedding

space. The entropy of the similarity score vector of these

embedding representations with the label embeddings results

in the unsupervised loss term. Each of these loss terms is

explained in detail in the following sections.

Supervised Loss The supervised loss is the softmax cross

entropy loss between the predicted segmentation mask ŷ

and the corresponding pixel wise ground truth segmentation

masks for all labeled examples. Specifically, for the samples

from dataset k,

L
(k)
S =

1

N
(k)
l

∑

xi∈D(k)

ψk (yi,Gk (F (xi))) , (1)

where ψk is the softmax cross entropy loss function over

the label space Yk, which is averaged over all the pixels of

the segmentation map. L
(1)
S and L

(2)
S together comprise the

supervised loss term LS .

Entropy Module The large number of unsupervised im-

ages available provides us with rich information regarding

the visual similarity between the domains and the label

structure, which the existing methods on adversarial based

semi supervised segmentation [60, 28] or universal segmen-

tation [34] do not exploit. To address this limitation, we

propose using entropy regularization to transfer the informa-

tion from labeled images to the unlabeled images, as well as

among the unlabeled images between the datasets. Entropy

regularization is proved to encourage low density separation

between the clusters in the feature space [20], hence resulting

in high confidence predictions and smooth output maps for

semi supervised learning. A crucial difference between some

previous works which use entropy regularization for semi

supervised learning [20, 36, 65] and ours is that we perform

entropy regularization in a separate embedding space using

an entropy module E , unlike the other works which apply this

objective directly in the softmax output space. This embed-

ding approach helps in achieving semantic transfer between

datasets with disparate label sets, hence aiding in closely

aligning the visually similar pixel level features calculated

from the segmentation network from both the datasets.

The entropy module is explained in Figure 3, and works

similar to the decoder module in a segmentation architecture.

Firstly, we project the encoder outputs from the segmentation

network from both datasets into a common d dimensional

embedding space Rd, and upsample this output map to match

the size of the input. Then, a similarity metric φ, which

operates on each pixel, is used to calculate the similarity

score of the embedding representations with each of the d
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Figure 3: In addition to a traditional decoder layer that outputs

predictions in the respective label spaces Rc, we also have an

entropy module E(.) that first maps the features of both the

domains into a common embedding space R
d, and then calcu-

lates similarity scores with the label embeddings of respective

datasets.

dimensional label embeddings using the equation

[vij ]k = φ
(

E
(

F
(

x(i)u

))

, c
(j)
k

)

∀k ∈ {|Yj |}, (2)

where x
(i)
u is an image from the ith unlabeled set, c

(j)
k ∈ R

d

is the label embedding corresponding to the kth label from

the jth dataset and [vij ] ∈ R
|Yj |. When i = j, the scores

correspond to the similarity scores within a dataset, and when

i 6= j, they provide the cross dataset similarity scores. The

label embeddings are just the prototype features calculated

using the labeled data. They are pre computed and kept fixed

over the course of training the network, since we found that

the limited supervised data was not sufficient to jointly train

a universal segmentation model as well as fine tune the label

embeddings. More details on calculating label embeddings

is presented in the supplementary section.

Unsupervised Loss We have two parts for the unsuper-

vised entropy loss. The first part, the cross dataset entropy

loss, is obtained by minimizing the entropy of the cross

dataset similarity vectors.

LUS,c = H(σ([v12])) +H(σ([v21])), (3)

where H(.) is the entropy measure of a discrete distribution,

σ(.) is the softmax operator and the similarity vector [v] is

from Eq (2). Minimizing LUS,c makes the probability distri-

bution peaky over a single label from a dataset, which helps

in label side semantic transfer across datasets and hence im-

proving the overall prediction certainty of the network. In

addition, we also have a within dataset entropy loss given by

LUS,w = H(σ([v11])) +H(σ([v22])) (4)

which aligns the unlabeled examples within the same do-

main.

