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Abstract

A novel algorithm to estimate instance-level future mo-

tion in a single image is proposed in this paper. We first

represent the future motion of an instance with its direction,

speed, and action classes. Then, we develop a deep neu-

ral network that exploits different levels of semantic infor-

mation to perform the future motion estimation. For effec-

tive future motion classification, we adopt ordinal regres-

sion. Especially, we develop the cyclic ordinal regression

scheme using binary classifiers. Experiments demonstrate

that the proposed algorithm provides reliable performance

and thus can be used effectively for vision applications, in-

cluding single and multi object tracking. Furthermore, we

release the future motion (FM) dataset, collected from di-

verse sources and annotated manually, as a benchmark for

single-image future motion estimation.

1. Introduction

Motion understanding is critical in various vision tasks,

such as optical flow [23, 38, 46], action recognition [55],

future frame prediction [36], and video compression [50].

Most prior arts estimate motions by analyzing the differ-

ences between consecutive frames. In contrast, a human be-

ing is often capable of anticipating motions precisely even

from a single still image, as illustrated in Figure 1. Such in-

nate perceptual capabilities enable us to take desired actions

and avoid dangerous situations. If computer vision attains a

similar level of motion understanding, we would be able to

build more secure artificial intelligent systems, e.g. robots

and self-driving cars.

We propose a pioneering algorithm to estimate instance-

level FM in a single image. The proposed algorithm at-

tempts to challenge humans in single-image motion under-

standing. Even though there are some methods [16, 26, 37,

40, 52] for predicting FM, they need additional information

or are effective in limited environments only. As shown in

Figure 2, Yagi et al. [52] require a cumulative trajectory of

an instance from past frames, while the proposed algorithm

uses only a present frame. Also, [26,37] estimate object tra-

Figure 1. Above annotations are automatically generated from the

single image by the proposed algorithm.

jectories in a scene. Given starting and end points in a scene,

they estimate trajectories connecting those points. Mottaghi

et al. [40] estimate motion scenarios by classifying objects

in images into one of pre-defined scenarios as in Figure 2.

They focus on the scene understanding task rather than on

object FMs, such as motion directions and magnitudes. Gao

et al.’s algorithm [16] is the most similar to ours, but it es-

timates pixel-level optical flow and works only for highly

similar action scenes to the ones in the training data.

Even unaware of the exact physics, humans can predict

next motions of instances based on their experience. Based

on this observation, we use a deep neural network [22]

to implement such perceptual capabilities regarding FM.

Deep neural networks can perform high-level understand-

ing of images, if reliable examples are provided sufficiently

[17,20,24,29–31,53]. Hence, another objective of this work

is to construct a reliable dataset for single-image FM es-

timation. First, we focus on pedestrian instances, which

are objects of the most interest in many applications. We

construct the FM dataset by collecting images, containing

pedestrians. After detecting bounding boxes for pedestri-

ans, we manually assign three attributes of FM (i.e. direc-

tion, speed, and action) to each pedestrian. Later, we extend

the FM dataset to include car and animal instances.

When we see a moving object, we perceive visual infor-

mation of the object and its surroundings simultaneously.

Similarly, to exploit scene contexts for FM estimation, we

propose the multi-context pooling (MCP) layer that inte-
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Yagi et al. [52] Kitani et al. [26] Ma et al. [37] Mottaghi et al. [40] Gao et al. [16] Proposed

Figure 2. Comparison of previous FM estimation methods [16,26,37,40,52] and the proposed algorithm: the proposed algorithm estimates

FM in a single image more reliably in more diverse scenes and environments. Please also see the supplemental video.

grates both object and global features. We incorporate the

MCP layer into DenseNet-121 [22] to learn a unified model

for estimating the future direction, speed, and action of an

instance. Moreover, for effective FM estimation, we adopt

ordinal regression. Especially, we propose the cyclic ordi-

nal regression (COR) scheme for the future direction, whose

classes have a cyclic order.

