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Abstract

Conventional training of a deep CNN based object de-

tector demands a large number of bounding box annota-

tions, which may be unavailable for rare categories. In this

work we develop a few-shot object detector that can learn

to detect novel objects from only a few annotated examples.

Our proposed model leverages fully labeled base classes

and quickly adapts to novel classes, using a meta feature

learner and a reweighting module within a one-stage detec-

tion architecture. The feature learner extracts meta features

that are generalizable to detect novel object classes, us-

ing training data from base classes with sufficient samples.

The reweighting module transforms a few support examples

from the novel classes to a global vector that indicates the

importance or relevance of meta features for detecting the

corresponding objects. These two modules, together with a

detection prediction module, are trained end-to-end based

on an episodic few-shot learning scheme and a carefully

designed loss function. Through extensive experiments we

demonstrate that our model outperforms well-established

baselines by a large margin for few-shot object detection,

on multiple datasets and settings. We also present analysis

on various aspects of our proposed model, aiming to pro-

vide some inspiration for future few-shot detection works.

1. Introduction

The recent success of deep convolutional neural net-

works (CNNs) in object detection [32, 15, 30, 31] relies

heavily on a huge amount of training data with accurate

bounding box annotations. When the labeled data are

scarce, CNNs can severely overfit and fail to generalize. In

contrast, humans exhibit strong performance in such tasks:

children can learn to detect a novel object quickly from very

few given examples. Such ability of learning to detect from

few examples is also desired for computer vision systems,

since some object categories naturally have scarce exam-

ples or their annotations are hard to obtain, e.g., California

firetrucks, endangered animals or certain medical data [33].

*Equal contribution.
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Figure 1: We aim to obtain a few-shot detection model by training

on the base classes with sufficient examples, such that the model

can learn from a few annotated examples to detect novel objects

on testing images.

In this work, we target at the challenging few-shot object

detection problem, as shown in Fig. 1. Specifically, given

some base classes with sufficient examples and some novel

classes with only a few samples, we aim to obtain a model

that can detect both base and novel objects at test time. Ob-

taining such a few-shot detection model would be useful

for many applications. Yet, effective methods are still ab-

sent. Recently, meta learning [39, 35, 12] offers promising

solutions to a similar problem, i.e., few-shot classification.

However, object detection is by nature much more difficult

as it involves not only class predictions but also localiza-

tion of the objects, thus off-the-shelf few-shot classification

methods cannot be directly applied on the few-shot detec-

tion problem. Taking Matching Networks [39] and Pro-

totypical Networks [35] as examples, it is unclear how to

build object prototypes for matching and localization, be-

cause there may be distracting objects of irrelevant classes

within the image or no targeted objects at all.

We propose a novel detection model that offers few-shot

learning ability through fully exploiting detection training

data from some base classes and quickly adapting the de-

tection prediction network to predict novel classes accord-

ing to a few support examples. The proposed model first

learns meta features from base classes that are generalizable

to the detection of different object classes. Then it effec-

tively utilizes a few support examples to identify the meta
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features that are important and discriminative for detecting

novel classes, and adapts accordingly to transfer detection

knowledge from the base classes to the novel ones.

Our proposed model thus introduces a novel detec-

tion framework containing two modules, i.e., a meta fea-

ture learner and a light-weight feature reweighting module.

Given a query image and a few support images for novel

classes, the feature learner extracts meta features from the

query image. The reweighting module learns to capture

global features of the support images and embeds them into

reweighting coefficients to modulate the query image meta

features. As such, the query meta features effectively re-

ceive the support information and are adapted to be suitable

for novel object detection. Then the adapted meta features

are fed into a detection prediction module to predict classes

and bounding boxes for novel objects in the query (Fig. 2).

In particular, if there are N novel classes to detect, the

reweighting module would take in N classes of support

examples and transform them into N reweighting vectors,

each responsible for detecting novel objects from the corre-

sponding class. With such class-specific reweighting vec-

tors, some important and discriminative meta features for a

novel class would be identified and contribute more to the

detection decision, and the whole detection framework can

learn to detect novel classes efficiently.

