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Abstract

What if we could interpret the cognitive state of a user
while experiencing a virtual reality (VR) and estimate the
cognitive state from a visual stimulus? In this paper, we
address the above question by developing an electroen-
cephalography (EEG) driven VR cybersickness prediction
model. The EEG data has been widely utilized to learn the
cognitive representation of brain activity. In the first stage,
to fully exploit the advantages of the EEG data, it is trans-
formed into the multi-channel spectrogram which enables
to account for the correlation of spectral and temporal co-
efficient. Then, a convolutional neural network (CNN) is
applied to encode the cognitive representation of the EEG
spectrogram. In the second stage, we train a cybersickness
prediction model on the VR video sequence by designing a
Recurrent Neural Network (RNN). Here, the encoded cog-
nitive representation is transferred to the model to train the
visual and cognitive features for cybersickness prediction.
Through the proposed framework, it is possible to predict
the cybersickness level that reflects brain activity automat-
ically. We use 8-channels EEG data to record brain ac-
tivity while more than 200 subjects experience 44 different
VR contents. After rigorous training, we demonstrate that
the proposed framework reliably estimates cognitive states
without the EEG data. Furthermore, it achieves state-of-
the-art performance comparing to existing VR cybersick-
ness prediction models.

1. Introduction

Although Virtual Reality (VR) devices are effectively
integrated into a variety of applications, such as movies,
games and medical cares, the cybersickness that occurs
while experiencing VR is considered as an obstacle to the
VR industries. Unlike the stereoscopic 3D display, the
VR environment is accompanied by complicated cognitive-

physiological factors in the brain. For this reason, it is
difficult to determine the exact cause of the cybersickness.
In particular, the level of cybersickness distributes differ-
ently according to individual differences (e.g., prior experi-
ence, susceptibility, gender, age, etc.). In this respects, the
biosignals are treated as one of the most objective ways to
reflect individual differences (e.g., galvanic skin response
(GSR), photoplethysmogram (PPG), electroencephalogra-
phy (EEG), skin temperature (SKT), etc.). However, there
is no solid publication to predict the cybersickness using a
model while reflecting the individual difference even if re-
searchers recognize that this is the most important factor for
the prediction. Thereby, the measurement using the sensors
is regarded as a reliable way for the cybersickness predic-
tion.

Currently, there are some major works to predict this
visual discomfort over 3D applications [22,23]. The per-
formance has been thresholded due to the failure of in-
cluding the individual difference into their metrics which
are formulated or modeled to find common factors in gen-
eral. Recently, with the breakthrough evolution of convo-
lutional neural network (CNN) [9, 10, 18], there have been
significant applications in the image/video content analysis
field [15, 16]. In this paper, we make a pioneer work to gen-
eralize individual differences of VR cybersickness by utiliz-
ing the VR video sequences only. However, the general VR
video sequences are recorded according to the user’s head
motion in the limited virtual space, in this reason, the VR
videos have similar characteristics over the spatial and tem-
poral axes. Therefore, the CNN-based model, especially
visual feature-driven manner strongly depends on the ex-
tracted features from the viewed VR video sequence with-
out any cue of individual differences.

To overcome this limitation, we devise a novel deep
learning framework to identifies the human cognitive fea-
ture space for cybersickness prediction by analyzing brain
activity. Furthermore, the framework interprets individual
differences by relying on VR contents rather not on brain
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Figure 1. Example of EEG data evoked by different users: The raw EEG signals and transformed spectrograms are represented for FP1 and
FP2, which record brain activity of the frontal lobe among the eight markers. Each user shows different cybersickness levels in the same

content.

signals. To realize this, we start from an observation by
prior arts on VR cybersickness [5-7, 19,20,31,32]. Fig. 1
shows the recorded EEG data when the two users experi-
ence the same content, and Fpl and Fp2 are the examples
which designate the brain activity of the frontal lobe among
the eight markers. As shown in the figure, the cybersickness
score of each user gives a different level, although they ex-
perienced the same content. Here, we can find that the EEG
data is much more distinct than the recorded VR video, de-
pending on the level of cybersickness.