The proposed algorithm provides promising FM estima-

tion results despite variations in camera viewpoints, source

types, and environments. We assess the efficacy of the

proposed algorithm in important applications of single and

multi object tracking. It is demonstrated that the proposed

algorithm makes conventional object trackers [25,41] more

efficient by reducing search regions. Moreover, we extend

the proposed algorithm to process other kinds of instances,

including cars, cats, dogs, and horses.

This work has the following main contributions:

• We develop a single-image FM estimation algorithm,

by incorporating the MCP layer into DenseNet-121

and developing the COR scheme for future direction

classification.

• Unlike the previous attempts [16, 26, 37, 47, 52], the

proposed algorithm estimates FM reliably in diverse

scenes and environments. It is strongly recommended

to see the supplemental video.

• We demonstrate the efficacy of the proposed algorithm

quantitatively in single and multi object tracking.

• We release the FM dataset to serve as a benchmark for

the interesting research topic of subsequent behaviour

estimation in a single still image.

2. Related Work

2.1. Instance-Level Future Motion Estimation

FM estimation can be performed at either instance level

or pixel level. Let us first review instance-level algorithms.

Mottaghi et al. [40] forecast FMs of objects in a single im-

age. They pre-define 66 scenarios based on physical move-

ments of an object, and classify an object into one of the

scenarios. Chao et al. [4] forecast human poses from static

images. They design recurrent neural networks to yield a

pose sequence from an initial pose. However, it works for

limited sports scenes only.

Also, some methods predict long-term trajectories of ob-

jects in a still image [26, 37, 47]. Using a Markov decision

process, Kitani et al. [26] predict trajectories of an object

based on its current and goal states. Ma et al. [37] extract

visual attributes of pedestrians via deep networks to forecast

pedestrian dynamics. Walker et al. [47] exploit mid-level

patches for future trajectory prediction. However, since they

focus on scene information rather than on object informa-

tion, these conventional techniques are highly dependent on

scene types and camera angles. In contrast, we attempt to

design a domain-adaptive FM estimation algorithm, which

can be reliably used in various applications.

2.2. Pixel-Level Future Motion Estimation

Some algorithms [16, 34, 43, 48, 49] estimate dense mo-

tion, i.e. optical flow, from a single image. Pintea et al. [43]

predict continuous motion vectors using structured random

forests with regression. Walker et al. [48] quantize opti-

cal flow vectors into 40 clusters and then classify each pixel

into one of the clusters using convolutional neural networks.

Using a conditional variational autoencoder (VAE), Walker

et al. [49] characterize various distributions of future flow to

predict multiple motion directions and magnitudes at each

pixel. Gao et al. [16] develop an encoder-decoder network

with a loss network to hallucinate future flow and demon-

strate the efficacy of the hallucinated flow for action recog-

nition. Li et al. [34] devise a spatio-temporal conditional

VAE to predict future flow maps in multiple time steps.

With the predicted maps, they perform full frame synthe-

sis and achieve video prediction.

2.3. Ordinal Regression

Ordinal regression is a learning task for predicting a la-

bel (or rank) of an object, where the set of labels has a lin-

ear order [21], e.g. the set of integers. Attempts have been

made for ordinal regression [19], for example, using sup-

port vector machines [6], Gaussian processes [5], and per-

ceptron learning [8]. Frank and Hall proposed the ordinal

binary decomposition [15]. They constructed independent

binary classifiers to decide whether the rank of an object

is greater than k. Using decision trees, they combined the

binary outputs to estimate the rank. Li and Lin [33] pro-

posed a reduction scheme from ordinal regression to binary

classification. A set of binary classifiers was learned jointly

and combined with existing techniques, such as SVM. This

274



(a) Direction (b) Speed (c) Action

Figure 3. Statistics of the FM dataset. The instances are sampled from YouTube [1], CityPersons [54], and CPDB [13], and then split into

training (top) and test (bottom) sets.

reduction scheme has been adopted in various applications,

including the age estimators in [3,42]. Also, the decomposi-

tion for the case of a cyclic order was considered in [11]. In

this work, we formulate the FM classification as an ordinal

regression problem.

