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Abstract

Essential matrix averaging, i.e., the task of recovering

camera locations and orientations in calibrated, multiview

settings, is a first step in global approaches to Euclidean

structure from motion. A common approach to essential ma-

trix averaging is to separately solve for camera orientations

and subsequently for camera positions. This paper presents

a novel approach that solves simultaneously for both cam-

era orientations and positions. We offer a complete charac-

terization of the algebraic conditions that enable a unique

Euclidean reconstruction of n cameras from a collection

of (n
2 ) essential matrices. We next use these conditions to

formulate essential matrix averaging as a constrained op-

timization problem, allowing us to recover a consistent set

of essential matrices given a (possibly partial) set of mea-

sured essential matrices computed independently for pairs

of images. We finally use the recovered essential matrices

to determine the global positions and orientations of the n
cameras. We test our method on common SfM datasets,

demonstrating high accuracy while maintaining efficiency

and robustness, compared to existing methods.

1. Introduction

What algebraic conditions make a collection of
(

n

2

)

es-

sential matrices consistent, in the sense that there exist n
Euclidean camera matrices that produce them? This funda-

mental question has not yet been answered in the literature.

It is well known that
(

3
2

)

= 3 fundamental matrices are con-

sistent if, and only if, the epipole of the third view is trans-

ferred correctly between each pair of views, i.e., for every

1 ≤ i, j, k ≤ 3, e
T
ikFijejk = 0. Recent work [15] pre-

sented a set of sufficient and necessary algebraic conditions

that make
(

n

2

)

fundamental matrices in general position con-

sistent. One could expect that essential matrices that fulfill

those same conditions would be consistent with respect to

Euclidean camera matrices. However, these conditions are

*Equal contributors

not sufficient and can be contradicted by a counter example,

see one such construction in the supplementary material.

Establishing consistency constraints for essential matri-

ces is an important step toward producing essential matrix

averaging algorithms. Given n images I1, .., In, a common

approach for global Structure from Motion (SfM) begins

by robustly estimating essential matrices between pairs of

views, {Eij}, from which an estimate of the relative pair-

wise rotations {Rij} and translations {tij} are extracted.

Motion averaging then is performed typically in two steps:

first the absolute camera orientations {Ri} are solved by av-

eraging the relative rotations. Then, using the relative trans-

lations and the recovered absolute orientations, the absolute

camera positions {ti} are recovered. Finally, the obtained

solution is refined by bundle adjustment.

Our goal in this paper is to establish a complete set of

necessary and sufficient conditions for the consistency of

essential matrices and to use these conditions to formulate

a one-step algorithm for averaging essential matrices. To

achieve this goal we investigate an object called the n-views

essential matrix, which is obtained by stacking the
(

n

2

)

es-

sential matrices into a 3n × 3n matrix whose i, j’th 3 × 3
block is the essential matrix Eij relating the i’th and the j’th

frames. We prove that, in addition to projective consistency

(introduced in [15]), this matrix must have three pairs of

eigenvalues each of the same magnitude but opposite signs,

and its eigenvectors directly encode camera parameters.

We use these results to introduce the first (to the best

of our knowledge) essential matrix averaging algorithm.

Given a noisy estimate of a subset of
(

n

2

)

essential matrices,

our algorithm seeks to find the nearest consistent set of es-

sential matrices. We formulate this problem as constrained

optimization and solve it using ADMM. We then incorpo-

rate this algorithm in a global SfM pipeline and evaluate

our pipeline on the datasets of [25], showing superior accu-

racies relative to state of the art methods on almost all image

collections while also maintaining efficiency.
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2. Related work

Approaches for Euclidean motion averaging can be di-

vided into two main categories: Incremental methods [16,

20, 1, 14, 26] begin with a small subset of frames and pro-

duce an initial reconstruction. The rest of cameras are then

used sequentially for reconstruction. These methods are

very successful and quite robust. However, they have to

apply bundle adjustment refinement at every step to prevent

camera drift. Consequently, these method are computation-

ally demanding when applied to large data sets.

Global methods [3, 25, 8, 13, 18], in contrast, recover the

motion parameters simultaneously for all the frames. Typi-

cal global SfM pipelines proceed by applying a camera ori-

entation solver, followed by a location solver.

Global orientation solvers [3, 17, 24, 9, 5] solve for the

absolute orientations of the cameras given relative rota-

tion measurements between pairs of images. [3, 17] de-

rive closed form solutions that minimize a least squares ob-

jective constructed from the pairwise relative orientations.

These methods are very efficient but due to the relaxed or-

thonormality requirement, the result is usually suboptimal.

Other methods [24, 9, 5] utilize the Lie algebra structure of

the rotation group to perform rotation averaging in SO(3).
These methods, however, often converge to local minima.

Recently, [7] has used the strong duality principle to find

the global minimum under certain conditions.

Global location solvers [3, 25, 18] assume known camera

orientations and solve for the absolute positions of the cam-

eras by using the noisy relative translations. [3] uses point

correspondences to find a least squares solution for the ab-

solute positions. [25] formulates a highly non convex ob-

jective and solves for the absolute translations utilizing the

Levenberg-Marquet algorithm with random initialization.