The meta feature learner and the reweighting module

are trained together with the detection prediction module

end-to-end. To ensure few-shot generalization ability, the

whole few-shot detection model is trained using an two-

phase learning scheme: first learn meta features and good

reweighting module from base classes; then fine-tune the

detection model to adapt to novel classes. For handling dif-

ficulties in detection learning (e.g., existence of distracting

objects), it introduces a carefully designed loss function.

Our proposed few-shot detector outperforms competi-

tive baseline methods on multiple datasets and in various

settings. Besides, it also demonstrates good transferability

from one dataset to another different one. Our contributions

can be summarized as follows:

• We are among the first to study the problem of few-

shot object detection, which is of great practical values

but a less explored task than image classification in the

few-shot learning literature.

• We design a novel few-shot detection model that 1)

learns generalizable meta features; and 2) automati-

cally reweights the features for novel class detection by

producing class-specific activating coefficients from a

few support samples.

• We experimentally show that our model outperforms

baseline methods by a large margin, especially when

the number of labels is extremely low. Our model

adapts to novel classes significantly faster.

2. Related Work

General object detection. Deep CNN based object de-

tectors can be divided into two categories: proposal-based

and proposal-free. RCNN series [15, 14, 32] detectors

fall into the first category. RCNN [15] uses pre-trained

CNNs to classify the region proposals generated by se-

lective search [38]. SPP-Net [17] and Fast-RCNN [14]

improve RCNN with an RoI pooling layer to extract re-

gional features from the convolutional feature maps di-

rectly. Faster-RCNN [32] introduces a region-proposal-

network (RPN) to improve the efficiency of generating

proposals. In contrast, YOLO [29] provides a proposal-

free framework, which uses a single convolutional network

to directly perform class and bounding box predictions.

SSD [22] improves YOLO by using default boxes (anchors)

to adjust to various object shapes. YOLOv2 [30] improves

YOLO with a series of techniques, e.g., multi-scale training,

new network architecture (DarkNet-19). Compared with

proposal-based methods, proposal-free methods do not re-

quire a per-region classifier, thus are conceptually simpler

and significantly faster. Our few-shot detector is built on

the YOLOv2 architecture.

Few-shot learning. Few-shot learning refers to learning

from just a few training examples per class. Li et al. [20]

use Bayesian inference to generalize knowledge from a pre-

trained model to perform one-shot learning. Lake et al. [19]

propose a Hierarchical Bayesian one-shot learning system

that exploits compositionality and causality. Luo et al. [23]

consider the problem of adapting to novel classes in a new

domain. Douze et al. [9] assume abundant unlabeled images

and adopts label propagation in a semi-supervised setting.

An increasingly popular solution for few-shot learning

is meta-learning, which can further be divided into three

categories: a) Metric learning based [18, 37, 39, 35]. In

particular, Matching Networks [39] learn the task of finding

the most similar class for the target image among a small

set of labeled images. Prototypical Networks [35] extend

Matching Networks by producing a linear classifier instead

of weighted nearest neighbor for each class. Relation Net-

works [37] learn a distance metric to compare the target im-

age to a few labeled images. b) Optimization for fast adap-

tation. Ravi and Larochelle [28] propose an LSTM meta-

learner that is trained to quickly converge a learner classi-

fier in new few-shot tasks. Model-Agnostic Meta-Learning

(MAML) [12] optimizes a task-agnostic network so that a

few gradient updates on its parameters would lead to good

performance on new few-shot tasks. c) Parameter predic-

tion. Learnet [2] dynamically learns the parameters of fac-

torized weight layers based on a single example of each

class to realize one-shot learning.

Above methods are developed to recognize novel images

only, there are some other works tried to learn a model that
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Figure 2: The architecture of our proposed few-shot detection model. It consists of a meta feature extractor and a reweighting module.

