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Abstract

Human face recognition is one of the most important re-

search areas in biometrics. However, the robust face recog-

nition under a drastic change of the facial pose, expres-

sion, and illumination is a big challenging problem for its

practical application. Such variations make face recogni-

tion more difficult. In this paper, we propose a novel face

recognition method, called Attentional Feature-pair Rela-

tion Network (AFRN), which represents the face by the rel-

evant pairs of local appearance block features with their

attention scores. The AFRN represents the face by all pos-

sible pairs of the 9×9 local appearance block features, the

importance of each pair is considered by the attention map

that is obtained from the low-rank bilinear pooling, and

each pair is weighted by its corresponding attention score.

To increase the accuracy, we select top-K pairs of local

appearance block features as relevant facial information

and drop the remaining irrelevant. The weighted top-K

pairs are propagated to extract the joint feature-pair rela-

tion by using bilinear attention network. In experiments, we

show the effectiveness of the proposed AFRN and achieve

the outstanding performance in the 1:1 face verification

and 1:N face identification tasks compared to existing state-

of-the-art methods on the challenging LFW, YTF, CALFW,

CPLFW, CFP, AgeDB, IJB-A, IJB-B, and IJB-C datasets.

1. Introduction

Face recognition is one of the most important and inter-

esting research areas in biometrics. However, the human

appearances would be drastically changed under the uncon-

strained environment and the intra-person variations could

overwhelm the inter-person variations, which make the face

recognition difficult. Therefore, better face recognition re-

quires for reducing the intra-person variations while enlarg-

ing the inter-person differences under the unconstrained en-

vironment.

Recent studies have targeted the same goal that mini-

mizes the inter-person variations and maximizes the intra-

person variations, either explicitly or implicitly. In

deep learning-based face recognition methods, the deeply

learned and embedded features are required to be not only

separable but also discriminative to classify face images

among different identities. This implies that the represen-

tation of a certain person A stays unchanged regardless of

who he/she is compared with, and it has to be discrimina-

tive enough to distinguish A from all other persons. Chen et

al. achieved good recognition performance [4] by extract-

ing feature representations via the CNN. And then, those

features are applied to learn metric matrix to project the fea-

ture vector into a low-dimensional space in order to maxi-

mize the between-class variation and minimize within-class

variation via the joint Bayesian metric learning. Chowd-

hury et al. applied the bilinear CNN architecture [5] to

the face identification task. Hassner et al. proposed the

pooling faces [9] that aligned faces in the 3D and binned

them according to head pose and image quality. Masi et

al. proposed the pose-aware models (PAMs) [20] that han-

dled pose variability by learning pose-aware models for

frontal, half-profile, and full-profile poses to improve face

recognition performance in an unconstrained environment.

Sankaranarayanan et al. [27] proposed the triplet proba-

bilistic embedding (TPE) that coupled a CNN-based ap-

proach with a low-dimensional discriminative embedding

learned using triplet probability constraints. Crosswhite et

al. proposed the template adaptation (TA) [6] that was a

form of transfer learning to the set of media in a template,

which obtained better performance than the TPE on the

IJB-A dataset by combining the CNN features with tem-

plate adaptation. Yang et al. proposed the neural aggre-

gation network (NAN) [35] that produced a compact and

fixed dimension feature representation. It adaptively aggre-

gated the features to form a single feature inside the convex

hull spanned by them and learned to advocate high-quality

face images while repelling low-quality face images such

as blurred, occluded and improperly exposed faces. Ranjan

et al. [24] added an L2-constraint to the feature descrip-

tors which restricted them to lie on a hypersphere of a fixed

radius, where minimizing the softmax loss is equivalent to

maximizing the cosine similarity for the positive pairs and

minimizing it for the negative pairs. However, the above
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Figure 1. Working principle of the proposed Attentional Feature-pair Relation Network.

mentioned methods extracted the holistic features and did

not designate what parts of the feature are meaningful and

what parts of the features are separable and discriminative.

Therefore, it is difficult to know what kind of features are

used to discriminate the identities of face images clearly.