3. Single-Image Future Motion Estimation

We represent the FM of an instance with its direction,

speed, and action classes. We then develop classifiers, based

on ordinal regression, for the FM estimation.

3.1. FM Dataset

Motion information is often represented by displace-

ment vectors between successive frames. For example,

dense optical flow estimates pixel-level correspondence be-

tween video frames. However, it is hard to extract pixel-

level motion information precisely and reliably from videos.

Instead, through relatively easy annotations, we collect

instance-level motions in still images, which are sampled

from existing datasets [7, 13, 54] and YouTube [1]. This

instance-level annotation facilitates the construction of a

large dataset. Moreover, the instance-level motion estima-

tion can be performed reliably using a deep neural network.

The proposed algorithm is not limited to a particular type

of instances, but we first focus on pedestrians for the fol-

lowing reasons. First, it is easy to access public datasets,

capturing street scenes, and annotate lots of pedestrians.

Second, excluding abnormal situations, human behaviour is

predictable even in a single image. In other words, pedestri-

ans’ FMs can be inferred from semantic contexts in general.

Third, humans are often objects of the most interest.

The FM dataset annotates 11,342 pedestrian instances.

In YouTube videos, we have no ground-truth bounding

boxes of instances. Thus, we run the YOLOv3 detector [44]

to obtain the bounding boxes. For each instance, we label its

direction, speed, and action classes manually by referring to

the current frame and nine subsequent frames. We quantize

Stop Slow Fast Sidewalk Crosswalk Jaywalk

Figure 4. Three speed classes and three action classes.

the future direction into one of the four cardinal directions

(N, E, S, W) and the four intermediate ones (NE, SE, SW,

NW) in the image coordinates. We use the eight quantized

directions, which are sufficient in many applications. Finer

quantization makes the annotation difficult and unreliable.

For a similar reason, we have three speed classes of ‘stop,’

‘slow,’ and ‘fast.’ Action classes can be varied in applica-

tions. In this work, to monitor pedestrians’ behaviour on

streets, we define three action classes of ‘sidewalk,’ ‘cross-

walk,’ and ‘jaywalk,’ as shown in Figure 4.

Figure 3 shows the class distributions of instances in the

FM dataset. These instances are sampled from YouTube [1],

the CityPersons dataset [54], and the Caltech Pedestrian De-

tection Benchmark (CPDB) dataset [13]. We split the entire

dataset into training and test sets with the ratio of 0.85 to

0.15. We use the CPDB dataset for training only, since it

has fewer objects than YouTube or CityPersons and more

than 75% of the objects are contained in only 3 videos.

3.2. Future Motion Network

We develop a deep neural network for the FM estima-

tion, which performs three classification tasks for direction,

speed, and action. The network processes an image patch,

in which a pedestrian is located at the center, and yields the

three classification results. It is composed of a feature ex-

tractor and a classifier, as shown in Figure 5.

We assume that, in an image, pedestrians are either lo-

cated manually or parsed by an object detector. Suppose

that a pedestrian has a bounding box with height h. Then,

around the bounding box, we crop the 2h×2h patch, which

is put into the network. The feature extractor then yields
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Figure 5. The architecture of the proposed FM network. Three dense blocks of DenseNet-121 [22] are used.

object and global features based on DenseNet-121 [22]. To

extract those features from the output of DenseNet-121, we

develop the MCP layer, which uses two region of interest

(RoI) pooling layers:

• The bounding box is the RoI for an object feature,

which is pooled to spatial resolution 7× 4. The object

feature conveys appearance information of a pedes-

trian with minimal background.

• The 2h× 2h patch is the RoI for a global context fea-

ture, pooled to resolution 7 × 7. This global feature

is also important in FM estimation, since it provides

overall semantic information about a scene.

We determine the output sizes of the RoI pooling layers em-

pirically. Each RoI pooling layer is followed by two fully-

connected (FC) layers.

