
A Deep Cybersickness Predictor Based on Brain Signal Analysis

for Virtual Reality Contents

Jinwoo Kim1, Woojae Kim1, Heeseok Oh2, Seongmin Lee1, and Sanghoon Lee1

1Yonsei University
2Electronics & Telecommunications Research Institute

Abstract

What if we could interpret the cognitive state of a user

while experiencing a virtual reality (VR) and estimate the

cognitive state from a visual stimulus? In this paper, we

address the above question by developing an electroen-

cephalography (EEG) driven VR cybersickness prediction

model. The EEG data has been widely utilized to learn the

cognitive representation of brain activity. In the first stage,

to fully exploit the advantages of the EEG data, it is trans-

formed into the multi-channel spectrogram which enables

to account for the correlation of spectral and temporal co-

efficient. Then, a convolutional neural network (CNN) is

applied to encode the cognitive representation of the EEG

spectrogram. In the second stage, we train a cybersickness

prediction model on the VR video sequence by designing a

Recurrent Neural Network (RNN). Here, the encoded cog-

nitive representation is transferred to the model to train the

visual and cognitive features for cybersickness prediction.

Through the proposed framework, it is possible to predict

the cybersickness level that reflects brain activity automat-

ically. We use 8-channels EEG data to record brain ac-

tivity while more than 200 subjects experience 44 different

VR contents. After rigorous training, we demonstrate that

the proposed framework reliably estimates cognitive states

without the EEG data. Furthermore, it achieves state-of-

the-art performance comparing to existing VR cybersick-

ness prediction models.

1. Introduction

Although Virtual Reality (VR) devices are effectively

integrated into a variety of applications, such as movies,

games and medical cares, the cybersickness that occurs

while experiencing VR is considered as an obstacle to the

VR industries. Unlike the stereoscopic 3D display, the

VR environment is accompanied by complicated cognitive-

physiological factors in the brain. For this reason, it is

difficult to determine the exact cause of the cybersickness.

In particular, the level of cybersickness distributes differ-

ently according to individual differences (e.g., prior experi-

ence, susceptibility, gender, age, etc.). In this respects, the

biosignals are treated as one of the most objective ways to

reflect individual differences (e.g., galvanic skin response

(GSR), photoplethysmogram (PPG), electroencephalogra-

phy (EEG), skin temperature (SKT), etc.). However, there

is no solid publication to predict the cybersickness using a

model while reflecting the individual difference even if re-

searchers recognize that this is the most important factor for

the prediction. Thereby, the measurement using the sensors

is regarded as a reliable way for the cybersickness predic-

tion.

Currently, there are some major works to predict this

visual discomfort over 3D applications [22, 23]. The per-

formance has been thresholded due to the failure of in-

cluding the individual difference into their metrics which

are formulated or modeled to find common factors in gen-

eral. Recently, with the breakthrough evolution of convo-

lutional neural network (CNN) [9, 10, 18], there have been

significant applications in the image/video content analysis

field [15,16]. In this paper, we make a pioneer work to gen-

eralize individual differences of VR cybersickness by utiliz-

ing the VR video sequences only. However, the general VR

video sequences are recorded according to the user’s head

motion in the limited virtual space, in this reason, the VR

videos have similar characteristics over the spatial and tem-

poral axes. Therefore, the CNN-based model, especially

visual feature-driven manner strongly depends on the ex-

tracted features from the viewed VR video sequence with-

out any cue of individual differences.

To overcome this limitation, we devise a novel deep

learning framework to identifies the human cognitive fea-

ture space for cybersickness prediction by analyzing brain

activity. Furthermore, the framework interprets individual

differences by relying on VR contents rather not on brain
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Figure 1. Example of EEG data evoked by different users: The raw EEG signals and transformed spectrograms are represented for FP1 and

FP2, which record brain activity of the frontal lobe among the eight markers. Each user shows different cybersickness levels in the same

content.

signals. To realize this, we start from an observation by

prior arts on VR cybersickness [5–7, 19, 20, 31, 32]. Fig. 1

shows the recorded EEG data when the two users experi-

ence the same content, and Fp1 and Fp2 are the examples

which designate the brain activity of the frontal lobe among

the eight markers. As shown in the figure, the cybersickness

score of each user gives a different level, although they ex-

perienced the same content. Here, we can find that the EEG

data is much more distinct than the recorded VR video, de-

pending on the level of cybersickness.