To overcome this disadvantage, some research efforts

have been made regarding to the facial part-based represen-

tations for face recognition. In DeepID [30] and DeepID2

[29], a face region was divided into several of sub-regions

using the detected facial landmark points at different scales

and color channels, then these sub-regions were used for

training different networks. Xie et al. proposed the com-

parator network [34] that used attention mechanism based

on multiple discriminative local sub-regions, and compared

local descriptors between pairs of faces. Han et al. [8]

proposed the contrastive convolution which specifically fo-

cused on the distinct (contrastive) characteristics between

two faces, where it tried to find the differences and put more

attention for better discrimination of two faces. For exam-

ple, the best contrastive feature for distinguishing two im-

ages of Stephen Fry and Brad Pitt might be “crooked nose”.

Kang et al. proposed the pairwise relational network (PRN)

[14] that made all possible pairs of local appearance fea-

tures, then each pair of local appearance features is used for

capturing relational features. In addition, the PRN was con-

strained by the face identity state feature embedded from the

LSTM-based sub-network to represent face identity. How-

ever, these methods largely were dependent on the accuracy

of facial landmark detector and it did not use the importance

of facial parts.

To overcome these demerits, we propose a novel face

recognition method, called Attentional Feature-pair Rela-

tion Network (AFRN), which represents the face by the rel-

evant pairs of local appearance block features with their at-

tention scores: 1) the AFRN represents the face by all pos-

sible pairs of the 9×9 local appearance block features, 2)

the importance of each pair is considered by the attention

map that is obtained from the low-rank bilinear pooling, and

each pair is weighted by its corresponding attention score,

3) we select top-K pairs of local appearance block features

as relevant facial information and drop the remaining irrele-

vant, 4) The weighted top-K pairs are propagated to extract

the joint feature-pair relation by using bilinear attention net-

work. Figure 1 shows the working principle of the proposed

AFRN.

The main contributions of this paper can be summarized

as follows:
• Landmark free local appearance representation: we

propose a novel face recognition method using the atten-

tional feature-pair relation network (AFRN) which rep-

resents the face by the relevant pairs of local appearance

block features with their attention scores to captures the

unique and discriminative feature-pair relations to clas-

sify face images among different identities.

• Importance of pairs and removing irrelevant pairs:

to consider the importance of each pair, we compute

the bilinear attention map by using the low-rank bilin-

ear pooling, and each pair is weighted by its attention

score, then we select top-K pairs of local appearance

block features as relevant facial information and drop

the remaining irrelevant. The weighted top-K pairs are

propagated to extract the joint relational feature by using

bilinear attention network.

• We show that the proposed AFRN improves effectively

the accuracy of both face verification and face identifi-

cation.

• To investigate the effectiveness of the AFRN, we

present extensive experiments on the public available

datasets such as LFW [11], YTF [33], Cross-Age

LFW (CALFW), Cross-Pose LFW (CPLFW), Celebri-

ties in Frontal-Profile in the Wild (CFP) [28], AgeDB

[22], IARPA Janus Benchmark-A (IJB-A) [17], IARPA

Janus Benchmark-B (IJB-B) [32], and IARPA Janus

Benchmark-C (IJB-C) [21].

2. Proposed Methods

In this section, we describe the proposed methods in de-

tail including a facial feature encoding network, attentional

feature-pair relation network, top-K pairs selection and at-

tention allocation.

2.1. Facial Feature Encoding Network

A facial feature encoding network is a backbone neural

network which encodes a face image into deeply embed-
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Table 1. The detailed configuration of the modified ResNet-101

for the facial feature encoding network.

Layer name Output size Filter (kernel, #, stride)

conv1 140× 140 5× 5, 64, 1

pool 70× 70 3× 3 max pool, -, 2

conv2 x 70× 70 [(1× 1, 64), (3× 3, 64), (1× 1, 256)]× 3
conv3 x 35× 35 [(1× 1, 128), (3× 3, 128), (1× 1, 512)]× 4
conv4 x 18× 18 [(1× 1, 256), (3× 3, 256), (1× 1, 1024)]× 23
conv5 x 9× 9 [(1× 1, 512), (3× 3, 512), (1× 1, 2048)]× 3

(a)

H

W

D

(b)

Figure 2. Facial local blocks: (a) input face image. (b) facial local

blocks on the feature maps.

ded features. We employ the ResNet-101 network [10] and

modify it due to the differences of input resolutions, the size

of convolution filters, and the size of output feature maps. A

detailed architecture configuration of the modified ResNet-

101 is summarized in Table 1. The non-linear activation

outputs of the last convolution layer (conv5 3) are used as

the feature maps of facial appearance representation.