[18] uses a similar objective while formulating a convex re-

laxation. [6] uses linear global method that minimizes ge-

ometric error in triplet of views while considering feature

tracks. All the aforementioned methods are highly depen-

dent on accurate estimation of the absolute rotations of the

cameras, which result from a rotation averaging method.

Integrative Methods: [22] formulates the problem of fun-

damental and essential averaging as global optimization

through minimizing the epipolar transfer error. While their

method manages to improve the consistency of viewing

graphs, it is unable to generate a consistent reconstruction,

and so it requires postprocessing steps of both rotation and

translation averaging. [19] has introduced the concept of a

multi-view essential/fundamental matrix. Their work, how-

ever, established only a partial list of constraints. Moreover,

their use of a complicated non-convex objective allowed

them to only refine a complete reconstruction. [15] has in-

troduced a complete set of consistency conditions for fun-

damental matrices. They formulate a robust optimization

objective and demonstrate state of the art projective recon-

structions. Their method, however, is limited to projective

settings and is inapplicable to calibrated settings, i.e., for

Euclidean reconstruction. [24] suggested a method that op-

timizes first for camera positions and then for their orienta-

tions, and as a post processing simultaneously optimizes for

both. However, this method is sensitive to outliers. Recent

work explored the properties of the manifold of essential

matrices [23]. Their characterization, however, is suitable

only for a single essential matrix and not for general mul-

tiview settings. Finally, [2, 11] explore general algebraic

properties of multi-view settings.

Our paper extends the work of [15, 19] by introducing a

complete set of necessary and sufficient conditions for con-

sistency of multiview essential matrices and by proposing

an efficient and robust optimization algorithm for essential

matrix averaging that incorporates these conditions.

3. Theory

Let I1, ..., In denote a collection of n images of a

static scene captured respectively by cameras P1, ..., Pn.

Each camera Pi is represented by a 3 × 4 matrix Pi =
KiR

T
i [I,−ti] where Ki is a 3 × 3 calibration matrix, ti ∈

R
3 and Ri ∈ SO(3) denote the position and orientation of

Pi, respectively, in some global coordinate system. We fur-

ther denote Vi = K−T
i RT

i , so Pi = V −T
i [I,−ti]. Con-

sequently, let X = (X,Y,Z)T be a scene point in the

global coordinate system. Its projection onto Ii is given by

xi = Xi/Zi, where Xi = (Xi, Yi, Zi)
T = KiR

T
i (X− ti).

We denote the fundamental matrix and the essential ma-

trix between images Ii and Ij by Fij and Eij respectively.

It was shown in [3] that Eij and Fij can be written as

Eij = RT
i (Ti − Tj)Rj

Fij = K−T
i EijK

−1
j = Vi(Ti − Tj)V

T
j

where Ti = [ti]×.

Throughout this paper we assume that all calibration ma-

trices are known, so our work deals with solving the prob-

lem of Euclidean SfM.

The derivations in this paper adopt the definitions “n-

view fundamental matrix” and “consistent n-view funda-

mental matrix” from [15]. We first repeat these definitions,

for the sake of clarity, and then define analogous definitions

for the calibrated case. In the definitions below we denote

the space of all the 3n × 3n symmetric matrices by S3n.

Definition 1. A matrix F ∈ S
3n, whose 3 × 3 blocks are

denoted by Fij , is called an n-view fundamental matrix if

∀i 6= j ∈ {1, ..., n}, rank(Fij) = 2 and ∀i Fii = 0.

Definition 2. An n-view fundamental matrix F is called

consistent if there exist camera matrices P1, ..., Pn of the

form Pi = V −T
i [I, ti] such that Fij = Vi([ti]×−[tj ]×)V T

j .
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Definition 3. A matrix E ∈ S
3n, whose 3 × 3 blocks are

denoted by Eij , is called an n-view essential matrix if ∀i 6=
j ∈ {1 . . . n} , rank(Eij) = 2, the two singular values of

Eij are equal, and ∀i Eii = 0.

Definition 4. An n-view essential matrix E is called consis-

tent if there exist n rotation matrices {Ri}n
i=1 and n vectors

{ti}n
i=1 such that Eij = RT

i ([ti]× − [tj ]×)Rj .

Note that any (consistent) n-view essential matrix is also

a (consistent) n-view fundamental matrix. In [15] neces-

sary and sufficient conditions for the consistency of the n-

view fundamental matrix were proved. The main theoreti-

cal contribution of [15] is summarized in Theorem 1. For

the consistency of n-view essential matrix, a partial set of

necessary conditions were derived in [19]. Those are sum-

marized below in Theorem 2.

Theorem 1. An n-view fundamental matrix F is consistent

with a set of n cameras whose centers are not all collinear

if, and only if, the following conditions hold:

1. Rank(F ) = 6 and F has exactly 3 positive and 3 neg-

ative eigenvalues.

2. Rank(Fi) = 3 for all i = 1, ..., n, where Fi is the

3 × 3n ith block row of F .