The total loss LT is the sum of the supervised loss

from Eq (1), and the unsupervised losses from Eq (3) and

Eq (4), written as

LT = LS(X
(1)
l ,Y(1),X

(2)
l ,Y(2)) + α · LUS,c(X

(1)
u ,X

(2)
u )

+β · LUS,w(X
(1)
u ,X

(2)
u ) (5)

where α and β are a hyper parameters that control the influ-

ence of the unsupervised loss in the total loss.

Inference For a query image q(k) from dataset k during

test time, the output ŷ(k) = Gk(F(q(k))) gives us the seg-

mentation map over the label set Yk and the pixel wise label

predictions. This adds no computation overhead or extra

parameters to our approach during inference compared to

existing deep semantic segmentation approaches. We note

that although we calculate feature and label embeddings in

our method and metric based inference schemes like nearest

neighbor search might enable prediction in a label set agnos-

tic manner, calculating pixel wise nearest neighbors using

existing methods can prove very slow and costly for images

with high resolution.

4. Experiments and Results

We provide the performance results of the proposed ap-

proach on a wide variety of real world datasets used in au-

tonomous driving as well as indoor segmentation settings.

We show the superiority of the our method over the existing

baselines (Section 4.2), demonstrate improvement upon the

state of the art semi-supervised approaches (Section 4.3), and

also show the results on cross domain datasets (Section 4.4).

Using only a fraction of the labeled data available, we show

competitive results on these datasets.

4.1. Training Details

Datasets We show the results of our approach on large

scale urban driving datasets from various domains like

Cityscapes [12] (CS), CamVid [4] (CVD) and Indian Driving

Dataset (IDD) [29, 64].

Cityscapes [12] is a standard autonomous driving dataset

consisting of 2975 training images collected from vari-

ous cities across Europe finely annotated with 19 classes.

CamVid [4] dataset contains 367 training, 101 validation

and 233 testing images taken from video sequences finely

labeled with 32 classes, although we use the more popular

11 class version from [3]. We also demonstrate results on

IDD [29, 64] dataset, which is an in-the-wild dataset for

autonomous navigation in unconstrained environments. It

consists of 6993 training and 981 validation images finely an-

notated with 26 classes collected from 182 drive sequences

on Indian roads, taken in highly varying weather and envi-

ronment conditions. This is a challenging driving dataset
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Method Road SideWalk Building Wall Fence Pole Traff. lt. Traff. Sgn. Veg. Train Sky Person Rider Car Truck Bus Train MotorCyc. Bicycle mIoU

CS only 91.76 54.78 80.02 3.70 16.58 29.84 22.31 33.74 83.88 32.89 82.07 52.67 21.57 81.11 19.01 3.87 0.0 19.64 49.01 40.97

Univ-basic 87.00 44.54 77.77 10.21 11.07 25.54 14.51 25.82 80.72 22.40 78.19 49.00 19.64 75.35 1.86 0.25 10.98 8.83 41.08 36.04

Univ-full 92.18 51.29 80.07 0.0 24.01 33.73 26.16 38.71 82.30 36.39 81.61 54.38 20.48 81.71 2.37 22.79 3.85 1.31 46.23 41.03

Method Sky Buil. Pole Road Pave. Tree Sign Fence Car Ped. Bicy. mIoU

Camvid only 85.58 75.15 8.17 84.86 52.34 69.68 27.11 20.48 73.1 24.36 29.42 50.02

Univ-basic 87.04 76.67 9.56 83.5 51.35 70.07 27.75 22.6 73.22 33.94 35.25 51.9

Univ-full 86.3 77.23 17.13 84.99 53.35 70.57 31.99 32.45 72.94 36.61 37.22 54.62

Table 2: Class-wise IoU values for the 19 classes in Cityscapes dataset and 11 classes in the CamVid dataset with various ablations of

universal semantic segmentation models, for N=100 on Resnet-18. Note the improvement of our method (Univ-full) for smaller

classes like pole and sign on Cityscapes and CamVid datasets.

Method
N=50 N=100

CS CVD Avg. CS CVD Avg.