2.2. Facial Local Feature Representation

The activation outputs of the convolution layer can be

formulated as a tensor of the size H × W × D, where H

and W denote the height and width of each feature map,

and D denotes the number of channels in feature maps. Es-

sentially, the convolution layer divides the input image into

H×W sub-regions and uses D-dimensional feature maps to

describe the facial part information within each sub-region.

For clarity, since the activation outputs of the convolutional

layer can be viewed as a 2-D array of D-dimensional fea-

tures, we use each D-dimensional local appearance block

feature f i of the H × W sub-regions as the local feature

representation of the i-th facial part. Based on the feature

map in the conv5 3 residual block, the face region is divided

into 81 local blocks (9 × 9 resolution) (Figure 2), where

each local block is used for the local appearance block fea-

ture of a facial part. Therefore, we extract totally 81 local

appearance block features A = {f i|i = 1, · · · , 81}, where

f i ∈ R
2,048 in this work.

2.3. Attentional FeaturePair Relation Network

The attentional feature-pair relation network (AFRN) is

based on the low-rank bilinear pooling [15] which provides

richer representations than linear models and finds attention

distributions by considering every pair of features. The

AFRN aims to represent a separable and discriminative

Feature 

rearrange

Feature 

extraction

Figure 3. Facial feature rearrangement.

feature-pair relation which is pooled by feature-pair at-

tention scores of feature-pair relations among all possible

pairs of given local appearance block features. Thus, the

AFRN exploits attentional feature-pair relations between

all pairs of local appearance block features while extracts

a joint feature-pair relation for pairs of local appearance

block features.

Rearrange Local Appearance Block Features. To

obtain a feature-pair bilinear attention map and a joint

feature-pair relation for all of pairs of local appearance

block features, we first rearrange a set of local appear-

ance block features A into a matrix form F by stacking

each local appearance block feature f i in column direc-

tion, F = [f1, · · · ,f i, · · · ,fN ] ∈ R
D×N , where N

(= H × W ) is the number of local appearance block

features (Figure 3).

Feature-pair Bilinear Attention Map. An attention

mechanism provides an efficient way to improve accuracy

and reduce the number of input features at the same time

by selectively utilizing given information. We adopt the

feature-pair bilinear attention map A ∈ R
N×N . To obtain

A, we compute a logit of the softmax for a pair pi,j

between local appearance block features F i and F j as:

Ai,j = pT
(

σ
(

U
′TF i

)

◦ σ
(

V ′TF j

))

, (1)

where Ai,j is the logit of the softmax for pi,j and is the

output of low-rank bilinear pooling. U
′

∈ R
D×L

′

, V
′

∈

R
D×L

′

, and p ∈ R
L

′

, where L
′

is the dimension of the re-

duced and pooled features by linear mapping U
′

, V
′

and

pooling p in the low-rank bilinear pooling. σ and ◦ denote

the ReLU [23] non-linear activation function and Hadamard

product (element-wise multiplication), respectively. To ob-

tain A, the softmax function is applied element-wisely to

each logit Ai,j . All above operations can be rewritten as a

matrix form:

A = softmax
((

(

✶ · pT
)

◦ σ
(

F TU
′

))

· σ
(

V
′TF

))

,

(2)

where ✶ ∈ R
N . Figure 4 illustrates a process of the pro-

posed feature-pair bilinear attention map.

Joint Feature-pair Relation. To extract a joint feature-
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Figure 4. A process of the proposed feature-pair bilinear attention

map.

pair relation for all of pairs of local appearance block fea-

tures and reduce the number of pairs of local appearance

block features, we use the low-rank bilinear pooling with

the feature-pair bilinear attention map A as:

r
′

l = σ
(

F TU
)T

l
·A · σ

(

F TV
)

l
, (3)

where U ∈ R
D×L and V ∈ R

D×L are linear mappings. L

is the dimension of the reduced and pooled features by pool-

ing and linear mapping matrix U and V in the low-rank bi-

linear pooling for the feature-pair relation. (F TU)l ∈ R
N ,

(F TV )l ∈ R
N , and r

′

l denotes the l-th element of the inter-

mediate feature-pair relation. The subscript l for the matri-

ces indicates the index of column. σ denotes the ReLU [23]

non-linear activation function. Eq. (3) can be viewd as a bi-

linear model for the pairs of local appearance block features

where A is a bilinear weight matrix (Figure 5). Therefore,

we can rewrite Eq. (3) as:

r
′

l =

N
∑

i=1

N
∑

j=1

Ai,j · σ
(

F T
i U l

)

· σ
(

V T
l F j

)

, (4)

where F i and F j denote the i-th local appearance block

feature and the j-the local appearance block features of in-

put F , respectively. U l and V l denote the l-th columns of

U and V matrices, respectively. Ai,j denotes an element

in the i-th row and j-th column of A.