Theorem 2. Let E be a consistent n-view essential matrix,

associated with rotation matrices {Ri}n
i=1 and camera cen-

ters {ti}n
i=1. E satisfies the following conditions

1. E can be formulated as E = A+AT where A = UV T

and U, V ∈ R3n×3

V =







RT
1
...

RT
n






U =







RT
1 T1

...

RT
n Tn






(1)

with Ti = [ti]× and
∑n

i=1 ti = 0.

2. Each column of U is orthogonal to each column of V ,

i.e., V T U = 03×3

3. rank(V)=3

4. If not all {ti}n
i=1 are collinear, then rank(U) and

rank(A) = 3. Moreover, if the (thin) SVD of A is

A = ÛΣV̂ T , with Û , V̂ ∈ R
3n×3 and Σ ∈ R

3×3

then the (thin) SVD of E is

E =
[

Û , V̂
]

(

Σ
Σ

)[

V̂ T

ÛT

]

implying rank(E) = 6.

3.1. Main theoretical results

In this section we derive and prove necessary and suffi-

cient conditions for the consistency of n-view essential ma-

trices in terms of their spectral decomposition. These con-

ditions, in turn, will be used later to formulate a constrained

optimization problem and to extract the motion parameters

from a consistent n-view essential matrix E .

Theorem 3. Let E ∈ S3n be a consistent n-view fundamen-

tal matrix with a set of n cameras whose centers are not all

collinear. We denote by Σ+,Σ− ∈ R3×3 the diagonal ma-

trices with the 3 positive and 3 negative eigenvalues of E,

respectively. Then, the following conditions are equivalent:

1. E is a consistent n-view essential matrix

2. The (thin) SVD of E can be written in the form

E =
[

Û , V̂
]

(

Σ+

Σ+

)[

V̂ T

ÛT

]

with Û , V̂ ∈ R3n×3 such that each 3 × 3 block of V̂ ,

V̂i, i = 1, ..., n, is an
√

n-scaled rotation matrix, i.e.,

V̂i = 1√
n
R̂i, where R̂i ∈ SO(3). We say that V̂ is a

block rotation matrix.

3. Σ+ = −Σ− and the (thin) spectral decomposition of

E is of the form

E = [X,Y ]

(

Σ+

Σ−

)[

XT

Y T

]

such that
√

0.5(X + Y ) is a block rotation matrix.

Proof. (1)⇒(2) Assume that E is a consistent n-view es-

sential matrix. Then, according to Thm. 2, E = A + AT

with A = UV T and U, V ∈ R
3n×3 which take the for-

mas in (1). Since A = UV T and rank(A) = 3, then

AT A = V UT UV and AT A � 0 with rank(AT A) = 3
(A and AT A share the same null space). First, we con-

struct a spectral decomposition to AT A, relying on the spe-

cial properties of U and V . We have rank(U) = 3, and

therefore UT U , which is a 3 × 3, symmetric positive semi-

definite matrix, is of full rank. Its spectral decomposition is

of the form UT U = QDQT , where Q ∈ SO(3). (Spec-

tral decomposition guarantees that Q ∈ O(3). However,

Q can be replaced by −Q if det(Q) = −1.) D ∈ R
3×3

is a diagonal matrix consisting of the (positive) eigenvalues

of UT U . This spectral decomposition yields the following

decomposition

AT A = V QDQT V T . (2)

Now, note that

QT V T V Q = QT
[

R1, ..., Rn

]







RT
1
...

RT
n






Q = nI3×3.
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By a simple manipulation (2) becomes a spectral decompo-

sition

AT A =

(

1√
n

V

)

Q(nD)QT

(

1√
n

V T

)

. (3)

On the other hand, the (thin) SVD of A is of the form A =
ÛΣV̂ T , where Û , V̂ ∈ R3n×3, Σ ∈ R3×3. This means that

AT A = V̂ Σ2V̂ T . (4)

Due to the uniqueness of the eigenvector decomposition, (3)

and (4) collapse to the same eigenvector decomposition, up

to some global rotation, H ∈ SO(3), that is 1√
n
V Q = V̂ H ,

which means that V̂i = 1√
n
RT

i QHT . Since RT
i , Q,HT ∈

SO(3), then R̂i =: RT
i QHT ∈ SO(3), showing that V̂ is

a block rotation matrix. Finally, by Thm. 2, the (thin) SVD

of E is of the form

E =
[

Û , V̂
]

(

Σ
Σ

)[

V̂ T

ÛT

]

(5)

and according to Lemma 5, the eigenvalues of E are Σ and

−Σ. Since the elements on the diagonal of Σ are positive,

and E is symmetric with exactly 3 positive eigenvalues Σ+

and 3 negative eigenvalues Σ−, it follows that Σ = Σ+ and

−Σ = Σ− concluding the proof.