Based on this observation, we aim to encode EEG signals

to the cognitive representation relative to VR cybersickness.

Moreover, by transferring the cognitive representation onto

the VR video-based deep model, we perform the cybersick-

ness prediction without the EEG signal. Through our frame-

work, it enables the machine to analyze and understand the

pattern of the EEG signal which is one of the important

goal in the brain-computer interface (BCI) research. Since

the main purpose of BCI is to directly classify the specific

patterns from EEG data, we believe the proposed frame-

work has a significant impact beyond the BCI approach. To

this end, the fundamental ideas of the framework are as fol-

lows: the cognitive representation learning by classifying

the EEG signals, and the cybersickness learning that ex-

presses the visual and cognitive features at an intermediate

state using VR video.

Among these steps, the cognitive representation learn-

ing plays an important role since it captures both inter- and

intra-individual differences of the cybersickness. For more

detail, we first transform the EEG data into a spectrogram

and it is then encoded by CNN. Note that the spectrogram

includes the temporal and spectral domain. However, since

the generic CNN filters deal with omnidirectional correla-

tion over the 2D axis, it is difficult to apply the spectrogram

directly into the general CNN network. Therefore, we pro-

pose a new CNN approach by geometrical processing dedi-

cated to the spectrogram domain, i.e., temporal and spectral.

Our contributions are summarized as follows:

• We propose a novel deep learning architecture for esti-

mating cognitive state using EEG spectrogram by dis-

criminating the feature spaces related to VR cybersick-

ness levels.

• We present a method for computing and combining vi-

sual and cognitive features with VR videos alone for

cybersickness prediction.

• We will release a massive VR content database includ-

ing the recorded EEG data, and it also contains a sim-

ulator sickness questionnaire (SSQ) measurements for

various subjects.

2. Related Work

Currently, a number of theoretical papers have been pub-

lished describing the mechanism of cybersickness. The

sensory conflict theory is stated that cybersickness arises

from conflicts between information coming from the visual-

vestibular systems [28]. The subjective vertical theory is

stated that cybersickness is caused by the collision between

perceived and expected information from the body sensor

and brain, respectively [3]. In [4], it is suggested that the

two theories could be integrated to develop a mechanism

of cybersickness occurrence. Based on these observations,
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many cybersickness prediction models have been devel-

oped. However, since each sensor module of describing the

mechanism is a black-box model that is not defined as a de-

terministic function, the general strategy for cybersickness

prediction follows a top-down framework. In other words,

the models are designed on the assumption that the cogni-

tive conflict by motion is the main factor of cybersickness.

For example, the authors in [12,14,24] used a feature vector

extracted from an optical flow containing motion informa-

tion.

Computational models using brain signals have been de-

veloped in the literature. For example, the self-organizing

neural fuzzy inference network (SONFIN) is a model based

on the assumption that the power spectrum of the EEG data

reflects the correlation with the cybersickness [20]. In par-

ticular, the EEG data has been analyzed through sequential

models utilized raw 1-D signals for seizure detection [1].

However, since the EEG data processing based on sequen-

tial models is strongly optimized in the temporal feature

space, the models tend to fail to generalize spectral corre-

lation as well as inter-channel interaction. Developed from

the previous study, the authors of [2] proposed a deep learn-

ing approach that preserves spatial, spectral and temporal

structures by transforming the EEG data into a sequence of

topology-preserving multi-spectral images. While extract-

ing significant features that are less sensitive to distortion

and variation in each dimension, this method fails to show

satisfactory performance when a small number of markers

are used to record brain signals.

There are some other approaches, that learn EEG man-

ifold for image classification by estimating cognitive state

at the intermediate stage [25, 30]. The primary objective of

these studies is to interpret the human mind from the image

and to transfer it to the learned EEG manifold, while our ap-

proach aims to look for visual and cognitive representation

simultaneously from the image sequences.

3. Proposed Algorithm

The approach described in this paper is based on the fol-

lowing intuitions.

• The visual information, which is a feature vector de-

rived from the VR videos, is superior in the perfor-

mance prediction of inter-content cybersickness pre-

diction, but weak in predicting the sickness level made

by the subject in the same content.