Finally, the joint feature-pair relation r̃ is obtained by

projection r
′

onto a learnable pooling matrix P :

r̃ = P Tr′, (5)

where r̃ ∈ R
C and P ∈ R

L×C . C is the dimension of the

joint feature-pair relation by pooling P to obtain the final

joint feature-pair relation r̃.

2.4. Pair Selection and Attention Allocation

Only some facial part pairs are relevant to face recogni-

tion and irrelevant ones may cause over-fitting of the neural

network. We need to select relevant pairs of local appear-

ance block features, therefore we select them with top-K

feature-pair bilinear attention scores as:

Φ =
{

pi,j |Ai,j ranks top K in A
}

, (6)

where pi,j is the selected pair of F i and F j with a top-K

feature-pair attention score.

Different pairs of local appearance block features always

have equal value scale, yet they offer different contributions

on face recognition. So, we should rescale the pairs of lo-

cal appearance block features to reflect their indeed influ-

ence. Mathematically, it is modeled as multiplying the cor-

responding feature-pair bilinear attention score. Therefore,

we can substitute Eq. (4) as

r
′

l =

K
∑

k=1

Awi(k),wj(k)) · σ
(

F T
wi(k)U l

)

· σ
(

V T
l Fwj(k)

)

,

(7)

where wi(k) and wj(k) are i and j indexes of the k-th pair

pi,j in Φ. K denotes the number of the selected pairs by the

pair selection layer.

Because Eq. (6) is not a differentiable function, it has no

parameter to be updated and only conveys gradients from

the latter layer to the former layer during back-propagation.

The gradients of the selected pairs of local appearance block

features will be copied from latter layer to the former layer

and the gradients of the dropped pairs of local appearance

block features will be discarded by setting the correspond-

ing values to zero.

After the pair selection and attention allocation, the

weighted pairs of local appearance block features are prop-

agated the next step to extract the joint feature-pair rela-

tion. The joint feature-pair relation r̃ is fed into two-layered

multi-layer perceptron (MLP) Fθ followed by the loss func-

tion. We use the 1, 024 dimensional output vector of the last

fully connected layer of Fθ as a final face representation.

3. Experiments

In this section, we describe the training dataset, valida-

tion set, and implementation details. We also demonstrate

the effectiveness of the proposed AFRN on the LFW [11],

YTF [33], IJB-A [17] and IJB-B [32] datasets.

3.1. Training Dataset

We use the VGGFace2 [2] dataset which has 3.2M face

images from 8,631 unique persons. We detect face regions

and their facial landmark points by using the multi-view

face detector [36] and deep alignment networks (DAN)

[18]. When detection is failed, we just discard that images

and totally remove 24,160 face images from 6,561 subjects.

Then, we have roughly 3.1M face images of 8,630 unique

persons as the refined dataset. We divide this dataset into
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two sets: one for training set having roughly 2.8M face

images, and another for validation set with 311,773 face

images which are selected randomly about 10% from each

subject. We use 68 facial landmark points for the face align-

ment. All of faces in both the training and validation sets

are aligned to canonical faces by using the face alignment

method in [14]. The faces with 140×140 resolutions are

used and each pixel is normalized by dividing 255 to be in

a range of [0, 1].

3.2. Implementation Details

We extract 81 local appearance block features on the

9×9×2,048 feature maps in conv5 3 residual block of the

facial feature encoding network, and each local appearance

block feature has 2,048 dimensions. Thus, the size of local

appearance block features is D = 2, 048 and the number of

local appearance block features is N = 81. The size of the

rearranged local appearance block features F is R2,048×81,

the size C of the joint feature-pair relation is 1,024, which

is equal to the rank L of the AFRN, and the rank L
′

of

the feature-pair bilinear attention map is also 1, 024. Ev-

ery linear mapping (U , V , U
′

, V
′

, and P ) is regularized

by the Weight Normalization [26]. We use the two-layered

MLP consisting of 1, 024 units per layer with Batch Nor-

malization (BN) [12] and ReLU [23] non-linear activation

functions for Fθ .