(2)⇒(1) Let E be a consistent n-view fundamental ma-

trix that satisfies condition (2). We would like to show that

E is a consistent n-view essential matrix. By condition (2)

E can be written as

E = ÛΣ+V̂ T + V̂ Σ+ÛT = Ū V̂ T + V̂ ŪT , (6)

where Ū = ÛΣ+ with V̂i = 1√
n
R̂i, R̂i ∈ SO(3). By defi-

nition Eii = 0, and this implies that ŪiV̂
T
i is skew symmet-

ric. Using Lemma 4, Ūi = V̂iT̂i for some skew symmetric

matrix T̂i = [t̂i]×. Plugging Ūi and V̂i in (6) yields

Eij = ŪiV̂
T
j + V̂iŪ

T
j

=
1

n
R̂iT̂iR̂

T
j − 1

n
R̂iT̂jR̂

T
j

= Ri
T ([ti]× − [tj ]×)Rj ,

where Ri = R̂T
i and ti = 1

n
t̂i, concluding the proof.

(2)⇒(3) Let E be an n-view fundamental matrix

which satisfies condition (2). This means that the

(thin) SVD of E can be written in the form E =
[

Û , V̂
]

(

Σ+

Σ+

)[

V̂ T

ÛT

]

, where V̂ is a block rota-

tion matrix. Then, by Lemma 5, the (thin) spectral decom-

position of E is E = [X,Y ]

(

Σ+

−Σ+

)[

XT

Y T

]

,

where X,Y are the eigenvectors of E satisfying X =

√
0.5(Û + V̂ ) and Y =

√
0.5(V̂ − Û). Since V̂ =√

0.5(X + Y ), and by condition (2) V̂ is a block rotation

matrix, the claim is confirmed and also Σ− = −Σ+.

(3)⇒(2) Let E be a consistent n-view fun-

damental matrix satisfying condition (3), i.e.,

its (thin) spectral decomposition is of the form

E = [X,Y ]

(

Σ+

Σ−

)[

XT

Y T

]

, where
√

0.5(X +Y )

is a block rotation matrix. Since Σ+ = −Σ−, we can

use Lemma 5, which implies that the (thin) SVD is of

the form E =
[

Û , V̂
]

(

Σ+

Σ+

)[

V̂ T

ÛT

]

, where

V̂ =
√

0.5(X + Y ), concluding the proof.

Corollary 1. Euclidean reconstruction. Let E be a con-

sistent n-view essential matrix with 6 distinct eigenvalues,

then it is possible to explicitly determine R1 . . . Rn and

t1, . . . , tn that are consistent with respect to E.

Proof. The claim is justified by the following construction,

which relies on the spectral characterizations of Thm. 3.

1. Calculate the eigenvectors X,Y of E, and the cor-

responding three positive eigenvalues, Σ+, and three

negative eigenvalues, Σ−, respectively.

2. To realize condition (3) of Thm. 3, there are 8

possible choices of
√

0.5(X + Y Is), where Is =




±1 0 0
0 ±1 0
0 0 ±1



, due to the sign ambiguity of

each eigenvector. Then, Is is chosen such that√
0.5(X +Y Is) is block rotation matrix up to a global

sign which can be removed.

3. This spectral decomposition determines directly an

SVD decomposition in the form of condition (2) of

Thm. 3. We would like to emphasize that due to the

multiplicity of singular values, a standard SVD method

which is performed directly on E, in general, will not

produce this special SVD pattern.

4. Having the relation Eij = ÛiΣ+V̂ T
j + V̂iΣ+ÛT

j and

since Eii = 0 we get that ÛiΣ+V̂ T
i is skew symmetric.

We denote Ūi = ÛiΣ+ and, by Lemma 4, it holds that

T̂i = V̂ −1
i Ūi.

5. Finally, for i = 1, 2, .., n, define Ri =:
√

nV̂ T
i and

ti =: 1
n
t̂i and it holds that

Eij = Ri
T ([ti]× − [tj ]×)Rj .

This construction yields {Ri}i=n
i=1 and {ti}i=n

i=1 which are

consistent with respect to E. Moreover, the reconstruction

is unique up to a global similarity transformation. Roughly
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speaking, this can be proven for n = 3 by applying an argu-

ment from [12]. Next, for n > 3, by induction, suppose

we obtain two reconstructions, P1, ..., Pn and P ′
1, ..., P

′
n.

By the induction assumption these must include two sets

of n − 1 non-collinear cameras so that each is unique up

to a similarity transformation. Such two sets overlap in at

least 2 cameras, which in turn imply that the two similarity

transformations must be identical. The complete proof is

provided in the supplementary material.

3.2. Supporting lemmas

Lemma 4. [15] Let A,B ∈ R
3×3 with rank(A) = 2,

rank(B) = 3 and ABT is skew symmetric, then T =
B−1A is skew symmetric.

Lemma 5. Let E ∈ S
3n of rank(6), and Σ ∈ R

3×3, a

diagonal matrix, with positive elements on the diagonal. Let

X,Y,U, V ∈ R3n×3, and we define the mapping (X,Y ) ↔
(U, V ) : X =

√
0.5(Û + V̂ ), Y =

√
0.5(V̂ − Û), Û =√

0.5(X − Y ), V̂ =
√

0.5(X + Y ).

Then, the (thin) SVD of E is of the form

E =
[

Û , V̂
]

(

Σ
Σ

)[

V̂ T

ÛT

]

if and only if the (thin) spectral decomposition of E is of the

form

E = [X,Y ]

(

Σ
−Σ

)[

XT

Y T

]

Proof. The proof is provided in the supplementary material.