Based on this observation, we aim to encode EEG signals
to the cognitive representation relative to VR cybersickness.
Moreover, by transferring the cognitive representation onto
the VR video-based deep model, we perform the cybersick-
ness prediction without the EEG signal. Through our frame-
work, it enables the machine to analyze and understand the
pattern of the EEG signal which is one of the important
goal in the brain-computer interface (BCI) research. Since
the main purpose of BCI is to directly classify the specific
patterns from EEG data, we believe the proposed frame-
work has a significant impact beyond the BCI approach. To
this end, the fundamental ideas of the framework are as fol-
lows: the cognitive representation learning by classifying
the EEG signals, and the cybersickness learning that ex-
presses the visual and cognitive features at an intermediate
state using VR video.

Among these steps, the cognitive representation learn-
ing plays an important role since it captures both inter- and
intra-individual differences of the cybersickness. For more
detail, we first transform the EEG data into a spectrogram
and it is then encoded by CNN. Note that the spectrogram
includes the temporal and spectral domain. However, since

the generic CNN filters deal with omnidirectional correla-

tion over the 2D axis, it is difficult to apply the spectrogram

directly into the general CNN network. Therefore, we pro-

pose a new CNN approach by geometrical processing dedi-

cated to the spectrogram domain, i.e., temporal and spectral.
Our contributions are summarized as follows:

e We propose a novel deep learning architecture for esti-
mating cognitive state using EEG spectrogram by dis-
criminating the feature spaces related to VR cybersick-
ness levels.

e We present a method for computing and combining vi-
sual and cognitive features with VR videos alone for
cybersickness prediction.

e We will release a massive VR content database includ-
ing the recorded EEG data, and it also contains a sim-
ulator sickness questionnaire (SSQ) measurements for
various subjects.

2. Related Work

Currently, a number of theoretical papers have been pub-
lished describing the mechanism of cybersickness. The
sensory conflict theory is stated that cybersickness arises
from conflicts between information coming from the visual-
vestibular systems [28]. The subjective vertical theory is
stated that cybersickness is caused by the collision between
perceived and expected information from the body sensor
and brain, respectively [3]. In [4], it is suggested that the
two theories could be integrated to develop a mechanism
of cybersickness occurrence. Based on these observations,
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many cybersickness prediction models have been devel-
oped. However, since each sensor module of describing the
mechanism is a black-box model that is not defined as a de-
terministic function, the general strategy for cybersickness
prediction follows a top-down framework. In other words,
the models are designed on the assumption that the cogni-
tive conflict by motion is the main factor of cybersickness.
For example, the authors in [ 12, 14,24] used a feature vector
extracted from an optical flow containing motion informa-
tion.

Computational models using brain signals have been de-
veloped in the literature. For example, the self-organizing
neural fuzzy inference network (SONFIN) is a model based
on the assumption that the power spectrum of the EEG data
reflects the correlation with the cybersickness [20]. In par-
ticular, the EEG data has been analyzed through sequential
models utilized raw 1-D signals for seizure detection [!].
However, since the EEG data processing based on sequen-
tial models is strongly optimized in the temporal feature
space, the models tend to fail to generalize spectral corre-
lation as well as inter-channel interaction. Developed from
the previous study, the authors of [2] proposed a deep learn-
ing approach that preserves spatial, spectral and temporal
structures by transforming the EEG data into a sequence of
topology-preserving multi-spectral images. While extract-
ing significant features that are less sensitive to distortion
and variation in each dimension, this method fails to show
satisfactory performance when a small number of markers
are used to record brain signals.

There are some other approaches, that learn EEG man-
ifold for image classification by estimating cognitive state
at the intermediate stage [25, 30]. The primary objective of
these studies is to interpret the human mind from the image
and to transfer it to the learned EEG manifold, while our ap-
proach aims to look for visual and cognitive representation
simultaneously from the image sequences.