• The EEG data evoked from VR videos transmits cog-

nitive information that conveys inter-subjective differ-

ences, i.e., individual differences, about VR cybersick-

ness. Fig. 1 shows quantitative differences in the same

VR content of EEG data according to different sub-

jects.

Cybersickness
Level

Cybersickness
Level

Cognitive Rep.

EEG
Spectrogram

Spectrogram
Encoder
(CNN)

VR Video
Sequence

Video
Encoder

(CNN+RNN)

Visual features

Cognitive features

Stage1: Cognitive representation learning.

Stage2: Cybersickness learning.

Figure 2. Overview of the proposed approach. Our work is com-

posed of two stages. Stage1: The network trains the cognitive

states related to VR cybersickness using the EEG spectrograms.

Stage2: The network learns complementary visual and cogni-

tive features for cybersickness prediction using the VR video se-

quence.

• We assume that if the visual-cognitive information is

learned complementary through VR videos, then the

model will generalize inter- and intra-subjective dif-

ferences.

Through above-described intuitions, our proposed ap-

proach is designed with two-stage learning for the cyber-

sickness prediction as shown in Fig. 2. The first stage

of our work – cognitive representation learning – seek to

generate a decision boundary that determines the cybersick-

ness level with a low-dimensional representation within the

EEG space. To learn this representation, the recorded EEG

data is transformed into the spectrogram. Then, the spec-

trogram encoder is trained to extract a meaningful feature

vector that describes cybersickness from EEG spectrogram.

This was implemented in CNN with a dynamic filter shape

for multi-channel aware spectral and temporal correlation

analysis. The training process is supervised by the cyber-

sickness level, while the fully connected layer (FCL) for

cognitive representation is learned in the process.

The use of EEG data is unreasonable in the application

aspect, as it requires an additional device to obtain signals

and reduces the practicality of the device. Therefore, the

second stage – cybersickness learning – aims at learning vi-

sual and cognitive features jointly through VR video only

for cybersickness prediction. By training the video encoder

combined with CNN and RNN, the visual features are ex-

tracted, and the features after FCL are mapped to cognitive

representation learned in stage 1. In the end, the last feature

vector, concatenated with visual and cognitive features, is

classified to the cybersickness level through the FCL.
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The cybersickness level 5

The number of VR content 44

The number of subjective 202

The number of data 8,888

Visualization order Sequential

Time for subjective test 30 sec.

Time for pause 3 min.

Table 1. The parameters for the subjective experiment.

3.1. Data Acquisition

To our knowledge, there are no public databases for cy-

bersickness prediction. Hence we introduce a new cyber-

sickness database named ETRI-VR including a variety of

visual motion and different types of reference scenes: ‘ur-

ban’ scenes with high complex component; ‘astrospace’

scenes consisting of relatively simple object arrangement.

Note that the path of each scene is scripted in advance and

the control operation is not reflected except the user’s head

motion. By using the constructed ETRI-VR contents, we

collected human’s opinions for each scene in terms of cy-

bersickness. During the experiment, 44 VR contents were

divided into 3 sessions. In each session, VR contents were

continuously shown to 202 subjects. The rest time between

sessions was given 3 minutes, and subjects were asked to

perform the subjective evaluation at the end of each con-

tent according to the Likert-like scale: 5=Extreme sick-

ness, 4=Strong sickness, 3=Sickness, 2=Mild sickness, and

1=Comfortable. In the end, we collected different subjec-

tive scores for 44 × 202 = 8, 888 contents. HTC VIVE

was used for the subjective experiments and the frame rate

was kept above 96 fps to minimize cybersickness caused

by motion to photon latency that was irrelevant to the psy-

chophysical aspect. A summary of the experimental proce-

dure is shown in Table. 1.

The EEG data was also collected using 8 scalp electrodes

during VR content usage as shown in Fig. 1 following the

international system [29]. The sampling rate and resolution

of the EEG data were set to 250 Hz and 16 bits, respec-

tively. A bandpass filter (0.3 ∼ 100Hz) and notch filter

(at 60Hz) were applied to minimize the effect of power

line noise [20]. The length of collected EEG data varied de-

pending on the VR contents. From each EEG data, each of

the first and last 250 samples (1.0s) were discarded in or-

der to exclude any possible interference from the previously

shown experience according to [30]. Then, the 3,450 sam-

ples (14.0s) EEG data in the middle area were employed for

the experiments. After acquiring the EEG data, the spectro-

gram transformation proceeded using a Fourier transform

(FFT) through a sliding window, i.e., the data block was de-

termined to be 0.5s with a Hann window. Thus, EEG spec-

trogram can be denoted by Is, which is a multidimensional

array of the form Is ∈ R
8×64×53, where each spectrogram

has dimension 64× 53 and 8 is the number of channels.