The proposed AFRN is optimized by jointly using the

triplet ratio Lt, pairwise Lp, and identity preserving Lid

loss functions proposed in [13] over the ground-truth iden-

tity labels. Adamax optimizer [16], a variant of Adam based

on infinite norm, is used. The learning rate is min(i ×
10−3, 4 × 10−3) where i is the number of epochs starting

from 1, then after 10 epochs, the learning rate is decayed by

0.25 for every 2 epochs up to 13 epochs, i.e. 1 × 10−3 for

11-th and 2.5 × 10−4 for 13-th epoch. We clip 2-norm of

vectorized gradient to 0.25. We achieve the best results by

setting the weight factors of loss functions as 1, 0.5, and 1

for Lt, Lp, and Lid by a grid search, respectively. We set

the mini-batch size as 120 on four NVIDIA Titan X GPUs.
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Figure 6. Accuracy plot with the different number K of feature-

pair on the validation set.

3.3. Ablation Study

We conduct several experiments to analyze the proposed

AFRN on the LFW [11] and YTF [33] datasets. Following

the test protocol of unrestricted with labeled outside data

[19], we test the proposed AFRN on the LFW and YTF

by using a squared L2 distance threshold to determine the

classification of same and different, and report the results in

Table 2 and 3, and then discuss results in detail.

Effects of Feature-pair Selection. In the feature-pair se-

lection layer, we need to decide top-K local appearance

pairs that we propagate to the next step. We perform an

experiment to evaluate the effect of K. We train the AFRN

model on the refined VGGFace2 training set with different

value of K. The accuracy on validation set is reported in

Figure 6. When K increases, the accuracy of our AFRN

model increased until K = 442 (97.4%). After that, the

accuracy of our model starts to drop. When K equals to

1,200, it is equivalent to not using the feature-pair selec-

tion layer in a face region. The performance in this case is

2.3% lower than the highest accuracy. This implies that it is

important to reject irrelevant the pairs of local appearance

block features.

Effects of Feature-pair Bilinear Attention. To evaluate

the effects of the feature-pair bilinear attention in the pro-

posed AFRN, we perform several experiments on the vali-

dation set, LFW and YTF datasets. We consider the atten-
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Table 2. Effects of the feature-pair selection by the feature-pair

bilinear attention on the validation set, LFW and YTF dataset.

Method Val. set LFW YTF

(a) Baseline 94.2 99.60 95.1

(b) Feature-pair Attention w/o Pair Selection 95.1 99.71 96.1

(c) Feature-pair Attention w/ Pair Selection 97.4 99.85 97.1

(d) ArcFace [7] - 99.78 -

(e) PRN [14] - 99.76 96.3

94.2

99.6

95.195.1

99.71

96.1

97.4

99.85

97.1

92

93
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Feature-pair Attention w/o Pair Selection

Feature-pair Attention w/ Pair Selection

Figure 7. Effects of the feature-pair selection by the feature-pair

bilinear attention on the validation set, LFW and YTF datasets.

tional feature-pair relation network without the feature-pair

selection layer, which means that we use all pairs of local

appearance block features for face recognition. We achieve

95.1% accuracy on the validation set, 99.71% accuracy on

the LFW, and 96.1% accuracy on the YTF, respectively (Ta-

ble 2 (b) and Figure 7). We use the normalized face image

which include the background regions and is not cropped a

face region tightly (see Figure 2). When not using pair se-

lection, we observe that attention scores for pairs between

background regions and face regions are not zero, and the

accuracy is degraded in comparison with the baseline (Ta-

ble 2 (a) and Figure 7). It indicates that all possible pairs are

not necessarily for face recognition. Therefore, we need to

remove irrelevant pairs of local appearance block features.

Then, we consider the attentional feature-pair relation

network with the feature-pair selection layer of K = 442.

We achieve 97.4% accuracy on the validation set, 99.85%

accuracy on the LFW, and 97.1% accuracy on the YTF, re-

spectively (Table 2 (c) and Figure 7). The experimental re-

sults show that the AFRN with top-K selection layer out-

performs the current state-of-the-art accuracies as 99.78%

(ArcFace [7]) on the LFW dataset and 96.3% (PRN [14])

on the YTF dataset.