4. Method

Given images I1, ..., In, we assume a standard robust

method is used to estimate the pairwise essential matrices,

which we denote by Ω = {Êij}. In practice, only a small

subset of the pairwise essential matrices are estimated, due

to occlusion, large viewpoint and brightness changes as well

as objects’ motion, and in addition the available estimates

are noisy. Our goal therefore is to find a consistent n-view

essential matrix E ∈ S3n that is as similar to the measured

essential matrices as possible.

To make an n-view essential matrix consistent, its blocks

of pairwise essential matrices must each be scaled by an

unknown factor. [19] proposed an optimization scheme that

explicitly seeks for the unknown scale factors, yielding a

nonlinear, rank-constrained optimization formulation. The

success of this approach critically depends on the quality

of its initialization, which in experiments was obtained by

applying another, state of the art SfM method.

More recently, [15] proposed an analogous approach for

projective SfM. They showed that a consistent 3-view fun-

damental matrix, which uniquely determines camera matri-

ces (up to a projective ambiguity) from a triplet of images,

is invariant to scaling of its pairwise fundamental matrices.

This allowed them to formulate an optimization problem

that seeks 3-view fundamental matrices that are both con-

sistent and compatible, while avoiding the need to explicitly

optimize for the scale factors.

In this paper, we introduce an optimization scheme that

is analogous to that of [15], but adapted to calibrated set-

tings. In particular, our scheme uses the algebraic con-

straints derived in Thm. 3 to enforce the consistency of

noisy, and possibly partial essential matrices. Similar to

[15], our method simultaneously enforces consistency of

camera triplets attached rigidly to each other, allowing us

to avoid optimizing explicitly for the unknown scales of the

estimated essential matrices. (To that end we further extend

Thm. 3 to handle scaled rotations for image triplets, see sup-

plementary material for details.) Our formulation, however,

is more involved than in [15] due to the additional spectral

constraints required for Euclidean reconstruction.

In the rest of this section we present our constrained op-

timization formulation and propose an ADMM-based solu-

tion scheme. Subsequently, we discuss how to select mini-

mal subsets of triplets to speed up the optimization. Finally,

we show how the results of our optimization can be used to

reconstruct the absolute orientations and positions of the n
cameras.

4.1. Optimization

In multi-view settings, it is common to define a viewing

graph G = (V,W ), with nodes v1, . . . , vn, corresponding

to the n cameras, and wij ∈ W if Êij is one of the esti-

mated pairwise essential matrices. Let τ denote a collection

of m 3-cliques of cameras where m ≤ (n
3 ). The collection

may be the full set of the 3-cliques in G, or a chosen sub-

set as described in Sec. 4.2. We index the elements of τ by

k = 1, ...,m, where τ(k) denote the kth triplet. The collec-

tion τ determines a partial selection of measured essential

matrices, Ω, that plays a role in the optimization problem,

where it holds that if Êij ∈ Ω then ÊT
ij = Êji ∈ Ω.

We define the measurements matrix Ê ∈ S
3n to have

Êij as its (i, j)th block if Êij ∈ Ω and 03×3 in the rest of

its blocks. In our optimization problem we look for E that is

as close as possible to Ê under the constraints that its 9× 9
blocks, induced by {τ(k)}m

k=1 and denoted by {Eτ(k)}m
k=1,

are consistent 3-view essential matrices. In general, such

E is inconsistent and incomplete, but as we explain in Sec.

4.3 it is possible to retrieve a set of n absolute rotations and

translations that is compatible with its essential matrices up

to scale, which in turn implies that the completion of the

missing entries is consistent.
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We formulate our constrained optimization as follows

minimize
E

m
∑

k=1

||Eτ(k) − Êτ(k)||2F (7)

subject to E = ET

Eii = 03×3

rank(Eτ(k)) = 6

Σ+(Eτ(k)) = −Σ−(Eτ(k))

X(Eτ(k)) + Y (Eτ(k)) is block rotation,

with i = 1, ..., n and k = 1, ...,m, where

Σ+(Eτ(k)),Σ−(Eτ(k)) ∈ R
3 denote the 3 largest (de-

scending order) and 3 smallest (ascending order) eigen-

values of Eτ(k) respectively and X(Eτ(k)) ∈ R
9×3 and

Y (Eτ(k)) ∈ R9×3 are their corresponding eigenvectors.

Solving (7) is challenging due to its rank and spectral de-

composition constraints. We solve this optimization prob-

lem using ADMM. To that end, as part of the ADMM

method [4] 4m auxiliary matrix variables of size 9 × 9
are added: 2m variables duplicating {Eτ(k)}m

k=1, denoted

B = {Bk}m
k=1 and D = {Dk}m

k=1, as well as 2m Lagrange

multipliers, Γ = {Γk}m
k=1 and Φ = {Φk}m

k=1. This yields

the following constrained optimization problem

max
Γ,Φ

min
E,B,D

m
∑

k=1

L(Eτ(k), Bk,Γk,Dk,Φk) (8)

subject to E = ET

Eii = 03×3

rank(Bk) = rank(Dk) = 6

Σ+(Bk) = −Σ−(Bk)

X(Dk) + Y (Dk) is block rotation

with i = 1, ..., n and k = 1, ...,m, where

L(Eτ(k), Bk,Γk,Dk,Φk) =
∥

∥

∥Eτ(k) − Êτ(k)

∥

∥

∥

2

F
+

α1

2

∥

∥Bk − Eτ(k) + Γk

∥

∥

2

F
+

α2

2

∥

∥Dk − Eτ(k) + Φk

∥

∥

2

F
.