3.2. Stage 1: Cognitive Representation Learning

This stage is primarily intended to encode cybersickness

as a low-dimensional representation of the EEG data. The

details are depicted in Fig. 3. The existing approaches have

focused on the temporal feature space to discriminate EEG

data [30]. On the other hand, the proposed method take into

account the inter-correlation of the EEG channles and the

intra-correlation over spectral and temporal domains. For

this reason, the EEG data is transformed into a spectrogram

and stacked in the input pipeline, i.e., 8 channels stacked

spectrogram. Note that each axis of the spectrogram indi-

cates temporal and spectral domains, respectively.

There is a problem in applying the existing CNN method

directly to the EEG spectrogram. The CNN operation takes

the omnidirectional correlation of local pixels by square

shape filter (e.g., 3 × 3 and 5 × 5). However, the coeffi-

cients of the spectrogram are only correlated in the horizon-

tal or vertical directions. To overcome this, we encode the

spectrogram of EEG data by following networks inspired

by previous audio signal processing work [27]. First, tem-

poral network trains temporal dependency by taking vari-

ous sizes of the horizontal kernel. Second, spectral network

learns spectral dependency through various sizes of the ver-

tical kernel. Third, the temporal and spectral networks are

concatenated to encode the temporal and spectral features

jointly. The details are as follows:

• Temporal dependency kernels (1-by-m): are capable to

learn temporal cues by capturing the horizontal coeffi-

cients of the spectrogram. For example, such filters are

specialized to make temporal representations related to

cybersickness. As shown in the model of Fig. 3, deep

convolutional operations with 1×mi kernels are used

for the temporal network, where i ∈ {1, 2, and 3}
represents the ith convolution layer. The kernel length

of each convolution layer gradually decreases by half

of the previous layer. Note that, due to the convolution

operation procedure in the temporal axis, the spectral

resolution is preserved.

• Spectral dependency kernels (n-by-1): are designed to

learn the spectral cues by using vertical coefficients of

the spectrogram. To capture spectral correlation, con-

volutional network with nj × 1 kernels are applied to

the EEG spectrogram, where j ∈ {1, 2, and 3} rep-

resents the jth convolution layer. As same as the tem-

poral network, the kernel length of each convolution

layer gradually decreases by half of the previous layer.

Note that the spectral network only learns spectral cor-

relation by reducing the spectral dimension while pre-

serving the temporal resolution.

10583



Temporal Network

EEG spectrogram
8

1×𝑚𝑚1

1
×𝑛𝑛1 16 16 8

1×𝑚𝑚1 1×𝑚𝑚2

16

16

128

Spectral Network

81
×𝑛𝑛1

1
×𝑛𝑛2

Cognitive
Representation

C
on

caten
ation

stride=1
stride=2 stride=2

stride=1
stride=2

stride=2

max-pool

max-pool
Cybersickness

Level

936

5

Temporal dependency filters

Spectral dependency filters

Figure 3. Overall architecture for cognitive representation learning. The network consists of two parts: the temporal network and the

spectral network. Both networks extract the temporal and spectral feature vectors from the EEG spectrogram, respectively, and the feature

vectors are concatenated to express the cognitive representation. The last feature vector is classified as a cybersickness levels after passing

through the FCL.

In both the temporal and spectral networks, two strided

convolutions are used for subsampling except for the firtst

layer. In each convolutional layer, batch normalization [11]

and a leaky rectified linear unit (LReLU) [21] are employed

continuously. After the end of each network, the max-

pooled temporal xt and spectral xs feature vectors are con-

catenated, and we denote this vector as a cognitive repre-

sentation xcr. After then, two FCLs are used to discrim-

inate features onto the cybersickness level. After training,

the temporal and spectral networks are used as a ground

truth of the cognitive features in stage 2.