3. Proposed Algorithm

The approach described in this paper is based on the fol-
lowing intuitions.

e The visual information, which is a feature vector de-
rived from the VR videos, is superior in the perfor-
mance prediction of inter-content cybersickness pre-
diction, but weak in predicting the sickness level made
by the subject in the same content.

e The EEG data evoked from VR videos transmits cog-
nitive information that conveys inter-subjective differ-
ences, i.e., individual differences, about VR cybersick-
ness. Fig. 1 shows quantitative differences in the same
VR content of EEG data according to different sub-
jects.
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Figure 2. Overview of the proposed approach. Our work is com-
posed of two stages. Stagel: The network trains the cognitive
states related to VR cybersickness using the EEG spectrograms.
Stage2: The network learns complementary visual and cogni-
tive features for cybersickness prediction using the VR video se-
quence.

e We assume that if the visual-cognitive information is
learned complementary through VR videos, then the
model will generalize inter- and intra-subjective dif-
ferences.

Through above-described intuitions, our proposed ap-
proach is designed with two-stage learning for the cyber-
sickness prediction as shown in Fig. 2. The first stage
of our work — cognitive representation learning — seek to
generate a decision boundary that determines the cybersick-
ness level with a low-dimensional representation within the
EEG space. To learn this representation, the recorded EEG
data is transformed into the spectrogram. Then, the spec-
trogram encoder is trained to extract a meaningful feature
vector that describes cybersickness from EEG spectrogram.
This was implemented in CNN with a dynamic filter shape
for multi-channel aware spectral and temporal correlation
analysis. The training process is supervised by the cyber-
sickness level, while the fully connected layer (FCL) for
cognitive representation is learned in the process.

The use of EEG data is unreasonable in the application
aspect, as it requires an additional device to obtain signals
and reduces the practicality of the device. Therefore, the
second stage — cybersickness learning — aims at learning vi-
sual and cognitive features jointly through VR video only
for cybersickness prediction. By training the video encoder
combined with CNN and RNN, the visual features are ex-
tracted, and the features after FCL are mapped to cognitive
representation learned in stage 1. In the end, the last feature
vector, concatenated with visual and cognitive features, is
classified to the cybersickness level through the FCL.
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The cybersickness level 5

The number of VR content 44
The number of subjective 202
The number of data 8,888
Visualization order Sequential
Time for subjective test 30 sec.
Time for pause 3 min.

Table 1. The parameters for the subjective experiment.

3.1. Data Acquisition

To our knowledge, there are no public databases for cy-
bersickness prediction. Hence we introduce a new cyber-
sickness database named ETRI-VR including a variety of
visual motion and different types of reference scenes: ‘ur-
ban’ scenes with high complex component; ‘astrospace’
scenes consisting of relatively simple object arrangement.
Note that the path of each scene is scripted in advance and
the control operation is not reflected except the user’s head
motion. By using the constructed ETRI-VR contents, we
collected human’s opinions for each scene in terms of cy-
bersickness. During the experiment, 44 VR contents were
divided into 3 sessions. In each session, VR contents were
continuously shown to 202 subjects. The rest time between
sessions was given 3 minutes, and subjects were asked to
perform the subjective evaluation at the end of each con-
tent according to the Likert-like scale: S5=Extreme sick-
ness, 4=Strong sickness, 3=Sickness, 2=Mild sickness, and
1=Comfortable. In the end, we collected different subjec-
tive scores for 44 x 202 = &, 888 contents. HTC VIVE
was used for the subjective experiments and the frame rate
was kept above 96 fps to minimize cybersickness caused
by motion to photon latency that was irrelevant to the psy-
chophysical aspect. A summary of the experimental proce-
dure is shown in Table. 1.

The EEG data was also collected using 8 scalp electrodes
during VR content usage as shown in Fig. 1 following the
international system [29]. The sampling rate and resolution
of the EEG data were set to 250 Hz and 16 bits, respec-
tively. A bandpass filter (0.3 ~ 100H z) and notch filter
(at 60H z) were applied to minimize the effect of power
line noise [20]. The length of collected EEG data varied de-
pending on the VR contents. From each EEG data, each of
the first and last 250 samples (1.0s) were discarded in or-
der to exclude any possible interference from the previously
shown experience according to [30]. Then, the 3,450 sam-
ples (14.0s) EEG data in the middle area were employed for
the experiments. After acquiring the EEG data, the spectro-
gram transformation proceeded using a Fourier transform
(FFT) through a sliding window, i.e., the data block was de-
termined to be 0.5s with a Hann window. Thus, EEG spec-
trogram can be denoted by I, which is a multidimensional
array of the form I, € R8*%4%53 where each spectrogram

has dimension 64 x 53 and 8 is the number of channels.