Train on CS 33.33 32.92 33.13 40.97 36.52 38.75

Train on CVD 19.47 42.81 31.14 22.20 50.02 36.11

Univ-basic (Ls) 32.82 48.56 40.69 36.04 51.90 43.97

Univ-cross (+ Lc) 33.86 52.57 43.22 37.82 49.31 43.57

Univ-full (+ Lc,Lw) 34.01 53.23 43.62 41.03 54.62 47.83

Table 3: mIoU values for universal segmentation using

Cityscapes (CS) and CamVid (CVD) datasets with a Resnet-18

backbone. N is the number of supervised examples available

from each dataset. Bold entries have the highest average mIoU

across the datasets.

since it contains images taken from largely unstructured

environments.

While these autonomous driving datasets typically offer

many challenges, there is still limited variation with respect

to the classes, object orientation or camera angles. Therefore,

we also use SUN RGB-D [59] dataset for indoor segmenta-

tion, which contains 5285 training images along with 5050

validation images finely annotated with 37 labels consisting

of regular household objects like chair, table, desk, pillow

etc. We report results on the 13 class version used in [21],

and use only the RGB information for our universal training

and ignore the depth information provided.

Architecture Although the proposed framework is readily

applicable to any state-of-the art encoder-decoder seman-

tic segmentation framework, we use the openly available

PyTorch implementation of dilated residual network [69]

owing to its low latency in autonomous driving applications.

We take the embedding dimension d to be 128, and use dot

product for the pixel level similarity metric φ(.) as it can be

implemented as a 1× 1 convolution on most of the modern

deep learning packages. More details for each experimental

setting is presented in the supplementary section.

Evaluation Metric We use the mean IoU (Intersection

over Union) as the performance analysis metric. The IoU for

each class is given by

IoU =
TP

TP+FP+FN
, (6)

Method
N=375

CS CamVid Avg.

Train on CS 55.07 48.52 51.80

Train on CVD 26.45 60.61 43.53

Hung et al. [28] 58.80 - -

Souly et al. [60] - 58.20 -

Univ-basic (Ls) 53.14 65.33 59.24

Univ-cross (+ Lc) 56.36 63.34 59.85

Univ-full (+ Lc,Lw) 55.92 64.72 60.32

Table 4: Comparison of our approach with other semi-supervised

approaches on the Resnet-101 backbone and CS+CVD dataset.

Our approach (Univ-full) results in a single model across datasets

unlike the previous semi-supervised approaches and deliver com-

petitive performance on both the datasets.

where TP , FP , FN are the true positive, false positive and

false negative pixels respectively, and mIoU is the mean of

IoUs over all the classes. mIoUs are calculated separately

for all datasets in a universal model. All the mIoU values

reported are on the publicly available validation sets for the

CS, IDD and SUN-RGB datasets, and on the test set for the

CamVid dataset.

4.2. Ablation Studies

We perform the following ablation studies in our experi-

ments to provide insights into the various components of the

proposed objective function. (i) Train on source: We train a

semantic segmentation network using only the limited train-

ing data available on one dataset, and provide results when

tested on both the datasets. Since the label spaces do not

directly overlap, we finetune a different classifier (decoder)

for both the datasets and keep the feature extractor (encoder)

as the same. (ii) Univ-basic: To study the effect of the unsu-

pervised losses, we put α, β = 0 and perform training using

only the supervised loss term from Eq (1) and no entropy

module at all. This is similar to plain joint training using

the supervised data from each domain. (iii) Univ-cross: To

study the effect of the cross dataset loss term from Eq (3),

we conduct experiments by adding α = 1 to the loss term.

(iv) Univ-full: This is the proposed model, including all the

supervised and unsupervised loss terms. We use α, β = 1 in
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Method
N=100 N=1500

(Resnet-18) (Resnet-50)

CS IDD Avg. CS IDD Avg.

Train on CS 40.97 14.64 27.81 64.23 32.50 48.37

Train on IDD 25.05 26.53 25.79 46.32 55.01 50.67

Univ-basic 37.94 25.21 31.58 63.55 53.21 58.38

Univ-full 36.48 27.45 31.97 64.12 55.14 59.63

Table 5: Universal segmentation results using IDD and CS

datasets. Our approach (Univ-full) performs better across

Resnet-18 and Resnet-50 CNN backbones.

the loss function in Eq (5). The best model is defined as the

model having the highest average mIoU across the datasets.