The feature extractor follows the one-stage detector architecture and directly regresses the objectness score (o), bounding box location

(x, y, h, w) and classification score (c). The reweighting module is trained to map support samples of N classes to N reweighting vectors,

each responsible for modulating the meta features to detect the objects from the corresponding class. A softmax based classification score

normalization is imposed on the final output.

can classify both base and novel images. Recent works

by Hariharan et al. [16, 40] introduce image hallucination

techniques to augment the novel training data such that

novel classes and base classes are balanced to some extend.

Weight imprinting [26] sets weights for a new category us-

ing a scaled embedding of labeled examples. Dynamic-

Net [13] learns a weight generator to classification weights

for a specific category given the corresponding labeled im-

ages. These previous works only tackle image classification

task, while our work focuses on object detection.

Object detection with limited labels. There are a number

of prior works on detection focusing on settings with lim-

ited labels. The weakly-supervised setting [3, 7, 36] con-

siders the problem of training object detectors with only

image-level labels, but without bounding box annotations,

which are more expensive to obtain. Few example object

detection [25, 41, 8] assumes only a few labeled bounding

boxes per class, but relies on abundant unlabeled images to

generate trustworthy pseudo annotations for training. Zero-

shot object detection [1, 27, 42] aims to detect previously

unseen object categories, thus usually requires external in-

formation such as relations between classes. Different from

these settings, our few-shot detector uses very few bound-

ing box annotations (1-10) for each novel class, without the

need for unlabeled images or external knowledge. Chen et

al. [4] study a similar setting but only in a transfer learn-

ing context, where the target domain images only contains

novel classes without base classes.

3. Approach

In this work, we define a novel and realistic setting for

few-shot object detection, in which there are two kinds of

data available for training, i.e., the base classes and the

novel classes. For the base classes, abundant annotated data

are available, while only a few labeled samples are given to

the novel classes [16]. We aim to obtain a few-shot de-

tection model that can learn to detect novel object when

there are both base and novel classes in testing by lever-

aging knowledge from the base classes.

This setting is worth exploring since it aligns well with a

practical situation—one may expect to deploy a pre-trained

detector for new classes with only a few labeled samples.

More specifically, large-scale object detection datasets (e.g.,

PSACAL VOC, MSCOCO) are available to pre-train a de-

tection model. However, the number of object categories

therein is quite limited, especially compared to the vast ob-

ject categories in real world. Thus, solving this few-shot

object detection problem is heavily desired.

3.1. Feature Reweighting for Detection

Our proposed few-shot detection model introduces a

meta feature learner D and a reweighting module M into

a one-stage detection framework. In this work, we adopt

the proposal-free detection framework YOLOv2 [30]. It

directly regresses features for each anchor to detection

relevant outputs including classification score and object

bounding box coordinates through a detection prediction

module P . As shown in Fig. 2, we adopt the backbone

of YOLOv2 (i.e., DarkNet-19) to implement the meta fea-

ture extractor D, and follow the same anchor setting as

YOLOv2. As for the reweighting module M, we carefully

design it to be a light-weight CNN for both enhancing ef-

ficiency and easing its learning. Its architecture details are

deferred to the supplementary due to space limit.

The meta feature learner D learns how to extract meta

features for the input query images to detect their novel ob-
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jects. The reweighting module M, taking the support ex-

amples as input, learns to embed support information into

reweighting vectors and adjust contribution of each meta

feature of the query image accordingly for following detec-

tion prediction module P . With the reweighting module ,

some meta features informative for detecting novel objects

would be excited and thus assist detection prediction.

Formally, let I denote an input query image. Its corre-

sponding meta features F ∈ R
w×h×m are generated by D:

F = D(I). The produced meta feature has m feature maps.

We denote the support images and their associated bound-

ing box annotation, indicating the target class to detect, as

Ii and Mi respectively, for class i, i = 1, . . . , N . The

reweighting module M takes one support image (Ii,Mi)
as input and embed it into a class-specific representation

wi ∈ R
m with wi = M(Ii,Mi). Such embedding captures

global representation of the target object w.r.t. the m meta

features. It will be responsible for reweighting the meta fea-

tures and highlighting more important and relevant ones to

detect the target object from class i. More specifically, after

obtaining the class-specific reweighting coefficients wi, our

model applies it to obtain the class-specific feature Fi for

novel class i by:

Fi = F ⊗ wi, i = 1, . . . , N, (1)

where ⊗ denotes channel-wise multiplication. We imple-

ment it through 1×1 depth-wise convolution.