3.2. Stage 1: Cognitive Representation Learning

This stage is primarily intended to encode cybersickness
as a low-dimensional representation of the EEG data. The
details are depicted in Fig. 3. The existing approaches have
focused on the temporal feature space to discriminate EEG
data [30]. On the other hand, the proposed method take into
account the inter-correlation of the EEG channles and the
intra-correlation over spectral and temporal domains. For
this reason, the EEG data is transformed into a spectrogram
and stacked in the input pipeline, i.e., 8 channels stacked
spectrogram. Note that each axis of the spectrogram indi-
cates temporal and spectral domains, respectively.

There is a problem in applying the existing CNN method
directly to the EEG spectrogram. The CNN operation takes
the omnidirectional correlation of local pixels by square
shape filter (e.g., 3 x 3 and 5 x 5). However, the coeffi-
cients of the spectrogram are only correlated in the horizon-
tal or vertical directions. To overcome this, we encode the
spectrogram of EEG data by following networks inspired
by previous audio signal processing work [27]. First, tem-
poral network trains temporal dependency by taking vari-
ous sizes of the horizontal kernel. Second, spectral network
learns spectral dependency through various sizes of the ver-
tical kernel. Third, the temporal and spectral networks are
concatenated to encode the temporal and spectral features
jointly. The details are as follows:

e Temporal dependency kernels (1-by-m): are capable to
learn temporal cues by capturing the horizontal coeffi-
cients of the spectrogram. For example, such filters are
specialized to make temporal representations related to
cybersickness. As shown in the model of Fig. 3, deep
convolutional operations with 1 x m; kernels are used
for the temporal network, where i € {1, 2, and 3}
represents the i*" convolution layer. The kernel length
of each convolution layer gradually decreases by half
of the previous layer. Note that, due to the convolution
operation procedure in the temporal axis, the spectral
resolution is preserved.

e Spectral dependency kernels (n-by-1): are designed to
learn the spectral cues by using vertical coefficients of
the spectrogram. To capture spectral correlation, con-
volutional network with n; x 1 kernels are applied to
the EEG spectrogram, where j € {1, 2, and 3} rep-
resents the j*" convolution layer. As same as the tem-

poral network, the kernel length of each convolution

layer gradually decreases by half of the previous layer.

Note that the spectral network only learns spectral cor-

relation by reducing the spectral dimension while pre-

serving the temporal resolution.
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Figure 3. Overall architecture for cognitive representation learning. The network consists of two parts: the temporal network and the
spectral network. Both networks extract the temporal and spectral feature vectors from the EEG spectrogram, respectively, and the feature
vectors are concatenated to express the cognitive representation. The last feature vector is classified as a cybersickness levels after passing

through the FCL.

In both the temporal and spectral networks, two strided
convolutions are used for subsampling except for the firtst
layer. In each convolutional layer, batch normalization [ 1]
and a leaky rectified linear unit (LReLU) [21] are employed
continuously. After the end of each network, the max-
pooled temporal x¢ and spectral x4 feature vectors are con-
catenated, and we denote this vector as a cognitive repre-
sentation X... After then, two FCLs are used to discrim-
inate features onto the cybersickness level. After training,
the temporal and spectral networks are used as a ground
truth of the cognitive features in stage 2.

3.3. Stage 2: Cybersickness Learning

Our goal is to estimate the cognitive state from a visual
stimulus without the EEG data. Toward this, we propose a
deep model that predicts the cybersickness while mimicking
the cognitive representation encoded in stage 1. The overall
architecture is illustrated in Fig. 4. The input VR video is
first sampled as same as EEG samples to synchronize both
data. Then the frames in each sampled VR video are fed to
ResNet18 [9] to extract spatial features.

After the spatial features are extracted from the VR video
sequences, the temporal features are then considered in a
sequential network. Here we use a stacked long short term
memory (LSTM) network as a sequential network. Then,
we take the visual feature vector x,, from the last step of the
stacked LSTM network. For precise expressions, let com-
bined ResNetl8 and stacked LSTM be the video encoder.
After passing through the video encoder, the FCL is used to
extract cognitive features x.. Then it is concatenated with
the visual features x., to produce the final feature vector. At
the end of the model, the network two FCLs are utilized to
classify the final feature vector onto the cybersickness lev-
els.