3.3. Stage 2: Cybersickness Learning

Our goal is to estimate the cognitive state from a visual

stimulus without the EEG data. Toward this, we propose a

deep model that predicts the cybersickness while mimicking

the cognitive representation encoded in stage 1. The overall

architecture is illustrated in Fig. 4. The input VR video is

first sampled as same as EEG samples to synchronize both

data. Then the frames in each sampled VR video are fed to

ResNet18 [9] to extract spatial features.

After the spatial features are extracted from the VR video

sequences, the temporal features are then considered in a

sequential network. Here we use a stacked long short term

memory (LSTM) network as a sequential network. Then,

we take the visual feature vector xv from the last step of the

stacked LSTM network. For precise expressions, let com-

bined ResNet18 and stacked LSTM be the video encoder.

After passing through the video encoder, the FCL is used to

extract cognitive features xc. Then it is concatenated with

the visual features xv to produce the final feature vector. At

the end of the model, the network two FCLs are utilized to

classify the final feature vector onto the cybersickness lev-

els.

The final objective function is formed by two terms; the

prediction loss and the regression loss as

L = Lpre + β · Lreg, (1)

where Lpre indicates the standard cross-entropy loss be-

tween cybersickness levels and output unit of last FCL,

Lreg denotes the regression loss on the cognitive features,

and β is a constant to tune the trade-off between the two

terms. The regression loss is defined by the mean squared

error (MSE) between the cognitive features and the cogni-

tive representation

Lreg = ‖xc − xcr‖
2

2
. (2)

4. Experimental Results

In this section, we first describe the implementation de-

tails. Then, we analyze the contribution of individual com-

ponents in our proposed network. Performance analysis is

split into two parts – Test 1: cognitive representation learn-

ing and Test 2: cybersickness learning. In test 1, we ver-

ify that the EEG spectrogram driven network truly encodes

the cognitive state as low-dimension vector relative to cy-

bersickness proposed in Section 3.2. In test 2, we demon-

strate that the proposed network learns the cognitive state

using only VR video for cybersickness prediction by trans-

ferring the encoded cognitive representation to the interme-

diate feature space.

4.1. Implementation Details

For the experiments, the ETRI-VR database mentioned

in Section 3.1 is utilized. We randomly divided the database

into training (80%), validation (10%) and testing (10%)
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Figure 4. Overall architecture for cybersickness learning. The input VR video pass through combined CNN-RNN network to extract visual

features. The visual features are given to the fully connected layer to represent cognitive features and both featuers are concatenated.

set. To ensure performance validity, Monte-Carlo cross-

validation with 20 repetition was then conducted. We im-

plemented the proposed networks on the pytorch frame-

work [26]. The initial weight value of all the networks was

applied to the method proposed by [8], which normalizes

to the variance according to the input dimensionality. We

used the Adam optimizer to train the networks, with the

momentum parameters β1 = 0.9 and β2 = 0.999 and regu-

larization parameter ǫ = 10−6 [17]. The learning rate was

initially set to 5× 10−4.

The overall experimental evaluations were performed

with the split validation and test set. However, in the fi-

nal model, the overall samples were used as a training set

to encode. In stage 2, we resized the input dimension to

3×224×224. The VR videos were uniformly sampled at a

sampling interval r. The performance comparisons for each

sampling interval will be analyzed in Section 4.3.

4.2. Test 1: Cognitive Representation Learning

In this section, we tested three individual ablation sets:

the temporal network, the spectral network, and the pro-

posed model which made by combining the temporal and

spectral networks as shown in Fig. 3. Here, one baseline

network was compared. The baseline network adopts a gen-

eral CNN architecture that utilizes the square shape kernel.

Accordingly, the structure of the baseline is the same as the

proposed model except for the shape of the filter kernel.

In Table 2, the achieved performance by different con-

figurations is shown according to the detail kernel shape

to analyze the temporal and spectral dependencies of EEG

spectrogram. The top model for each evaluation crite-

rion is shown in boldface. The baseline network with

(n1,m1) = (3, 3) has the worst validation (test) accuracy

with 58.32 (56.89)%. In case of the temporal network, the

validation (test) accuracy is 81.38 (80.57)% at (n1,m1) =

(1, 28) where the filter size is the most horizontal, i.e., the

temporal dependency is the longest. On the other hand,

in the spectral network, the prediction performance is su-

perior to the narrow kernel shape that captures small fre-

quency resolution. The best performance of validation (test)

is 85.51 (83.74)% at (n1,m1) = (8, 1). This agrees with

the fact that features in a specific frequency rather than

broad band are highly correlated with cybersickness [20].