After acquiring class-specific features Fi, we feed them

into the prediction module P to regress the objectness score

o, bounding box location offsets (x, y, h, w), and classifica-

tion score ci for each of a set of predefined anchors:

{oi, xi, yi, hi, wi, ci} = P(Fi), i = 1, . . . , N, (2)

where ci is one-versus-all classification score indicating the

probability of the corresponding object belongs to class i.

3.2. Learning Scheme

It is not straightforward to learn a good meta feature

learner D and reweighting module M from the base classes

such that they can produce generalizable meta features and

rweighting coefficients. To ensure the model generaliza-

tion performance from few examples, we develop a new

two-phase learning scheme that is different from the con-

ventional ones for detection model training.

We reorganize the training images with annotations

from the base classes into multiple few-shot detection

learning tasks Tj . Each task Tj = Sj ∪ Qj =

{(Ij
1
,M

j
1
), . . . , (IjN ,M

j
N )} ∪ {(Iqj ,M

q
j )} contains a sup-

port set Sj (consisting of N support images each of which

is from a different base class) and a query set Qj (offering

query images with annotations for performance evaluation).

Let θD, θM and θP denote the parameters of meta fea-

ture learner D, the reweighting module M and prediction

module P respectively. We optimize them jointly through

minimizing the following loss:

min
θD,θM ,θP

L :=
∑

j

L(Tj)

=
∑

j

Ldet(PθP (DθD (I
j
q )⊗MθM (Sj)),M

q
j ).

Here Ldet is the detection loss function and we explain its

details later. The above optimization ensures the model to

learn good meta features for the query and reweighting co-

efficients for the support.

The overall learning procedure consists of two phases.

The first phase is the base training phase. In this phase, de-

spite abundant labels are available for each base class, we

still jointly train the feature learner, detection prediction to-

gether with the reweighting module . This is to make them

coordinate in a desired way: the model needs to learn to

detect objects of interest by referring to a good reweight-

ing vector. The second phase is few-shot fine-tuning. In

this phase, we train the model on both base and novel

classes. As only k labeled bounding boxes are available

for the novel classes, to balance between samples from the

base and novel classes, we also include k boxes for each

base class. The training procedure is the same as the first

phase, except that it takes significantly fewer iterations for

the model to converge.

In both training phases, the reweighting coefficients de-

pend on the input pairs of (support image, bounding box)

that are randomly sampled from the available data per iter-

ation. After few-shot fine-tuning, we would like to obtain

a detection model that can directly perform detection with-

out requiring any support input. This is achieved by setting

the reweighting vector for a target class to the average one

predicted by the model after taking the k-shot samples as

input. After this, the reweighting module can be completely

removed during inference. Therefore, our model adds neg-

ligible extra model parameters to the original detector

Detection loss function. To train the few-shot detection

model, we need to carefully choose the loss functions in par-

ticular for the class prediction branch, as the sample num-

ber is very few. Given that the predictions are made class-

wisely, it seems natural to use binary cross-entropy loss,

regressing 1 if the object is the target class and 0 other-

wise. However, we found using this loss function gave a

model prone to outputting redundant detection results (e.g.,

detecting a train as a bus and a car). This is due to that for

a specific region of interest, only one out of N classes is

truly positive. However, the binary loss strives to produce

balanced positive and negative predictions. Non-maximum

suppression could not help remove such false positives as it

only operates on predictions within each class.

To resolve this issue, our proposed model adopts a soft-

max layer for calibrating the classification scores among
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different classes, and adaptively lower detection scores for

the wrong classes. Therefore, the actual classification score

for the i-th class is given by ĉi =
eci∑

N
j=1

e
cj

. Then to better

align training procedure and few-shot detection, the cross-

entropy loss over the calibrated scores ĉi is adopted:

Lc = −

N∑

i=1

1(·, i) log(ĉi), (3)

where 1(·, i) is an indicator function for whether current

anchor box really belongs to class i or not. After introduc-

ing softmax, the summation of classification scores for a

specific anchor is equal to 1, and less probable class predic-

tions will be suppressed. This softmax loss will be shown

to be superior to binary loss in the following experiments.