Although many works on domain adaptation also pro-

vide results on Cityscapes dataset, we note that we cannot

directly compare our result against them, since the problem

setting is very different. While most of the domain adapta-

tion approaches use large scale synthetic datasets as source

dataset to improve performance on a specific target domain,

we train our models on multiple resource constrained real

world datasets directly.

Cityscapes + CamVid The results for training a univer-

sal model on Cityscapes and CamVid datasets is given in

Table 3. For a setting of N=100 which corresponds to us-

ing 100 labeled examples from each domain, the proposed

method gives the best mIoU value of 41.03% on Cityscapes

and 54.62% on CamVid clearly outperforming the baseline

approaches. Moreover, the universal segmentation method

using the proposed unsupervised losses also performs better

than using only supervised losses, which demonstrates the

advantage of having unsupervised entropy regularization in

domains with few labeled data and lots of unlabeled data.

Another observation from Table 3 is that for N=100, a

model trained only on Cityscapes suffers a performance

drop of 13.5% mIoU when tested on the CamVid dataset

compared to a model trained on Camvid alone. Similarly, the

performance drop in the case of Cityscapes is 18% mIoU

for a model trained on Camvid. Therefore, it is evident that

models trained on one dataset, like Cityscapes do not always

perform well when deployed on a different dataset, like

CamVid, due to domain shift and result in noisy predictions

and poor output maps. This further brings out the necessity

of training a single model which performs well on both the

domains by using an entropy regularization based semantic

transfer objective.

In the case of semantic segmentation datasets, very low

values of N offers challenges like limited representation for

many of the smaller labels, but we notice that the proposed

model for N=50 still manages to perform consistently better

on both the datasets.

Comparison of class-wise mIoUs of the universal seg-

mentation approach for N=100 with CS+CamVid is given

in Table 2. Entropy regularization clearly boosts perfor-

mance in 9 of the 11 classes on the CamVid dataset, and

for 10 out of 19 classes on the Cityscapes dataset. More

importantly, it is the smaller classes like pole, traffic sign,

pedestrian and fence which benefit greatly from universal

training on both the Cityscapes and CamVid datasets, in

spite of using only a small fraction of the labeled examples

from these datasets.

IDD + Cityscapes This combination is a chosen for val-

idating the universal segmentation approach as the images

are from widely dissimilar domains in terms of geography,

weather conditions as well as traffic setup, and the datasets

together capture the wide variety of road scenes one might

encounter while training autonomous driving datasets for

vision based navigation. The results for universal seman-

tic segmentation using IDD and Cityscapes (CS) are shown

in Table 5. Using 100 training examples from each domain,

the proposed univ-full model gives an mIoU of 36.48% on

Cityscapes (CS) and 27.45% on IDD using a Resnet-18 back-

bone, performing better than the univ-basic method on the

average mIoU.

Similar to the CS+CamVid case, the features trained on

Cityscapes dataset do not transfer directly to IDD, and shows

a performance drop of 12% mIoU, demonstrating the ne-

cessity of learning universal representations for large scale

datasets as well.

Furthermore, as an extreme case, we show the utility of

the proposed approach even in the case of large number of la-

beled examples. We choose N=1500, which is a challenging

setting since the number of supervised examples are already

sufficient to train a joint model. However, from Table 5,

the Resnet-50 based universal model still provides advan-

tage over joint training method, which proves that adding

unsupervised examples always helps the training, and more

unsupervised examples can be added to these datasets to

push the state of the art performance.

4.3. Comparison with state­of­the art

In addition to demonstrating the superiority of the pro-

posed method over the baseline approaches, we also compare

some of the existing semi supervised semantic segmentation

works (which are targeted towards single dataset) with ours

in Table 4, for similar amounts of labeled training data. Our

model which uses dilated residual network gives competi-

tive results on Cityscapes validation set when compared to

[28] which uses a more complex DeepLab-V2 architecture.