Comparison with Other Attention Mechanisms. To com-

pare with other attention mechanisms, we conduct ablation

study with top-K pair selection (K = 442) for compari-

son with other attention mechanisms including the unitary

attention [15] and co-attention [37] on the validation set,

LFW, and YTF datasets. We achieve 97.4% accuracy on

the validation set, 99.85% accuracy on the LFW, and 97.1%

accuracy on the YTF, respectively (Table 3). It indicates

that the proposed feature-pair bilinear attention shows bet-

Table 3. Comparison results with other attention mechanisms.

Method Val. set LFW YTF

(a) Unitary Attention [15] 95.3 99.53 95.3

(b) Co-attention [37] 96.1 99.63 95.8

(c) Feature-pair Bilinear Attention 97.4 99.85 97.1

ter accuracy than the other attention mechanisms.

3.4. Comparison with the Stateoftheart Methods

Detailed Settings in the Models. For fair comparison in

terms of the effects of each network module, we train three

kinds of models (model A, model B, and model C) us-

ing the triplet ratio, pairwise, and identity preserving loss

functions [13] jointly over the ground-truth identity labels:

model A is the facial feature encoding network model with

only the global appearance feature (Table 1). model B is

the AFRN model without the feature-pair selection layer.

model C is the AFRN model with the feature-pair selection

layer. All of convolution layers and fully connected layers

used BN and ReLU as non-linear activation functions.

Experiments on the IJB-A dataset. We evaluate the pro-

posed models on the IJB-A dataset [17] which contains face

images and videos captured from the unconstrained envi-

ronments. The IJB-A dataset is very challenging due to

its full pose variation and wide variations in imaging con-

ditions, and contains 500 subjects with 5,397 images and

2,042 videos in total, and 11.4 images and 4.2 videos per

subject on average. We detect the face regions using the face

detector [36] and the facial landmark points using DAN [18]

landmark point detector, and then aligned the face image by

using the alignment method in [14].

Three models (model A, model B, and model C) are

trained on the roughly 2.8M refined VGGFace2 training

set, with no people overlapping with subjects in the IJB-

A dataset. The IJB-A dataset provides 10 split evaluations

with two protocols (1:1 face verification and 1:N face iden-

tification). For 1:1 face verification, we report the test re-

sults by using true accept rate (TAR) vs. false accept rate

(FAR) (i.e. receiver operating characteristics (ROC) curve)

(Table 4 and Figure 8 (a)). For 1:N face identification,

we report the results by using the true positive identifica-

tion rate (TPIR) vs. false positive identification rate (FPIR)

(equivalent to a decision error trade-off (DET) curve) and

Rank-N (Table 4 and Figure 8 (b)). We average all the

1, 024 dimensional output vectors of the last fully connected

layer of Fθ for a media in the template, then we average

these media-averaged features to get the final template fea-

ture as face representation. All performance evaluations are

based on the squared L2 distance threshold.

From the experimental results (Table 4 and Figure 8),

we have the following observations. First, compared to

model A, model B achieves a consistently superior accura-

cies (TAR and TPIR) by 0.4-0.9% for TAR at FAR=0.001-
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Table 4. Comparison of performances of the proposed AFRN method with the state-of-the-art on the IJB-A dataset. For verification, TAR

vs. FAR are reported. For identification, TPIR vs. FPIR and the Rank-N accuracies are presented.

Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

Pose-Aware Models [20] 0.652± 0.037 0.826± 0.018 - - - 0.840± 0.012 0.925± 0.008 0.946± 0.005
All-in-One [25] 0.823± 0.02 0.922± 0.01 0.976± 0.004 0.792± 0.02 0.887± 0.014 0.947± 0.008 0.988± 0.003 0.986± 0.003
NAN [35] 0.881± 0.011 0.941± 0.008 0.978± 0.003 0.817± 0.041 0.917± 0.009 0.958± 0.005 0.980± 0.005 0.986± 0.003
VGGFace2 [2] 0.904± 0.020 0.958± 0.004 0.985± 0.002 0.847± 0.051 0.930± 0.007 0.981± 0.003 0.994± 0.002 0.996± 0.001
VGGFace2 ft [2] 0.921± 0.014 0.968± 0.006 0.990± 0.002 0.883± 0.038 0.946± 0.004 0.982± 0.004 0.993± 0.002 0.994± 0.001
PRN [14] 0.901± 0.014 0.950± 0.006 0.985± 0.002 0.861± 0.038 0.931± 0.004 0.976± 0.003 0.992± 0.003 0.994± 0.003
PRN+ [14] 0.919± 0.013 0.965± 0.004 0.988± 0.002 0.882± 0.038 0.941± 0.004 0.982± 0.004 0.992± 0.002 0.995± 0.001
DR-GAN [31] 0.539± 0.043 0.774± 0.027 - - - 0.855± 0.015 0.947± 0.011 -