We initialize the auxiliary variables at t = 0 with

B
(0)
k = Êτ(k),D

(0)
k = Êτ(k),Γ

(0)
k = 0,Φ

(0)
k = 0.

Then, we solve the optimization problem iteratively by al-

ternating between the following four steps.

(i) Solving for E.

E(t) = argmin
E

m
∑

k=1

∥

∥

∥Eτ(k) − Êτ(k)

∥

∥

∥

2

F
(9)

+
α1

2

∥

∥

∥B
(t−1)
k − Eτ(k) + Γ

(t−1)
k

∥

∥

∥

2

F

+
α2

2

∥

∥

∥
D

(t−1)
k − Eτ(k) + Φ

(t−1)
k

∥

∥

∥

2

F

subject to E = ET and Eii = 03×3

This is a convex quadratic problem and can be solved

efficiently, using a closed form solution.

(ii) Solving for Bk. For all k = 1, ...,m

B
(t)
k = argmin

Bk

||Bk − E
(t)
τ(k) + Γ

(t−1)
k ||2F (10)

subject to rank(Bk) = 6

Σ+(Bk) = −Σ−(Bk)

The minimizer for this sub-problem is obtained in the

following way. By construction, E
(t)
τ(k) − Γ

(t−1)
k is a sym-

metric matrix, and we denote its (full) spectral decompo-

sition by UΣUT , where U ∈ R
9×9 and Σ ∈ R

9×9 is a

diagonal matrix in which the eigenvalues are arranged in a

descending order. Then, the update is

B
(t)
k = UΣ∗UT , (11)

where Σ∗ ∈ R9×9 is a diagonal matrix with the entries

Σ∗
ii =

{

1
2 (Σii − Σ10−ii) i 6= 4, 5, 6

0 i = 4, 5, 6
(12)

(iii) Solving for Dk. For all k = 1, ...,m

D
(t)
k = argmin

Dk

||Dk − E
(t)
τ(k) + Φ

(t−1)
k ||2F (13)

subject to rank(Dk) = 6

X(Dk) + Y (Dk) is a block rotation matrix

We minimize this sub-problem by an iterative process,

which we repeat until convergence. We begin with Dk =

E
(t)
τ(k) − Φ

(t−1)
k , which is symmetric by construction. We

apply spectral decomposition to Dk, and extract X(Dk),
Y (Dk), Σ+(Dk) and Σ−(Dk). Assuming no eigenvalue

multiplicities, the eigenvectors are determined uniquely up

to a sign (this argument is justified in 5.1). We denote by Is,

a diagonal matrix of size 3× 3, such that each diagonal ele-

ment is either 1 or -1. There are eight configurations for Is

from which we select the best, in the sense that on average

each 3× 3 block, of the form,
√

0.5[X + Y Is]i, i = 1, 2, 3,

is close to scaled rotation, using the following score,

I∗s = argmax
Is

3
∑

i=1

∥

∥diag((Xi + YiIs)
T (Xi + YiIs))

∥

∥

2

‖(Xi + YiIs)T (Xi + YiIs)‖F

.

Next, let V =





V1

V2

V3



 be the projection of
√

0.5(X + Y I∗s )

so that Vi is the closest scaled rotation to
√

0.5[X + Y I∗s ]i.
Projection to scaled SO(3) is obtained through removal of

the singular values from the SVD decomposition, setting

the scale factor to the average of the singular values, and
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possibly negating the scale factor to make the determinant

positive. Let U =
√

0.5(X−Y I∗s ), and X̃ =
√

0.5(U +V )
and Ỹ =

√
0.5(V −U). We then update the value of Dk to

be the symmetric matrix

Dk = [X̃, Ỹ ]

(

Σ+

Σ−

)[

X̃T

Ỹ T

]

and repeat these steps until convergence.

(iv) Updating Γk,Φk. For all k = 1, . . . ,m

Γ
(t)
k = Γ

(t−1)
k + B

(t)
k − E

(t)
τ(k) (14)

Φ
(t)
k = Φ

(t−1)
k + D

(t)
k − E

(t)
τ(k) (15)

4.2. Graph construction and outliers removal

As explained above, to apply our optimization algorithm,

it is required to determine a collection τ of camera triplets,

which is a subset of the given camera triplets. The selection

of a subset allows for better efficiency and robustness. Sim-

ilarly to [16, 15], we consider a weighted viewing graph G
whose weights for each edge wij is assigned to be the num-

ber of the inlier matches relating Ii and Ij . We begin by se-

lecting disjoint maximal spanning trees from G, from which

we extract an initial subset of triplets. We then, remove near

collinear and inconsistent triplets. We next build a triplet

graph GT whose nodes, which represent image triplets, are

connected by an edge whenever two triplets share the same

two cameras. Finally, we greedily remove nodes from GT .

starting with the least consistent triplet (using the rotation

consistency score defined below), a node is removed as long

as the connectivity of GT is preserved and the total number

of cameras associated with GT does not decrease.