Then, the classifier performs the three classification

tasks, by employing FC layers and softmax layers. Specif-

ically, the object and global features are concatenated and

processed by two FC layers and three sub-classifiers for the

pedestrian’s direction, speed, and action. The three sub-

classifiers are designed differently. First, we classify the

direction using the COR scheme in Section 3.3. Second, we

do the speed using the linear ordinal regression [33], since

the speed classes are in the order of ‘stop,’ ‘slow,’ and ‘fast.’

In other words, ‘stop’ and ‘fast’ are more different from

each other than ‘stop’ and ‘slow’ are. Third, we perform

the 3-way classification of the action using a softmax layer,

since there is no ordinal relation among action classes.

3.3. Cyclic Ordinal Regression

As shown in Figure 6, the future direction of an object is

classified into one of the eight directions: N (c0), NE (c1), E

(c2), SE (c3), S (c4), SW (c5), W (c6), NW (c7). The direc-

tion classes have a cyclic order, since N (c0) is adjacent to

both NW (c7) and NE (c1). Note that many physical quan-

tities have cyclic orders, e.g. 24 hours in a day, longitudes,

as well as directions on a plane. Suppose that there are K
directional classes in a cyclic order,

C = {c0, c1, . . . , cK−1} (1)

N

S

EW

NE

SESW

NW
N

S

EW

NE

SESW

NW

Figure 6. Binary classifiers for the cyclic ordinal regression.

where K is an even number. In such a case, it is not de-

sirable to apply the K-way classification that does not con-

sider the cyclic order in the loss function. For example,

if direction N is misclassified into S, the error is severer

than its misclassification into NE. Therefore, we propose

the COR scheme, by extending the ordinal binary decom-

position technique in [33].

Let x be an instance and yx ∈ C be its class. For COR,

we use binary classifiers, f0, f1, . . . , fK/2−1. Each binary

classifier fn is defined as

fn(x) =

{

1 if yx ∈ {c(n+1)K , . . . , c(n+K/2)K}
0 otherwise

(2)

where (n)K denotes the remainder after the division of n
by K. In other words, fn divides C into two subsets of the

same size, and determines whether the class of x is between

c(n+1)K and c(n+K/2)K or not. In Figure 6, f0 halves the

eight directions into the blue and red sides. It outputs 1 if

the direction is NE, E, SE, or S, and 0 otherwise.

From (2), it can be shown that

fn = 1− fn+K/2, (3)

fn = fn+K . (4)

Due to the symmetry and periodicity, all classifiers are de-

termined by only K/2 classifiers, f0, f1, . . . , fK/2−1. Note

that, in the linear ordinal regression [33], the classes in a

line segment is divided into two parts. Therefore, for K-

way classification, K − 1 binary classifiers are required. In

contrast, in the proposed COR, a circle is halved into two

semicircles, as done in [11]. Thus, only K/2 binary classi-

fiers are needed.
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During the training of the classifiers, fn is assigned a bi-

nary ground truth value in (2). On the other hand, in testing,

fn yields a confidence value (i.e. softmax probability) be-

tween 0 and 1. Using these confidence values of the K/2
classifiers, class ck∗ of instance x is determined by

k∗ = argmax
k∈C

K/2
∑

n=1

fk−n(x) (5)

For example, suppose that K = 8 as in Figure 6. Ideally,

when x has class c2,

4
∑

n=1

f2−n(x) = f1(x) + f0(x) + f−1(x) + f−2(x)

= f1(x) + f0(x) + 1− f3(x) + 1− f2(x) = 4

which is greater than or equal to
∑4

n=1 fk−n(x) for all k.

Thus, its class is declared correctly as c2. Also, it can be

shown that (5) is the maximum likelihood (ML) decision

rule [14], if each fk−n(x) represents the probability that x
has one of the four directions as defined in (2).