The final objective function is formed by two terms; the
prediction loss and the regression loss as

L= ﬁpre + ﬁ : 'CTegv (1)

where L, indicates the standard cross-entropy loss be-
tween cybersickness levels and output unit of last FCL,
L4 denotes the regression loss on the cognitive features,
and [ is a constant to tune the trade-off between the two
terms. The regression loss is defined by the mean squared
error (MSE) between the cognitive features and the cogni-
tive representation

Creg — ||Xc - Xcr”§ . (2)

4. Experimental Results

In this section, we first describe the implementation de-
tails. Then, we analyze the contribution of individual com-
ponents in our proposed network. Performance analysis is
split into two parts — Test 1: cognitive representation learn-
ing and Test 2: cybersickness learning. In test 1, we ver-
ify that the EEG spectrogram driven network truly encodes
the cognitive state as low-dimension vector relative to cy-
bersickness proposed in Section 3.2. In test 2, we demon-
strate that the proposed network learns the cognitive state
using only VR video for cybersickness prediction by trans-
ferring the encoded cognitive representation to the interme-
diate feature space.

4.1. Implementation Details

For the experiments, the ETRI-VR database mentioned
in Section 3.1 is utilized. We randomly divided the database
into training (80%), validation (10%) and testing (10%)
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Figure 4. Overall architecture for cybersickness learning. The input VR video pass through combined CNN-RNN network to extract visual
features. The visual features are given to the fully connected layer to represent cognitive features and both featuers are concatenated.

set. To ensure performance validity, Monte-Carlo cross-
validation with 20 repetition was then conducted. We im-
plemented the proposed networks on the pytorch frame-
work [26]. The initial weight value of all the networks was
applied to the method proposed by [8], which normalizes
to the variance according to the input dimensionality. We
used the Adam optimizer to train the networks, with the
momentum parameters 51 = 0.9 and S = 0.999 and regu-
larization parameter ¢ = 1075 [17]. The learning rate was
initially set to 5 x 1074,

The overall experimental evaluations were performed
with the split validation and test set. However, in the fi-
nal model, the overall samples were used as a training set
to encode. In stage 2, we resized the input dimension to
3 % 224 x 224. The VR videos were uniformly sampled at a
sampling interval r. The performance comparisons for each
sampling interval will be analyzed in Section 4.3.

4.2. Test 1: Cognitive Representation Learning

In this section, we tested three individual ablation sets:
the temporal network, the spectral network, and the pro-
posed model which made by combining the femporal and
spectral networks as shown in Fig. 3. Here, one baseline
network was compared. The baseline network adopts a gen-
eral CNN architecture that utilizes the square shape kernel.
Accordingly, the structure of the baseline is the same as the
proposed model except for the shape of the filter kernel.

In Table 2, the achieved performance by different con-
figurations is shown according to the detail kernel shape
to analyze the temporal and spectral dependencies of EEG
spectrogram. The top model for each evaluation crite-
rion is shown in boldface. The baseline network with
(n1,m1) = (3,3) has the worst validation (test) accuracy
with 58.32 (56.89)%. In case of the femporal network, the

validation (test) accuracy is 81.38 (80.57)% at (ny,m) =
(1, 28) where the filter size is the most horizontal, i.e., the
temporal dependency is the longest. On the other hand,
in the spectral network, the prediction performance is su-
perior to the narrow kernel shape that captures small fre-
quency resolution. The best performance of validation (test)
is 85.51 (83.74)% at (n1,m1) = (8,1). This agrees with
the fact that features in a specific frequency rather than
broad band are highly correlated with cybersickness [20].
Besides, the spectral network is more robust to the ker-
nel shape than the temporal network. Overall, the predic-
tion performance of the proposed network with (ny, m;) =
(1,28)-(8, 1) is the most outperformed than other configu-
rations.