To define collinear and consistency scores for each triplet

we denote the angles in the triangle formed by three cam-

eras i, j, k by θi, θj , θk respectively. We measure each an-

gle using the known relative translations tij , tik, tjk, i.e.,

cos θi = (
t

T
ijtik

||tij ||||tik|| ). Then, the collinearity score of cam-

eras {i, j, k} is the minimal angle in {θi, θj , θk}. The con-

sistency score of translations is defined by |θi +θj +θk−π|
and the consistency score of rotations by ||RijRjkRki−I||.

4.3. Location and orientation retrieval

After solving (7), we extract from E the collection of 3-

view essential matrices {Eτ(k)}m
k=1, which, due to the op-

timization, are consistent w.r.t scaled rotations. Next, us-

ing Corollary 1 with additional block normalizing at step 3,

three rotations {Rτ(k)
1 , R

τ(k)
2 , R

τ(k)
3 } and three translations

{tτ(k)
1 , t

τ(k)
2 , t

τ(k)
3 } are extracted from each Eτ(k), which

are uniquely defined up to a similarity transformation. Now,

any two triplets in τ that share two cameras a, b agree on

Eab. Since the sign of Eab is fixed, it determines the cam-

eras a, b up to 2 unique configurations [10]. Therefore, each

Our Method Chatterjee et al. [5] Martinec et al. [17]

Data Set Rf Rd Rf Rd Rf Rd
Vienna Cathedral 0.1141 4.7328 0.1514 7.8472 - -

Piazza del Popolo 0.0595 2.4098 0.2287 11.6022 0.5901 27.2359

NYC Library 0.1200 4.8751 0.1226 6.0765 0.5395 28.4385

Alamo 0.0751 3.0489 0.0879 4.4958 0.1503 7.3180

Metropolis 0.30 15.6613 0.4612 26.5636 1.1381 58.6143

Yorkminster 0.1499 6.6343 0.1526 7.8017 1.3434 73.3679

Montreal ND 0.0608 2.4652 0.1049 5.8742 0.2419 11.928

Tower of London 0.1250 5.0731 0.1366 5.8872 0.3435 16.6457

Ellis Island 0.0636 2.5784 0.0499 2.2486 0.0616 2.4955

Notre Dame 0.0619 2.5091 0.0876 4.7463 0.2109 10.5894

Table 1. Errors in estimated camera orientations, compared to

ground truth measurements. Rf denotes the mean Frobenius norm

error, averaged over the different cameras, and Rd is the mean an-

gular error in degrees. Empty cells represent missing information.

one of the two triplets must agree with one of the two con-

figurations. As a result, assuming that both triplets defines

the same configuration for a and b, there is a unique simi-

larity transformation between the two triplets. In practice,

in our experiments we observe that this is always the case.

By the construction process described in Sec. 4.2, the

collection of triplets τ form a connected triplet graph. It is

therefore possible to traverse the graph and apply a similar-

ity transformation on the three cameras of each new node

τ(k), and as a result bring all the cameras to a common Eu-

clidean frame.

5. Experiments

To evaluate our approach, we implemented the SfM

pipeline described next and tested it on ten challenging col-

lections of unordered internet photographs of various sizes

from [25]. Each dataset is provided with ground truth cam-

era parameters. We use our method to recover camera pa-

rameters and compare them to the parameters obtained with

existing methods, before and after bundle adjustment (BA).

5.1. SfM pipeline

The input to our algorithm is a set of independently esti-

mated pairwise essential matrices, along with the number of

inlier matches for each pairwise essential matrix. We build

a triplet graph GT as we describe in Sec. 4.2, removing any

triplet whose (a) collinearity score is below 0.17 radians,

(b) rotation consistency score exceeds 1.1, or (c) translation

consistency score exceeds 1 radians. The final connected

graph GT defines the collection τ of triplets of cameras.

Next we apply our optimization algorithm as is described

in Sec. 4.1. During optimization we observed that the

eigenvalues of Bk and Dk (10) were always distinct for

k = 1, . . . ,m. This means that the optimization variables,

Eτ(k), indeed converge to 3-view consistent essential ma-

trices with distinct eigenvalues. At this stage, we follow

Corollary 1 to recover camera positions and orientations for

each triplet of cameras and align all the recovered camera

matrices by similarity transformations, as is described in
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Our Method LUD [18] 1DSFM [25] Cui [6]

Data set Nc x̄ x̃ x̄BA x̃BA Nr x̄ x̃ x̄BA x̃BA Nr x̃ x̄BA x̃BA Nr x̃ x̄BA x̃BA Nr
Vienna Cathedral 836 9.6 4.2 5.4 1.2 674 10 5.4 10 4.4 750 6.6 2e4 0.5 757 3.5 4.0 2.6 578