3.4. Learning Network

The MCP layer connects DenseNet-121 and the FC lay-

ers using the two RoI pooling layers. Thus, the network in

Figure 5 can accept a patch of an arbitrary size. However,

for effective training and inference, we normalize the size

of a patch to 400×400 so that it contains a pedestrian at the

center whose height is 200 pixels.

We define the overall loss function as

L = LDir + LSpe + LAct (6)

where LDir, LSpe, and LAct are the losses for the direction,

speed, and action classification, respectively. For LDir, we

adopt the sum of binary cross entropies [42]. Specifically,

LDir(p,q) = −

3
∑

n=0

1
∑

i=0

qin log p
i
n (7)

where p = {pin : i = 0, 1 and n = 0, 1, 2, 3} is the softmax

probability vector from the four binary classifiers fn and

q = {qin} is the corresponding ground-truth binary vector.

LSpe is defined similarly. LAct is defined as

LAct(p,q) = −

3
∑

i=1

qi log pi (8)

where p = {pi} is the softmax probability vector for the

three actions and q = {qi} is the ground-truth binary vector.

We train the network via the stochastic gradient descent

with a momentum of 0.9 and a batch size of 4 for 20 epochs.

The learning rate is 10−4 for the first ten epochs and 10−5

for the last ten epochs. As initial parameters, we use the

DenseNet-121 model [22] pre-trained on ImageNet [10].

Table 1. Classification accuracies (%) according to variations in

the MCP layer and the ordinal regression.

Direction Direction+ Speed Action

Object 75.9 95.7 88.3 86.8

Global 25.8 45.7 82.1 85.5

Object + Global 76.8 96.0 90.1 86.7

Proposed 77.7 96.6 90.4 87.2

Figure 7. Direction classification: Green labels are the ground-

truth, while red ones are predicted directions. In these cases, the

ground-truth and predicted directions are adjacent to each other.

3.5. Experimental Results

Table 1 is an ablation study on the MCP layer and the

ordinal regression scheme. ‘Direction,’ ‘Speed,’ and ‘Ac-

tion’ are the classification accuracies of the FM direction,

the FM speed, and the FM action, respectively. For the first

three configurations, the multi-class classification is used

instead of the ordinal regression. ‘Object’ and ‘Global’ de-

note the networks, in which only object and global con-

text features are used for the classification, respectively.

Note that ‘Object + Global,’ combining both features, out-

performs both ‘Object’ and ‘Global’ with the exception of

the action classification. The last configuration, ‘Proposed’

uses the linear ordinal regression for the speed classification

and the COR scheme for the direction classification. It out-

performs all the other configurations in all three classifica-

tion tasks. Even in the action classification, it improves the

performance, since the network is trained to extract more

effective features. Notice that the direction classification is

more challenging than the speed and action classification,

in which the accuracies are about 90%.

In Table 1, ‘Direction+’ means the accuracy when the

estimated direction is regarded as correct if it is identical

with or adjacent to the ground-truth direction. For example,

for the ground-truth direction N, an estimated direction NE,

N, or NW is correct in the ‘Direction+’ accuracy. Figure 7

shows examples, in which the ground-truth and predicted

directions are adjacent. In these examples, even a human

being cannot easily quantize the true direction into one of

the two classes by looking at the single image only. Thus,

‘Direction+’ takes into account this ambiguity. The pro-

posed algorithm yields the ‘Direction+’ accuracy of 96.6%.

As mentioned previously, there is no existing algorithm,

exactly matching the proposed algorithm. Thus, for com-

parison, we implement future direction classifiers using

handcrafted features or CNN features. In Table 2, we use

HOG [9] and ACF [12] as handcrafted features for pedes-
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Correct estimation

False direction False speed False action

Figure 8. FM estimation results. The first row presents correct estimation results. The second row shows failure cases, where top labels are

the ground-truth and bottom ones are predicted classes.

trians. We extract CNN-1 features by adopting VGG-16 in

Faster R-CNN [45]. For CNN-2 features, we use DenseNet-

121 [22], trained on ImageNet [10]. For these features,

we classify the future direction using SVMs. For Gao et

al. [16], we obtain pixel-level flow vectors and aggregate

them to get instance-level motion vectors. The proposed

algorithm outperforms these comparison methods signifi-

cantly. Gao et al. [16] can predict pixel-level flows for spe-

cific actions scenes, as shown in Figure 2, but fail to provide

reliable flows on the FM dataset. Thus, its instance-level

direction estimates are almost random. Here, we do not re-

train the network in [16] on the FM dataset. Gao et al. [16]

requires reliable optical flow vectors for its training, but the

FM dataset provides sparsely sampled frames only.