DREAM [1] 0.868± 0.015 0.944± 0.009 - - - 0.946± 0.011 0.968± 0.010 -

DA-GAN [38] 0.930± 0.005 0.976± 0.007 0.991± 0.003 0.890± 0.039 0.949± 0.009 0.971± 0.007 0.989± 0.003 -

model A (baseline) 0.895± 0.015 0.949± 0.008 0.980± 0.005 0.843± 0.035 0.923± 0.005 0.975± 0.005 0.992± 0.004 0.993± 0.001

model B (AFRN w/o pair selection) 0.904± 0.013 0.953± 0.006 0.985± 0.002 0.869± 0.038 0.935± 0.004 0.981± 0.003 0.993± 0.003 0.994± 0.002

model C (AFRN w/ pair selection) 0.949± 0.013 0.985± 0.004 0.998± 0.002 0.942± 0.038 0.968± 0.004 0.993± 0.004 0.995± 0.001 0.996± 0.001
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Figure 8. Comparison of three AFRN models with the state-of-the-art methods on the IJB-A dataset (average over 10 splits): (a) ROC

(higher is better) and (b) DET (lower is better).

0.1 in verification task, 1.2-2.6% for TPIR at FPIR=0.01

and 0.1 in identification open set task, and 0.6% for Rank-1

in identification close set task. Second, model C shows a

consistently higher accuracy than model A by the improve-

ment of 1.8-5.4% TAR at FAR = 0.001-0.1 in the verifica-

tion task, 4.5-9.9% TPIR at FPIR = 0.01-0.1 in the identi-

fication open set task, and 1.8% Rank-1 in the identifica-

tion close set task. Third, model C shows a consistently

higher accuracy than model B by the improvement of 1.3-

4.5% TAR at FAR = 0.001-0.1 in the verification task, 3.3-

7.3% TPIR at FPIR = 0.01-0.1 in the identification open

set task, and 1.5% for rank-1 in the identification close set

task. Last, although model C is trained from scratch, it out-

performed the state-of-the-art method (DA-GAN [38]) by

0.7-1.9% TAR at FAR = 0.001-0.1 in the verification task,

2.2% for Rank-1 on identification close set task, and 5.2%

for TPIR at FPIR = 0.01 in identification open set task on

the IJB-A dataset. This validates the effectiveness of the

proposed AFRN with the pair selection on the large-scale

and challenging unconstrained face recognition.

Experiments on the IJB-B dataset. We evaluate the pro-

posed models on the IJB-B dataset [32] which contains face

images and videos captured from the unconstrained envi-

ronments. The IJB-B dataset is an extension of the IJB-A

dataset, which contains 1,845 subjects with 21.8K still im-

ages (including 11,754 face and 10,044 non-face) and 55K

frames from 7,011 videos, an average of 41 images per sub-

ject. Because images are labeled with ground truth bound-

ing boxes, we only detect facial landmark points using DAN

[18], and then aligned face images by using the face align-

ment method explained in [14].

Three models (model A, model B, and modelC) are

trained on the roughly 2.8M refined VGGFace2 dataset,

with no people overlapping with subjects in the IJB-B

dataset. Unlike the IJB-A dataset, it does not contain any

training splits. In particular, we use the 1:1 baseline verifi-

cation protocol and 1:N mixed media identification protocol

for the IJB-B dataset. For 1:1 face verification, we report

the test results by using TAR vs. FAR (i.e. a ROC curve)

(Table 5 and Figure 9 (a)). For 1:N face identification, we

report the results by using TPIR vs. FPIR (equivalent to a

DET curve) and Rank-N (Table 5 and Figure 9 (b)). We

compare three proposed models with VGGFace2 [2], Face-

PoseNet (FPN) [3], Comparator Net [34], and PRN [14].

Similarity to evaluation on the IJB-A, all performance eval-

uations are based on the squared L2 distance threshold.