Besides, the spectral network is more robust to the ker-

nel shape than the temporal network. Overall, the predic-

tion performance of the proposed network with (n1,m1) =

(1, 28)-(8, 1) is the most outperformed than other configu-

rations.

The BCI study has examined how the brain region of

the EEG signals affects VR cybersickness. To further con-

tribute to this, we tested the model with an independent

channel of the spectrogram as an input, and compared pre-

diction accuracy. More specifically, the proposed networks

were learned using independent spectrogram dimensions.

Table 3 shows the performance comparison according to the

eight brain regions (Fp1, Fp2, F3, F4, T3, T4, P3, and P4).

The prediction accuracy for each region is almost similar,

but the P3 and P4 regions are slightly better. Therefore, it

can be concluded that our work agrees with previous BCI

research since the VR cybersickness levels are highly cor-

related with responses in the occipital midline brain area

than in other brain areas [20].

4.3. Test 2: Cybersickness Learning

To verify whether the proposed model truly learns the

cognitive state using the VR video alone, we tested two sce-

narios: visual predictor; visual – cognitive predictor. The

visual predictor takes only visual features as an input of
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Models
Kernel Shape

(n1,m1)
Max-pool

VA:

(mean±std.)

TA:

(mean±std.)

(3, 3) (2, 2) 58.32± 1.71% 56.89± 1.86%
baseline network (5, 5) (2, 2) 60.77± 2.41% 61.09± 2.33%

(7, 7) (2, 2) 61.31± 1.89% 61.83± 1.41%

(1, 7) (1, 12) 63.49± 2.13% 65.17± 2.88%
temporal network (1, 14) (1, 8) 67.16± 2.72% 69.16± 2.38%

(1, 28) - 81.38± 3.01% 80.57± 2.49%

(8, 1) (13, 1) 85.51± 1.33% 83.74± 2.81%
spectral network (16, 1) (9, 1) 81.57± 1.76% 80.27± 1.49%

(32, 1) - 73.51± 1.33% 77.74± 2.81%

(1, 7)-(8, 1) (1, 12)-(13, 1) 84.33± 1.19% 83.72± 1.87%
proposed network (1, 28)-(32, 1) - 86.01± 1.12% 85.91± 1.22%

(1, 28)-(8, 1) (0, 0)-(13, 1) 87.46± 2.37% 87.13± 1.51%

Table 2. Maximum validation accuracy (“VA”) and test accuracy (“TA”) at VA for different networks according to kernel shape. The top

model for prediction accracy is in bold.

Regions Fp1 Fp2 F3 F4 T3 T4 P3 P4

VA (%) 82.21 82.15 82.52 81.19 83.55 83.13 85.93 86.43

TA (%) 81.78 83.23 81.37 83.42 82.10 82.71 84.66 86.16

Table 3. Maximum validation accuracy (“VA”) and test accuracy (“TA”) at VA according to brain marker region. The best two marker

regions are in bold.

the last FCL in stage 2. The visual – cognitive predictor

is the full version as depicted in Fig. 4. Here, the per-

formance are benchmarked using with two existing hand-

crafted feature based methods [14, 24] and one deep learn-

ing based method [13]. Since the benchmarked methods are

not designed to reflect individual differences, so the pre-

dicted cybersickness scores were regressed onto the mean

opinion score (MOS) of each content. However, the pro-

posed model is based on classification over the individual

cybersickness levels. Therefore, we modified the last re-

gressor of the benchmark methods as a classifier to match

with discrete cybersickness levels and then trained bench-

marked methods using the ETRI-VR database.

In Table 4, the validation accuracy and test accuracy of

the benchmarked methods are compared to the proposed

model. As shown n the table, the visual – cognitive pre-

dictor outperformed the other methods. In particular, com-

pared to the visual – cognitive predictor and the visual pre-

dictor, it is noteworthy that the integrated learning of the

visual and cognitive features is much superior to using only

visual features. Interestingly, the validation (test) perfor-

mance of the proposed model shows 26.55 (26.20)% higher

than the visual predictor. From this observation, it is evi-

dent that taking the cognitive features helps the model gen-

eralize individual differences to achieve higher accuracy. In

particular, the cognitive features are expressed only from

the visual features, which is an impressive result, consider-

ing that any objective indicator, such as EEG data, was not

used.