For bounding box and objectiveness regression, we adopt

the similar loss function Lbbx and Lobj as YOLOv2 [30]

but we balance the positive and negative by not comput-

ing some loss from negatives samples for the objective-

ness scores. Thus, the overall detection loss function is

Ldet = Lc + Lbbx + Lobj .

Reweighting module input. The input of the reweighting

module should be the object of interest. However, in ob-

ject detection task, one image may contain multiple objects

from different classes. To let the reweighting module know

what the target class is, in additional to three RGB chan-

nels, we include an additional “mask” channel (Mi) that

has only binary values: on the position within the bound-

ing box of an object of interest, the value is 1, otherwise

it is 0 (see left-bottom of Fig. 2). If multiple target ob-

jects are present on the image, only one object is used. This

additional mask channel gives the reweighting module the

knowledge of what part of the image’s information it should

use, and what part should be considered as “background”.

Combining mask and image as input not only provides class

information of the object of interest but also the location in-

formation (indicated by the mask) useful for detection. In

the experiments, we also investigate other input forms.

4. Experiments

In this section, we evaluate our model and compare it

with various baselines, to show our model can learn to de-

tect novel objects significantly faster and more accurately.

We use YOLOv2 [30] as the base detector. Due to space

limit, we defer all the model architecture and implemen-

tation details to the supplementary material. The code

to reproduce the results will be released at https://

github.com/bingykang/Fewshot_Detection.

4.1. Experimental Setup

Datasets. We evaluate our model for few-shot detection

on the widely-used object detection benchmarks, i.e., VOC

2007 [11], VOC 2012 [10], and MS-COCO [21]. We follow

the common practice [30, 32, 34, 6] and use VOC 07 test set

for testing while use VOC 07 and 12 train/val sets for train-

ing. Out of its 20 object categories, we randomly select 5

classes as the novel ones, while keep the remaining 15 ones

as the base. We evaluate with 3 different base/novel splits.

During base training, only annotations of the base classes

are given. For few-shot fine-tuning, we use a very small set

of training images to ensure that each class of objects only

has k annotated bounding boxes, where k equals 1, 2, 3, 5

and 10. Similarly, on the MS-COCO dataset, we use 5000

images from the validation set for evaluation, and the rest

images in train/val sets for training. Out of its 80 object

classes, we select 20 classes overlapped with VOC as novel

classes, and the remaining 60 classes as the base classes.

We also consider learning the model on the 60 base classes

from COCO and applying it to detect the 20 novel objects in

PASCAL VOC. This setting features a cross-dataset learn-

ing problem that we denote as COCO to PASCAL.

Note the testing images may contain distracting base

classes (which are not targeted classes to detect) and some

images do not contain objects of the targeted novel class.

This makes the few-shot detection further challenging.

Baselines. We compare our model with five competitive

baselines. Three of them are built upon the vanilla YOLOv2

detector with straightforward few-shot learning strategies.

The first one is to train the detector on images from the base

and novel classes together. In this way, it can learn good

features from the base classes that are applicable for detect-

ing novel classes. We term this baseline as YOLO-joint. We

train this baseline model with the same total iterations as

ours. The other two YOLO-based baselines also use two

training phases as ours. In particular, they train the origi-

nal YOLOv2 model with the same base training phase as

ours; for the few-shot fine-tuning phase, one fine-tunes the

model with the same iterations as ours, giving the YOLO-ft

baseline; and one trains the model to fully converge, giv-

ing YOLO-ft-full. Comparing with these baselines can help

understand the few-shot learning advantage of our mod-

els brought by the proposed feature reweighting method.

The last two baselines are from a recent few-shot detec-

tion method, i.e., Low-Shot Transfer Detector (LSTD) [4].