From the experimental results (Table 5 and Figure 9),

we have the following observations. First, compared to
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Table 5. Comparison of performances of the proposed AFRN method with the state-of-the-art on the IJB-B dataset. For verification, TAR

vs. FAR are reported. For identification, TPIR vs. FPIR and the Rank-N accuracies are presented.

Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.00001 FAR=0.0001 FAR=0.001 FAR=0.01 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGGFace2 [2] 0.671 0.800 0.888 0.949 0.706± 0.047 0.839± 0.035 0.901± 0.030 0.945± 0.016 0.958± 0.010
VGGFace2 ft [2] 0.705 0.831 0.908 0.956 0.743± 0.037 0.863± 0.032 0.902± 0.036 0.946± 0.022 0.959± 0.015
FPN [3] - 0.832 0.916 0.965 - - 0.911 0.953 0.975
Comparator Net [34] - 0.849 0.937 0.975 - - - - -

PRN [14] 0.692 0.829 0.910 0.956 0.773± 0.018 0.865± 0.018 0.913± 0.022 0.954± 0.010 0.965± 0.013
PRN+ [14] 0.721 0.845 0.923 0.965 0.814± 0.017 0.907± 0.013 0.935± 0.015 0.965± 0.017 0.975± 0.007

model A (baseline) 0.673 0.812 0.892 0.953 0.743± 0.019 0.851± 0.017 0.911± 0.017 0.950± 0.013 0.961± 0.010

model B (AFRN w/o pair selection) 0.706 0.839 0.933 0.966 0.803± 0.018 0.885± 0.018 0.923± 0.022 0.962± 0.010 0.974± 0.007

model C (AFRN w/ pair selection) 0.771 0.885 0.949 0.979 0.864± 0.017 0.937± 0.013 0.973± 0.015 0.976± 0.017 0.977± 0.007
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Figure 9. Comparison of three AFRN models with the state-of-the-art methods on the IJB-B dataset: (a) ROC (higher is better) and (b)

DET (lower is better).

model A, model B achieves a consistently superior accu-

racies (TAR and TPIR) by 1.3-4.1% for TAR at FAR =

0.00001-0.01 in the verification task, 3.4-6.0% for TPIR at

FPIR = 0.01 and 0.1 in the identification open set task, and

1.2% for Rank-1 in the identification close set task. Second,

model C shows a consistently higher accuracy than model

A by the improvement of 2.6-9.8% TAR at FAR = 0.001-0.1

in the verification task, 8.6-12.1% TPIR at FPIR = 0.01-0.1

in the identification open set task, and 6.2% Rank-1 in the

identification close set task. Third, model C shows a con-

sistently higher accuracy than model B by the improvement

of 1.3-6.5% TAR at FAR = 0.001-0.1 in the verification set

task, 5.2-6.1% TPIR at FPIR = 0.01-0.1 in the identifica-

tion open set task, and 5.0% for Rank-1 in the identifica-

tion close set task. Last, although model C is trained from

scratch, it outperformed the state-of-the-art method (Com-

parator Net [34]) by 0.4-3.6% at FAR = 0.0001-0.01 in ver-

ification task, another state-of the-art method (PRN+ [14])

by 3.8% Rank-1 of identification close set task, and 5.0%

TPIR at FPIR = 0.01 in the identification open set task on

the IJB-B dataset. This validates the effectiveness of the

proposed AFRN with the pair selection on the large-scale

and challenging unconstrained face recognition.

More Experiments on the CALFW, CPLFW, CFP,

AgeDB, and IJB-C datasets. Due to the limited space, we

provide more experiments in Section A in the supplemen-

tary material.

4. Conclusion

We proposed the Attentional Feature-pair Relation Net-

work (AFRN) which represented the face by the relevant

pairs of local appearance block features with their weighted

attention scores. The AFRN represented the face by all pos-

sible pairs of the 9×9 local appearance block features and

the importance of each pair is weighted by the attention

map that was obtained from adopting the low-rank bilin-

ear pooling. We selected top-K block feature-pairs as rel-

evant facial information, dropped the remaining irrelevant.

The weighted pairs of local appearance block features were

propagated to extract the joint feature-pair relation by us-

ing bilinear attention network. In experiments, we showed

that the proposed AFRN achieved new state-of-the-art re-

sults in the 1:1 face verification and 1:N face identification

tasks compared to current state-of-the-art methods on the

challenging LFW, YTF, CALFW, CPLFW, CFP, AgeDB,

IJB-A, IJB-B, and IJB-C datasets.
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