In addition, the prediction accuracy of the visual – cogni-

tive predictor is superior to EEG-driven cybersickness pre-

diction comparing to Tables 2 and 4. This result implies that

both the cognitive and visual features are meaningful infor-

mation relative to cybersickness and lead to more powerful

performance when they are integrated. We used confusion

matrics to illustrate the discordance between the visual –

cognitive predictor’s predictions and user’s cybersickness

levels. When the VR cybersickness level is severe, such as 4

and 5, it shows accurate prediction performance, while lev-

els 1 and 2 are more confused. We expect that this is due to

the low-level VR cybersickness boundaries where the user

feels ambifuous to make a decision.

To further discuss whether our model truly learns indi-

vidual differences, we tested the network by transferring

cognitive features to stage 1. For more detail, we used the

cognitive features learned in stage 2 as input in the last FCL

learned in stage 1. In Table 5, the results of the predic-

tion accuracy using the cognitive representation and cogni-

tive features are reported. The prediction model transferring

cognitive features was comparable to that of the model di-

rectly learned from the EEG data. In fact, after finishing

optimization, the MSE between the cognitive representa-

tion and features is 0.52, which implies that the distance

between the two spaces is very close. In our experiment,
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Type Models
VA:

(mean±std.)

TA:

(mean±std.)

benchmark Padmanaban et al. [24] 51.94± 2.33% 50.48± 3.81%
Kim et al. [14] 55.72± 4.31% 58.37± 4.17%
Kim et al. [13] 63.12± 1.72% 65.83± 1.88%

proposed visual predictor 68.93± 1.65% 69.03± 1.24%
visual – cognitive Predictor 90.48± 1.99% 89.16± 1.87%

Table 4. Maximum validation accuracy (“VA”) and test accuracy (“TA”) at VA for different networks. The top model among the accuracies

is in bold.

cognitive representation cognitive features

VA (%) 87.46% 85.91%
TA (%) 87.13% 86.35%

Table 5. Maximum validation accuracy (“VA”) and test accuracy

(“TA”) at VA for cognitive representation and cognitive features.
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Figure 5. Confusion matrix for the predicted VR cybersickness

levels versus the subjective evaluation levels.

the regression loss is converged to around zero, hence it

can be concluded that the model estimates the cognitive

state from the visual features without any prior physiolog-

ical cue. Therefore, the inter- and intra-individual differ-

ences are usefully addressed to predict VR cybersickness.

These observations are an extension of cognitive neuro-

science studies that estimate the EEG response from visual

stimuli [30].

As mentioned in Section 4.1, the input VR video frames

are uniformly sampled at the sampling interval r and pass

through the network. Therefore, at high sampling interval,

the model is expected to detect rapidly changing motion pat-

terns than a low sampling interval. The results according

to the sampling interval are shown in Fig. 6. Actually, the

prediction accuracy according to the sampling interval is al-

most similar, and slightly better performance at a low sam-

pling interval, i.e., r = 4. It is expected that there will be

a difference in the prediction accuracy in low-level cyber-

sickness contents depending on the sampling interval, rather

than in high-level cybersickness contents.
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Figure 6. Cybersickness prediction accuracy according to input

VR video sampling interval.

5. Conclusion

In this paper, we have proposed a novel framework for

VR cybersickness prediction where the deep learning model

learns individual differences using only VR video. Our

framework consists of two stages. In the first stage, the

EEG spectrogram driven classification was performed to

cybersickness levels by representing cognitive states with

the low-dimensional vector. To extract a meaningful cog-

nitive representation of cybersickness, our novel architec-

ture holistically considered the inter-correlation of the EEG

channels and intra-correlation over the spectral and tempo-

ral informations in each spectrogram. Through the rigorous

tests, we demonstrated that designing an architecture to re-

flect temporal and spectral dependency is essential cues to

describe cybersickness. In the second stage, by transferring

cognitive representation to the intermediate feature space,

an RNN-based network aimed at extracting visual cognitive

features for cybersickness prediction. Above all, the pro-

posed model achieves a state-of-the-art performance on the

ETRI-VR database and reliably estimated individual differ-

ences through the VR video without the EEG data.
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