Similarly, without using any unsupervised video images un-

like [60], we show superior results on the CamVid test set

compared to them, in spite of the fact that our model is

trained to perform well on multiple datasets at once. Most

of the previous works optimize adversarial losses, and our

results prove that entropy minimization is better suited for
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(a) (b) (c) (d)

Figure 4: tSNE visualizations of the encoder output representations for majority classes from CS, CVD and SUN datasets. Plots (a)

and (b) are for the Univ-basic and Univ-full model from CS-CVD datasets. Observe that the feature embeddings for large classes like

CS:Building-CVD:Building, CS:SideWalk-CVD:Pavement, CS:Sky-CVD:Sky align a lot better with universal model. Plots (c) and (d)

are for the Univ-basic and Univ-full model from CS-SUN datasets, and labels with similar visual features like CS:Road - SUN:Floor

show better feature alignment. Best viewed in color and zoom.

Method Labeled

Examples

CS SUN Avg.

Train on CS 1.5k 64.23 15.47 39.85

Train on SUN 1.5k 15.61 42.52 29.07

SceneNet [41] Full(5.3k) - 49.8 -

Univ-basic 1.5k 58.01 31.55 44.78

Ours[Univ-full] 1.5k 57.91 43.12 50.52

Table 6: mIoU values for universal segmentation across differ-

ent task datasets with Resnet-50 backbone. While Cityscapes

is an autonomous driving dataset, SUN dataset is mainly used

for indoor segmentation. This demonstrates the effectiveness

of universal segmentation even across diverse environments.

semi supervised approaches where limited supervision is

available.

4.4. Cross Domain Experiment

A useful advantage of the universal segmentation model

is its ability to perform knowledge transfer between datasets

used in completely different settings, due to its effectiveness

in exploiting useful visual relationships. We demonstrate this

effect in the case of joint training between Cityscapes, which

is a driving dataset with road scenes used for autonomous

navigation and SUN RGB-D, which is an indoor segmenta-

tion dataset with household objects used for high-level scene

understanding.

The label sets in Cityscapes and SUN-RGBD dataset are

completely different (non overlapping), so the simple joint

training techniques generally give poor results. However,

from Table 6, our model outperforms the baselines and pro-

vides a good joint model across the domains making use of

the unlabeled examples. We also compare our work against

SceneNet [41], which uses large scale synthetic examples

with RGB and depth data for pre-training, as well as all

of the 5.3k available labeled examples for training. Using

only 28% of the training data from the SUN-RGB dataset,

and limited supervision from Cityscapes instead of synthetic

examples, we achieve upto 88% of the mIoU reported in

[41].

4.5. Feature Visualization

A more intuitive understanding of the feature alignment

performed by our universal model is obtained from the tSNE

embeddings [38] of the visual features. The pixel wise output

of the encoder module is used to plot the tSNE of selected

labels in Figure 4. For the universal training between CS and

CVD in Figures 4a and 4b, we can observe that classes like

Building-CS and Building-CVD, as well as Sidewalk-CS and

Pavement-CVD align with each other better when trained

using a universal segmentation objective. For the universal

training between CS and SUN from Figure 4c and Figure 4d,

labels with similar visual attributes such as Road and Floor

align close to each other in spite of the label sets themselves

being completely non overlapping.

5. Conclusion

In this work, we demonstrate a simple and effective way

to perform universal semi-supervised semantic segmentation.

We train a joint model using the few labeled examples and

large amounts of unlabeled examples from each domain by

an entropy regularization based semantic transfer objective.

We show this approach to be useful in better alignment of

the visual features corresponding to different domains. We

demonstrate superior performance of the proposed approach

when compared to supervised training or joint training based

methods over a wide variety of segmentation datasets with

varying degree of label overlap. We hope that our work

would address the growing concern in the deep learning

community over the difficulty involved in collection of large

number of labeled examples for dense prediction tasks such

as semantic segmentation. We also believe that other com-

puter vision tasks like object detection and instance aware

segmentation can benefit greatly from the ideas discussed in

this work.
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