LSTD relies on background depression (BD) and transfer

knowledge (TK) to obtain a few-shot detection model on

the novel classes. For fair comparison, we re-implement BD

and TK based on YOLOV2, train it for the same iterations

as ours, obtaining LSTD(YOLO); and train it to convergence

to obtain the last baseline, LSTD(YOLO)-full.

4.2. Comparison with Baselines

PASCAL VOC. We present our main results on novel

classes in Table 1. First we note that our model signifi-

cantly outperforms the baselines, especially when the la-
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Novel Set 1 Novel Set 2 Novel Set 3

Method / Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLO-joint 0.0 0.0 1.8 1.8 1.8 0.0 0.1 0.0 1.8 0.0 1.8 1.8 1.8 3.6 3.9

YOLO-ft 3.2 6.5 6.4 7.5 12.3 8.2 3.8 3.5 3.5 7.8 8.1 7.4 7.6 9.5 10.5

YOLO-ft-full 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4

LSTD(YOLO) 6.9 9.2 7.4 12.2 11.6 9.9 5.4 3.3 5.7 19.2 10.9 7.6 9.5 15.3 16.9

LSTD(YOLO)-full 8.2 11.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3

Ours 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

Table 1: Few-shot detection performance (mAP) on the PASCAL VOC dataset. We evaluate the performance on three different sets of

novel categories. Our model consistently outperforms baseline methods.

Average Precision Average Recall

# Shots 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

10

YOLO-ft 0.4 1.1 0.1 0.3 0.7 0.6 5.8 8.0 8.0 0.6 5.1 15.5

YOLO-ft-full 3.1 7.9 1.7 0.7 2.0 6.3 7.8 10.5 10.5 1.1 5.5 20

LSTD(YOLO) 0.4 1.1 0.2 0.2 0.7 0.6 5.8 7.9 7.9 0.6 5.0 15.3

LSTD(YOLO)-full 3.2 8.1 2.1 0.9 2.0 6.5 7.8 10.4 10.4 1.1 5.6 19.6

Ours 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2

30

YOLO-ft 0.6 1.5 0.3 0.2 0.7 1.0 7.4 9.4 9.4 0.4 3.9 19.3

YOLO-ft-full 7.7 16.7 6.4 0.4 3.3 14.4 11.7 15.3 15.3 1.0 7.7 29.2

LSTD(YOLO) 0.6 1.4 0.3 0.2 0.8 1.0 7.1 9.1 9.2 0.4 3.9 18.7

LSTD(YOLO)-full 6.7 15.8 5.1 0.4 2.9 12.3 10.9 14.3 14.3 0.9 7.1 27.0

Ours 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5

Table 2: Few-shot detection performance for the novel categories on the COCO dataset. We evaluate the performance for different numbers

of training shots for the novel categories.

bels are extremely scarce (1-3 shot). The improvements are

also consistent for different base/novel class splits and num-

ber of shots. In contrast, LSTD(YOLO) can boost perfor-

mance in some cases, but might harm the detection in other

cases. Take 5-shot detection as an example, LSTD(YOLO)-

full brings 4.3 mAP improvement compared to YOLO-ft-

full on novel set 1, but it is worse than YOLO-ft-full by 5.1

mAP on novel set 2. Second, we note that YOLO-ft/YOLO-

ft-full also performs significantly better than YOLO-joint.

This demonstrates the necessity of the two training phases

employed in our model: it is better to first train a good

knowledge representation on base classes and then fine-tune

with few-shot data, otherwise joint training with let the de-

tector bias towards base classes and learn nearly nothing

about novel classes. More detailed results about each class

is available at supplementary material.

COCO. The results for COCO dataset is shown in Table

2. We evaluate for k = 10 and k = 30 shots per class.

In both cases, our model outperforms all the baselines. In

particular, when the YOLO baseline is trained with same

iterations with our model, it achieves an AP of less than 1%.

We also observe that there is much room to improve the

results obtained in the few-shot scenario. This is possibly

due to the complexity and large amount of data in COCO

so that few-shot detection over it is quite challenging.