Piazza del Popolo 328 7.2 3.5 2.5 0.8 275 5 1.5 4 1.0 305 3.1 200 2.6 303 2.6 3.2 2.4 294

NYC Library 332 3.3 2.2 1.1 0.47 277 6 2.0 7 1.4 320 2.5 20 0.4 292 1.4 6.9 0.9 288

Alamo 577 2.5 1.2 0.8 0.35 482 2 0.4 2 0.3 547 1.1 2e7 0.3 521 0.6 3.7 0.5 500

Metropolis 341 15.2 6.9 2.7 1.4 168 4 1.6 4 1.5 288 9.9 70 1.2 288 - - - -

Yorkminster 437 5.6 2.7 1.9 0.8 341 5 2.7 4 1.3 404 3.4 500 0.2 395 3.7 14 3.8 341

Montreal ND 450 1.9 1.0 0.6 0.4 416 1 0.5 1 0.4 435 2.5 1 0.9 425 0.8 1.1 0.4 426

Tower of London 572 11.6 5.0 4 1.0 414 20 4.7 10 3.3 425 11 40 0.4 414 4.4 6.2 1.1 393

Ellis Island 227 14.1 6.1 5.3 1.7 211 - - - - - 3.7 40 0.4 213 3.1 1.8 0.6 211

Notre Dame 553 1.8 0.8 0.4 0.2 529 0.8 0.3 0.7 0.2 536 10 7 2.1 500 0.3 0.8 0.2 539

Table 2. Camera positions error in meters evaluated on the data sets of [25]. Nc is the number of images in each dataset, x̄, x̃ are the mean

and median error respectively before bundle adjustment, and x̄BA, x̃BA are the mean and median errors after bundle adjustment. Nr are

the number of reconstructed cameras. Empty cells represent missing information.

Our Method LUD [18] 1DSFM [25] Cui [6]

Data set TR+T TBA TT ot TR+T TBA TT ot TR+T TBA TT ot TR+T TBA TT ot
Vienna Cathedral 68 293 566 787 208 1467 323 3611 3934 - 717 959

Piazza del Popolo 26 27 87 88 31 162 42 213 255 - 93 144

NYC Library 28 58 125 102 47 200 47 382 429 - 48 90

Alamo 47 155 327 385 133 750 152 646 798 - 362 621

Metropolis 16 70 93 67 38 142 47 224 271 - - -

Yorkminster 33 116 207 103 148 297 71 955 1026 - 63 108

Montreal ND 41 170 494 271 167 553 93 1043 1136 - 226 351

Tower of London 41 120 241 88 86 228 61 750 811 - 121 221

Ellis Island 21 53 140 - - - 29 276 305 - 64 95

Notre Dame 52 277 720 707 126 1047 205 2139 2344 - 793 1159

Table 3. Runtime in seconds for results in Table 2. TR+T denotes the time for motion averaging (for other methods rotation and translation

estimation). TBA the time for bundle adjustment and TTot is the total running time of the method, including the additional time for building

the triangle cover. Empty cells represent image collections not tested by the authors. In addition, Cui [6] does not report results before BA.

Sec. 4.3. This yields a set of cameras with absolute posi-

tions and orientations. The obtained camera parameters are

finally refined using BA.

5.2. Results

To evaluate our recovered camera orientations, we com-

pare our results to those obtained with the methods of Chat-

terjee et al. [5] and Martinec et al. [17]. For a fair com-

parison we evaluate these methods on same subset of im-

ages used in our method. Moreover, since in contrast to our

method these solvers do not estimate camera positions we

evaluate the results before BA. The results are summarized

in Table 1. Our method outperforms these two solvers in

nine out of the ten datasets.

To evaluate our recovered camera positions we compare

our method to the following position solvers: Cui et al. [6],

1DSFM [25] and LUD [18]. The results are summarized

in Table 2. Note that [18, 6] use point matches in their

pipelines, while both our method and [25] do not use point

correspondences until the final BA. In general, the latter ap-

proaches allow for faster optimization, but result in inaccu-

racies before BA. On the other hand, it allows for greater

improvement in the final BA, compared to [18, 6]. Indeed,

as can be seen in the table, while our method surpasses all

the other methods before bundle adjustment in three out of

the ten datasets (according to mean error), it achieves supe-

rior performance on eight out of ten after BA.

Table 3 further compares execution times, before and af-

ter BA, showing that our method is efficient, compared to

existing methods.

5.3. Technical details

For Bundle Adjustment we used the Theia standard SfM

library [21]. Camera position results for [18, 6, 25] in Ta-

bles 2 and 3 are taken from the papers. We ran our ex-

periments on an Intel(R)-i7 3.60GHz with Windows. Bun-

dle Adjustment was performed on a Linux machine Intel(R)

Xeon(R) CPU @ 2.30GHz with 16 cores.

6. Conclusion

We have provided in this paper algebraic conditions for

the consistency of essential matrices in multiview settings

and an algorithm for their averaging given noisy and par-

tial measurements. In future research we will seek to fur-

ther incorporate collinear camera triplets in the averaging

algorithm, explore numerical properties, and design online

consistency enforcement algorithms for SLAM settings.
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