Figure 8 presents FM estimation results. In the top row,

FMs are predicted successfully even when the scenes are

crowded or cluttered. The bottom row shows failure cases:

The direction is falsely predicted, since the pedestrian is far

away and it is unclear whether he faces the camera or moves

away in the opposite direction. In the false speed case, three

people stand still in fact but are declared to walk slowly.

The middle person is more challenging. We can learn that

people looking at cell phones usually do not walk, but it is

hard to tell whether the middle person stands still or walks.

In the false action case, since the pedestrian is surrounded

by many people, he is falsely claimed to be on a sidewalk.

4. Applications

For applications of the proposed FM estimation algo-

rithm, it is strongly recommended to see the supplemental

video and document. For example, it is demonstrated that

the action classification of ‘sidewalk,’ ‘crosswalk,’ and ‘jay-

walk’ can assist autonomous driving and improve the safety

Table 2. Classification accuracies (%) of the future direction.

HOG ACF CNN-1 CNN-2 Gao et al.
Proposed

[9] [12] [45] [22] [16]

Direction 43.1 42.0 47.1 31.9 12.4 77.7

Direction+ 72.2 72.3 72.7 59.8 38.5 96.6

of pedestrians. Moreover, the proposed algorithm can be

used for the crowd analysis in a single image.

Among many possible applications, this section intro-

duces two applications of the proposed algorithm: single

and multi object tracking. By exploiting ‘FM direction’

and ‘FM speed’, we make the conventional object track-

ers [25, 41] more efficient.

4.1. Single Object Tracking

By reducing a search region for a target object using its

FM, we can track the object more efficiently. We adopt

MDNet [41] as the baseline single object tracker, which ex-

hibits competitive performances in several tracking bench-

marks [27, 28, 51]. The baseline selects search candidates

within a square window, by sampling from a Gaussian dis-

tribution. The side length of the square depends on the size

of an object. We follow the details in [41].

We use a predicted FM to narrow the search region.

When the FM speed is ‘stop,’ we adopt the four times

smaller square than the baseline. Otherwise, we determine a

fan-shaped area in the direction of the FM. We set the angle

of the fan-shaped area to 135◦, but the maximum distance

from the target to a search candidate is kept the same as that

of the baseline. Figure 9 compares the sampling strategies

of the baseline MDNet and the proposed ‘MDNet + FM.’

We evaluate the performance of MDNet+FM on the tem-

ple color 128 (TC128) dataset [35] and the object track-

ing benchmark (OTB) dataset [51]. Since we focus on
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(a) (b) (c)

Figure 9. Comparison of sampled search points, depicted by red

dots, in (a) MDNet, (b) MDNet+FM, and (c) CDT+FM. The points

in (a) and (b) are sampled from a Gaussian distribution, while

those in (c) are from a uniform distribution.

Table 3. Comparison of tracking performances of MDNet [41]

and MDNet+FM on pedestrian sequences in the TC128 and OTB

datasets.

Setting Method # Samples PR SR fps

I
MDNet 128 0.845 0.589 1.67

MDNet+FM 85 0.848 0.598 2.75

II
MDNet 192 0.871 0.614 1.51

MDNet+FM 128 0.849 0.595 2.45

III
MDNet 256 0.883 0.616 1.41

MDNet+FM 171 0.830 0.582 2.24

IV
MDNet 320 0.875 0.618 1.23

MDNet+FM 213 0.893 0.623 2.15

V
MDNet 384 0.837 0.584 1.13

MDNet+FM 256 0.872 0.613 1.98

pedestrian instances, we use only the sequences for track-

ing pedestrians. TC128 and OTB have 23 and 22 such

sequences, respectively. After removing duplicated ones,

there are 33 pedestrian sequences in total. To measure the

tracking performance quantitatively, we use precision (PR)

and success rate (SR) [41].