The BCI study has examined how the brain region of
the EEG signals affects VR cybersickness. To further con-
tribute to this, we tested the model with an independent
channel of the spectrogram as an input, and compared pre-
diction accuracy. More specifically, the proposed networks
were learned using independent spectrogram dimensions.
Table 3 shows the performance comparison according to the
eight brain regions (Fpl, Fp2, F3, F4, T3, T4, P3, and P4).
The prediction accuracy for each region is almost similar,
but the P3 and P4 regions are slightly better. Therefore, it
can be concluded that our work agrees with previous BCI
research since the VR cybersickness levels are highly cor-
related with responses in the occipital midline brain area
than in other brain areas [20].

4.3. Test 2: Cybersickness Learning

To verify whether the proposed model truly learns the
cognitive state using the VR video alone, we tested two sce-
narios: visual predictor; visual — cognitive predictor. The
visual predictor takes only visual features as an input of
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Kernel Shape VA: TA:

Models (n1, mq) Max-pool (mean-tstd.) (mean=std.)
(3,3) (2,2) 58.32+ 1.71%  56.89 £+ 1.86%
baseline network 5,5) 2,2) 60.77 £ 2.41% 61.09 +2.33%
7,7 2,2) 61.31 £ 1.89% 61.83 £1.41%
1,7 (1,12) 63.49 & 2.13% 65.17 4 2.88%
temporal network (1,14) (1,8) 67.16 £ 2.72% 69.16 + 2.38%
(1,28) - 81.38 +3.01%  80.57 £ 2.49%
8,1) (13,1) 85.51 £ 1.33% 83.74 £ 2.81%
spectral network (16, 1) O, 81.57 £ 1.76% 80.27 & 1.49%
32,1) - 73.51 +£1.33% 77.74 £ 2.81%
(1,7)-(8,1) (1,12)-(13,1)  84.33 £1.19% 83.72 £+ 1.87T%
proposed network | (1,28)-(32,1) - 86.01 £ 1.12% 85.91 £ 1.22%
(1,28)-(8,1) (0,0)-(13,1) 87.46+237% 87.13+1.51%

Table 2. Maximum validation accuracy (“VA”) and test accuracy (“TA”) at VA for different networks according to kernel shape. The top
model for prediction accracy is in bold.

Regions | Fpl  Fp2 F3 F4 T3 T4 P3 P4

VA (%) | 8221 82.15 8252 81.19 83.55 83.13 8593 86.43
TA (%) | 81.78 83.23 81.37 8342 82.10 82.71 84.66 86.16

Table 3. Maximum validation accuracy (“VA”) and test accuracy (“TA”) at VA according to brain marker region. The best two marker
regions are in bold.

ing that any objective indicator, such as EEG data, was not
used.

the last FCL in stage 2. The visual — cognitive predictor
is the full version as depicted in Fig. 4. Here, the per-
formance are benchmarked using with two existing hand-
crafted feature based methods [14,24] and one deep learn-
ing based method [13]. Since the benchmarked methods are
not designed to reflect individual differences, so the pre-
dicted cybersickness scores were regressed onto the mean
opinion score (MOS) of each content. However, the pro-
posed model is based on classification over the individual
cybersickness levels. Therefore, we modified the last re-
gressor of the benchmark methods as a classifier to match
with discrete cybersickness levels and then trained bench-
marked methods using the ETRI-VR database.

In addition, the prediction accuracy of the visual — cogni-
tive predictor is superior to EEG-driven cybersickness pre-
diction comparing to Tables 2 and 4. This result implies that
both the cognitive and visual features are meaningful infor-
mation relative to cybersickness and lead to more powerful
performance when they are integrated. We used confusion
matrics to illustrate the discordance between the visual —
cognitive predictor’s predictions and user’s cybersickness
levels. When the VR cybersickness level is severe, such as 4
and 5, it shows accurate prediction performance, while lev-
els 1 and 2 are more confused. We expect that this is due to
the low-level VR cybersickness boundaries where the user

In Table 4, the validation accuracy and test accuracy of
feels ambifuous to make a decision.