COCO to PASCAL. We evaluate our model using 10-

shot image per class from PASCAL. The mAP of YOLO-

ft, YOLO-ft-full, LSTD(YOLO), LSTD(YOLO)-full are

11.24%, 28.29%, 10.99% 28.95% respectively, while our

method achieves 32.29%. The performance on PASCAL

novel classes is worse than that when we use base classes in

PASCAL dataset (which has mAP around 40%). This might

be explained by the different numbers of novel classes, i.e.,

20 v.s. 5.

4.3. Performance Analysis

Learning speed. Here we analyze learning speed of our

models. The results show that despite the fact that our few-

shot detection model does not consider adaptation speed

explicitly in the optimization process, it still exhibits sur-

prisingly fast adaptation ability. Note that in experiments

of Table 1, YOLO-ft-full and LSTD(YOLO)-full requires

25,000 iterations for it to fully converge, while our model

only require 1200 iterations to converge to a higher accu-

racy. When the baseline YOLO-ft and LSTD(YOLO) are

trained for the same iterations as ours, their performance is

far worse. In this section, we compare the full convergence

behavior of YOLO-joint, YOLO-ft-full and our method in

Fig. 3. The AP value are normalized by the maximum value

during the training of our method and the baseline together.

This experiment is conducted on PASCAL VOC base/novel

split 1, with 10-shot bounding box labels on novel classes.
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Figure 3: Learning speed comparison between our proposed few-

shot detection model and the YOLO-ft-full baseline. We plot the

AP (normalized by the converged value) against number of train-

ing iterations. Our model shows much faster adaption speed.

From Fig. 3, our method (solid lines) converges sig-

nificantly faster than the baseline YOLO detector (dashed

lines), for each novel class as well as on average. For the

class Sofa (orange line), despite the baseline YOLO detec-

tor eventually slightly outperforms our method, it takes a

great amount of training iterations to catch up with the lat-

ter. This behavior makes our model a good few-shot de-

tector in practice, where scarcely labeled novel classes may

come in any time and short adaptation time is desired to

put the system in real usage fast. This also opens up our

model’s potential in a life-long learning setting [5], where

the model accumulates the knowledge learned from past and

uses/adapts it for future prediction. We also observe similar

convergence advantage of our model over YOLO-ft-full and

LSTD(YOLO)-full.

Learned reweighting coefficients. The reweighting coef-

ficient is important for the meta-feature usage and detection

performance. To see this, we first plot the 1024-d reweight-

ing vectors for each class in Fig. 4a. In the figure, each

row corresponds to a class and each column corresponds to

a feature. The features are ranked by variance among 20

classes from left to right. We observe that roughly half of

the features (columns) have notable variance among differ-

ent classes (multiple colors in a column), while the other

half are insensitive to classes (roughly the same color in a

column). This suggests that indeed only a portion of fea-

tures are used differently when detecting different classes,

while the remaining ones are shared across different classes.

We further visualize the reweighting vectors by t-

SNE [24] in Fig. 4b learned from 10 shots/class on

base/novel split 1. In this figure, we plot the reweighting

vector generated by each support input, along with their av-

erage for each class. We observe that not only vectors of the

same classes tend to form clusters, the ones of visually sim-

ilar classes also tend to be close. For instance, the classes

Cow, Horse, Sheep, Cat and Dog are all around the right-

bottom corner, and they are all animals. Classes of trans-

portation tools are at the top of the figure. Person and Bird

are more visually different from the mentioned animals, but

are still closer to them than the transportation tools.

Learned meta features. Here we analyze the learned meta

features from the base classes in the first training stage. Ide-

ally, a desirable few-shot detection model should prefer-

ably perform as well when data are abundant. We com-

pare the mAP on base classes for models obtained after the

first-stage base training, between our model and the vanilla

YOLO detector (used in latter two baselines). The results

are shown in Table 3. Despite our detector is designed for

a few-shot scenario, it also has strong representation power

and offers good meta features to reach comparable perfor-

mance with the original YOLOv2 detector trained on a lot

of samples. This lays a basis for solving the few-shot object

detection problem.