Table 3 compares the performances of MDNet+FM and

the baseline MDNet. ‘# Samples’ is the number of search

candidates. Both MDNet and MDNet+FM use the same

Gaussian sampling, but MDNet+FM reduces the search re-

gion. Thus, in the same setting in Table 3, MDNet+FM

searches substantially fewer candidates than MDNet, im-

proving the tracking speed. However, MDNet+FM pro-

vides comparable or even better tracking performances than

MDNet. For example, in setting IV, MDNet+FM provides

slightly higher PR and SR scores than MDNet, as well as it

is 175% faster. Figure 10 plots PR and SR scores versus fps.

Again, when we compare the results with similar PR or SR

scores, MDNet+FM is significantly faster than the baseline.

4.2. Multiple Object Tracking

Objects in multiple object tracking (MOT) sequences

[39] tend to exhibit slow and smooth motions between suc-

cessive frames. To exploit this property, Bochinski et al. [2]

proposed an MOT algorithm, which makes a decision us-

ing only the intersection-over-union (IOU) ratio between

the bounding boxes of a target object and a search candi-

date. However, in a low frame rate video, e.g. less than 10

frames per second (fps), their algorithm may fail since there
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Figure 10. PR and SR scores versus tracking speeds on pedestrian

sequences in the TC128 and OTB datasets.
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Figure 11. MOTA scores versus tracking speeds on the MOT17

dataset at video frame rates of (a) 5 fps and (b) 1 fps.

can be abrupt changes between frames. For successful MOT

in low frame rate videos, we apply the proposed FM algo-

rithm to a more sophisticated MOT algorithm, CDT [25],

which is a tracking-by-detection method.

We reduce the search region of CDT using the FM of

a target object, as shown in Figure 9(c). In CDT, a uni-

form distribution is used for sampling search points, and the

number of search points is set to 212, 312, 412, 512, or 612.

For CDT+FM, we reduce the search region but increase the

sampling density to have the same number of search points.

We use the MOT17 benchmark [39]. Four out of seven se-

quences in MOT17 have camera movements, which make

the search range reduction using FM invalid. Therefore,

we apply the background compensation to all sequences,

by employing the BRISK keypoint matching [32] and an

affine transformation. Then, we evaluate the MOT accuracy

(MOTA), which is one of the most comprehensive metrics

in the benchmark [39].

We present a table in the supplemental document to com-

pare CDT+FM with the baseline CDT in detail. In Fig-

ure 11, we plot MOTA scores versus processing speeds ac-

cording to the numbers of search points. At similar pro-

cessing speeds, CDT+FM provides a significantly higher

MOTA than CDT. At the same number of search points,

CDT+FM yields a slower processing speed, since it per-

forms the background motion compensation. However, by

reducing the search region based on FM, it provides more

accurate tracking results, yielding a higher MOTA score.

5. Other Kinds of Instances

The proposed single-image FM estimation algorithm can

be applied to not only pedestrians but also other kinds of

instances. This section extends the proposed algorithm to
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Figure 12. FM estimation of cars. The left two images show correct results. The right two images are failure cases for the direction

classification and the action classification, respectively, where green labels are the ground-truth and red labels are predicted classes.

Figure 13. FM estimation of animals. The two left images show

correct results. The two right images are failure cases, where green

labels are the ground-truth and red ones are predicted classes.

Table 4. Classification accuracies (%) of the proposed single-

image FM estimation on car and animal instances.