the benchmarked methods are compared to the proposed
model. As shown n the table, the visual — cognitive pre-
dictor outperformed the other methods. In particular, com-
pared to the visual — cognitive predictor and the visual pre-
dictor, it is noteworthy that the integrated learning of the
visual and cognitive features is much superior to using only
visual features. Interestingly, the validation (test) perfor-
mance of the proposed model shows 26.55 (26.20)% higher
than the visual predictor. From this observation, it is evi-
dent that taking the cognitive features helps the model gen-
eralize individual differences to achieve higher accuracy. In
particular, the cognitive features are expressed only from
the visual features, which is an impressive result, consider-

To further discuss whether our model truly learns indi-
vidual differences, we tested the network by transferring
cognitive features to stage 1. For more detail, we used the
cognitive features learned in stage 2 as input in the last FCL
learned in stage 1. In Table 5, the results of the predic-
tion accuracy using the cognitive representation and cogni-
tive features are reported. The prediction model transferring
cognitive features was comparable to that of the model di-
rectly learned from the EEG data. In fact, after finishing
optimization, the MSE between the cognitive representa-
tion and features is 0.52, which implies that the distance
between the two spaces is very close. In our experiment,
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VA: TA:
Type Models (mean-std.) (mean-std.)
benchmark Padmanaban et al. [24] 51.94 + 2.33% 50.48 4+ 3.81%
Kim et al. [14] 55.72+4.31%  58.37 £4.17%
Kim et al. [13] 63.12+1.72%  65.83 £ 1.88%
proposed visual predictor 68.93 + 1.65% 69.03 + 1.24%
visual — cognitive Predictor 90.48 +1.99% 89.16 +1.87%

Table 4. Maximum validation accuracy (“VA”) and test accuracy (“TA”) at VA for different networks. The top model among the accuracies

is in bold.
‘ cognitive representation  cognitive features
VA (%) 87.46% 85.91%
TA (%) 87.13% 86.35%

Table 5. Maximum validation accuracy (“VA”) and test accuracy
(“TA”) at VA for cognitive representation and cognitive features.

1T BEIEXOM 13.3% 2.2% 1.4% 1.8%

[N}

11.8% 22%

3| 25%

IS

2.4%

Cyberseickness level

5| 20% 1.8%

Predicted level

Figure 5. Confusion matrix for the predicted VR cybersickness
levels versus the subjective evaluation levels.

the regression loss is converged to around zero, hence it
can be concluded that the model estimates the cognitive
state from the visual features without any prior physiolog-
ical cue. Therefore, the inter- and intra-individual differ-
ences are usefully addressed to predict VR cybersickness.
These observations are an extension of cognitive neuro-
science studies that estimate the EEG response from visual
stimuli [30].

As mentioned in Section 4.1, the input VR video frames
are uniformly sampled at the sampling interval r and pass
through the network. Therefore, at high sampling interval,
the model is expected to detect rapidly changing motion pat-
terns than a low sampling interval. The results according
to the sampling interval are shown in Fig. 6. Actually, the
prediction accuracy according to the sampling interval is al-
most similar, and slightly better performance at a low sam-
pling interval, i.e., 7 = 4. It is expected that there will be
a difference in the prediction accuracy in low-level cyber-
sickness contents depending on the sampling interval, rather
than in high-level cybersickness contents.

9 |
I

Prediction accuracy (% )

I I 1 IH I&
0 02 04 06 08 10

Sampling interval (r)

Figure 6. Cybersickness prediction accuracy according to input
VR video sampling interval.

5. Conclusion

In this paper, we have proposed a novel framework for
VR cybersickness prediction where the deep learning model
learns individual differences using only VR video. Our
framework consists of two stages. In the first stage, the
EEG spectrogram driven classification was performed to
cybersickness levels by representing cognitive states with
the low-dimensional vector. To extract a meaningful cog-
nitive representation of cybersickness, our novel architec-
ture holistically considered the inter-correlation of the EEG
channels and intra-correlation over the spectral and tempo-
ral informations in each spectrogram. Through the rigorous
tests, we demonstrated that designing an architecture to re-
flect temporal and spectral dependency is essential cues to
describe cybersickness. In the second stage, by transferring
cognitive representation to the intermediate feature space,
an RNN-based network aimed at extracting visual cognitive
features for cybersickness prediction. Above all, the pro-
posed model achieves a state-of-the-art performance on the
ETRI-VR database and reliably estimated individual differ-
ences through the VR video without the EEG data.
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