Base Set 1 Base Set 2 Base Set 3

YOLO Baseline 70.3 72.2 70.6

Our model 69.7 72.0 70.8

Table 3: Detection performance (mAP) on base categories. We

evaluate the vanilla YOLO detector and our proposed detection

model on three different sets of base categories.

4.4. Ablation Studies

We analyze the effects of various components in our sys-

tem, by comparing the performance on both base classes

and novel classes. The experiments are on PASCAL VOC

base/novel split 1, using 10-shot data on novel classes.

Which layer output features to reweight. In our exper-

iments, we apply the reweighting module to moderate the

output of the second last layer (layer 21). This is the high-

est level of intermediate features we could use. However,

other options could be considered as well. We experiment

with applying the reweighting vectors to feature maps out-

put from layer 20 and 13, while also considering only half

of features in layer 21. The results are shown in Table 4.

We can see that the it is more suitable to implement feature

reweighting

at deeper layers, as using earlier layers gives worse per-

formance. Moreover, moderating only half of the features

does not hurt the performance much, which demonstrates

that a significant portion of features can be shared among

classes, as we analyzed in Sec. 4.3.

Loss functions. As we mentioned in Sec. 3.2, there are

several options for defining the classification loss. Among

them the binary loss is the most straightforward one: if

the inputs to the reweighting module and the detector are

from the same class, the model predicts 1 and otherwise
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Figure 4: (a) Visualization of the reweighting coefficients (in row vectors) from the reweighting module for each class. Columns corre-

spond to meta feature maps, ranked by variance among classes. Due to space limit, we only plot randomly sampled 256 features. (b) t-SNE

[24] visualization of the reweighting coefficients. More visually similar classes tend to have closer coefficients.

Layer 13 Layer 20 Layer 21 Layer 21(half)

Base 69.6 69.2 69.7 69.2

Novel 40.7 43.6 47.2 46.9

Table 4: Performance comparison for the detection models trained

with reweighting applied on different layers.

Single-binary Multi-binary Softmax

Base 49.1 64.1 69.7

Novel 14.8 41.6 47.2

Table 5: Performance comparison for the detection models trained

with different loss functions.

0. This binary loss can be defined in following two ways.

The single-binary loss refers to that in each iteration the

reweighting module only takes one class of input, and the

detector regresses 0 or 1; and the multi-binary loss refers

to that per iteration the reweighting module takes N exam-

ples from N classes, and compute N binary loss in total.

Prior works on Siamese Network [18] and Learnet [2] use

the single-binary loss. Instead, our model uses the softmax

loss for calibrating the classification scores of N classes. To

investigate the effects of using different loss functions, we

compare model performance trained with the single-binary,

multi-binary loss and with our softmax loss in Table 5. We

observe that using softmax loss significantly outperforms

binary loss. This is likely due to its effect in suppressing

redundant detection results.

Input form of reweighting module. In our experiments,

we use an image of the target class with a binary mask chan-

nel indicating position of the object as input to the meta-

model. We examine the case where we only feed the im-

age. From Table 6 we see that this gives lower performance

especially on novel classes. An apparently reasonable al-

ternative is to feed the cropped target object together with

the image. From Table 6, this solution is also slightly worse.

The necessity of the mask may lie in that it provides the pre-

cise information about the object location and its context.

We also analyze the input sampling scheme for testing

and effect of sharing weights between feature extractor and

reweighting module. See supplementary material.

Image Mask Object Base Novel

X 69.5 43.3

X X 69.7 47.2

X X 69.2 45.8

X X X 69.4 46.8

Table 6: Performance comparison for different support input

forms. The shadowed line is the one we use in main experiments.

5. Conclusion

This work is among the first to explore the practical and

challenging few-shot detection problems. It introduced a

new model to learn to fast adjust contributions of the basic

features to detect novel classes with a few example. Ex-

periments on realistic benchmark datasets clearly demon-

strate its effectiveness. This work also compared the model

learning speed, analyzed predicted reweighting vectors and

contributions of each design component, providing in-depth

understanding of the proposed model. Few-shot detection is

a challenging problem and we will further explore how to

improve its performance for more complex scenes.
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