Instance Method Direction Direction+ Speed Action

Car
Baseline 89.6 98.5 97.0 94.2

Proposed 89.9 98.7 97.4 94.5

Animal
Baseline 87.1 97.1 74.2 -

Proposed 87.6 97.4 74.9 -

handle two more kinds: cars and animals. These instances

have different characteristics from pedestrians. Thus, al-

though we use the same network architecture in Figure 5,

we train the parameters separately for cars and animals.

Also, we define the classes in different ways.

For cars, there are 8 directional classes in the same way

as pedestrians. In the case of speed, even a human being

cannot easily predict the absolute speed of a car in a single

image, since the car has a rigid shape. Thus, we define three

speed classes as ‘approach,’ ‘keep,’ and ‘far away,’ which

represent relative speeds of a car instance with respect to the

capturing camera. If the distance between the camera and

the instance is decreasing, the speed class is ‘approach.’ If

the camera and the instance move in the same speed in the

same direction, the class is ‘keep.’ Otherwise, the class is

‘far away.’ Last, we define four action classes for cars as

‘go straight,’ ‘stop,’ ‘turn left,’ and ‘turn right.’ Then, we

manually assign those three attributes to each car instance.

We use the KITTI object dataset [18], composed of 7,481

training images and 7,518 test images. Since only training

images have bounding box annotations, we use those im-

ages. They contain 15,894 objects in total. We train the

network in Figure 5 with 6,526 images with 13,894 objects.

The test set consists of 955 images with 2,000 objects. Ta-

ble 4 lists the classification accuracies. Note that the accura-

cies for cars are higher than those for pedestrians, since cars

have less shape variations, as well as being rigid. Figure 12

presents examples of estimation results. In the topmost im-

age, the proposed algorithm distinguishes the ‘go straight’

class from the ‘stop’ class correctly from the scene context.

Finally, we extend the proposed algorithm to estimate

the FMs of animal instances (cats, dogs, and horses). As

four-footed animals, they have similar motion characteris-

tics, even though they do not belong to the same family. To

construct the animal dataset, we collect frames, including

cats, dogs, and horses, from YouTube [1]. Animals have

eight direction classes and three speed classes in the same

way as pedestrians. We do not perform the action classifica-

tion for animals. We collect 5,516 images, including 6,626

animals: 5,302 animals are used for training and 1,324 for

test. Table 4 also lists the classification accuracies for ani-

mals, where ‘Baseline’ denotes the results using the multi-

class classification. All performances are improved due to

the ordinal regression. In terms of the speed classification,

animals are more challenging than pedestrians, since the

differences between the ‘slow’ and ‘fast’ classes are often

ambiguous in still images for animals. Figure 13 shows

correct classification results, as well as failure cases. For

example, in the third image, the direction prediction fails

since the horse is slanted abnormally to turn fast.

6. Conclusions

We proposed a novel single-image FM estimation algo-

rithm at the instance level. Using the MCP layer, the pro-

posed algorithm extracts object and global context features

for faithful FM estimation. The proposed algorithm per-

forms three classification tasks to determine the future di-

rection, speed, and action of an instance. Especially, we

proposed the COR scheme for the ordinal regression of fu-

ture direction. Experimental results demonstrated that the

proposed algorithm yields reliable FM estimation perfor-

mance and can be used for single and multi object tracking.

Also, the proposed algorithm can be used for estimating the

FMs of cars, cats, dogs, horses, as well as pedestrians.
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Video compression through image interpolation. In ECCV,

2018. 1

[51] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Trans. Pattern Anal. Mach. Intell.,

37(9):1834–1848, 2015. 6

[52] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and

Yoichi Sato. Future person localization in first-person

videos. In CVPR, 2018. 1, 2

[53] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan

Yang. DenseASPP for semantic segmentation in street

scenes. In CVPR, 2018. 1

[54] Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele.

CityPersons: A diverse dataset for pedestrian detection. In

CVPR, 2017. 3

[55] Yizhou Zhou, Xiaoyan Sun, Zheng-Jun Zha, and Wenjun

Zeng. MiCT: Mixed 3D/2D convolutional tube for human

action recognition. In CVPR, 2018. 1

282


