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Abstract

Current non-rigid structure from motion (NRSfM) algo-

rithms are mainly limited with respect to: (i) the number

of images, and (ii) the type of shape variability they can

handle. This has hampered the practical utility of NRSfM

for many applications within vision. In this paper we pro-

pose a novel deep neural network to recover camera poses

and 3D points solely from an ensemble of 2D image co-

ordinates. The proposed neural network is mathematically

interpretable as a multi-layer block sparse dictionary learn-

ing problem, and can handle problems of unprecedented

scale and shape complexity. Extensive experiments demon-

strate the impressive performance of our approach where

we exhibit superior precision and robustness against all

available state-of-the-art works by an order of magnitude.

We further propose a quality measure (based on the network

weights) which circumvents the need for 3D ground-truth to

ascertain the confidence we have in the reconstruction.

1. Introduction
Building an AI capable of inferring the 3D structure and

pose of an object from a single image is a problem of im-

mense importance. Training such a system using supervised

learning requires a large number of labeled images – how to

obtain these labels is currently an open problem for the vi-

sion community. Rendering [27] is problematic as the syn-

thetic images seldom match the appearance and geometry

of the objects we encounter in the real-world. Hand an-

notation is preferable, but current strategies rely on associ-

ating the natural images with an external 3D dataset (e.g.

ShapeNet [8], ModelNet [32]), which we refer to as 3D

supervision. If the 3D shape dataset does not capture the

variation we see in the imagery, it is inherently ill-posed.

Non-Rigid Structure from Motion (NRSf M) offers com-

puter vision a way out of this quandary – by recovering the

pose and 3D structure of an object category solely from

hand annotated 2D landmarks with no need for 3D super-

vision. Classically [6], the problem of NRSf M has been

applied to objects that move non-rigidly over time such as

Figure 1: In this paper, we want to reconstruct 3D shapes

solely from a sequence of annotated images—shown on

top—with no need of 3D ground truth. Our proposed hier-

archical sparse coding model and corresponding deep solu-

tion outperforms state-of-the-art by an order of magnitude.

the human body and face. But NRSf M is not restricted

to non-rigid objects; it can equally be applied to rigid ob-

jects whose object categories deform non-rigidly [19, 2, 30].

Consider, for example, the five objects in Figure 1 (top), in-

stances from the visual object category “chair”. Each ob-

ject in isolation represents a rigid chair, but the set of all 3D

shapes describing “chair” is non-rigid. In other words, each

object instance can be modeled as a deformation from its

category’s general shape.

NRSf M is well-noted in literature as an ill-posed prob-

lem due to the non-rigidity. This has been mainly addressed

by imposing additional shape priors, e.g. low rank [6, 10],

union-of-subspaces [36, 2], and block-sparsity [18, 19].

However, low rank is only applicable to simple non-rigid

objects with limited deformations and union-of-subspaces

relies heavily on frame clustering which is still an open

problem. Block-sparsity, where each shape can be repre-

sented by at most K bases out of L, is considered as one

of the most promising assumptions in terms of modeling

broad shape variations. This is because sparsity can be

thought of as a union of
(

L
K

)

subspaces constraint and an

over-complete dictionary could be utilized. However, it was

noted by Kong et al. [18], that searching for the best sub-
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space out of
(

L
K

)

is extremely costly and not robust. Based

on this observation we propose a novel shape prior that em-

ploys hierarchical sparse coding. The introduction of addi-

tional layers, in comparison to classical single-layer sparse

coding, provides a mechanism for controlling the number of

active subspaces. The ability of hierarchical sparse coding

to provide a model that is both expressible and robust for

general NRSf M forms the central thesis of our paper.

Contributions:

• We propose a novel shape prior based on hierarchical

sparse coding and demonstrate that the 2D projections

under orthogonal cameras can be represented by the

hierarchical dictionaries in a block sparse way.

• We designed a deep neural network to approximately

solve the proposed hierarchical block sparse model and

show how the network architecture is derived from a

classical sparse coding algorithm.

• Finally, extensive experiments are conducted using

various datasets. Both quantitative and qualitative re-

sults demonstrate our superior performance, outper-

forming all state-of-the-arts in the order of magnitude.

2. Related Work

Low-rank NRSfM: In rigid structure from motion, the

rank of 3D structure is fixed as three [29] since 3D shapes

remain the same between frames. Based on this insight,

Bregler et al. [6] advocated that non-rigid 3D structure

could be represented by a linear subspace of low rank.

Dai et al. [10] developed this prior by proving that low-rank

assumption itself is sufficient to address the ill-posedness

of NRSf M with no need of additional priors. The low-

rank assumption has also been applied temporally [3, 15]

– 3D point trajectories can be represented by pre-defined

(e.g. DCT) or learned bases. Although exhibiting impres-

sive performance, the low-rank assumption has a major

drawback. The rank is strictly limited by the number of

points and frames (whichever is smaller [10]). This makes

low-rank NRSf M infeasible if we want to solve large-scale

problems with complex shape variations when the number

of points is substantially smaller than the number of frames.

Union-of-subspaces NRSfM: Inspired by an intuition that

complex non-rigid deformations could be clustered into a

sequence of simple motions, Zhu et al. [36] proposed to

model non-rigid 3D structure by a union of local subspaces.

This was later extended to spatial-temporal domain [1] and

applied to rigid object category reconstruction [2]. The ma-

jor difficulty of union-of-subspaces is how to effectively

cluster shape deformations purely from 2D observations

and how to estimate affinity matrix when the number of

frame is large e.g. more than tens of thousand frames.

Sparse NRSfM: Sparse prior [18, 35, 19] is more generic

than union-of-subspaces since it is equivalent to the union

of all possible local subspaces. One obvious advantages of

this is the large number of subspaces enables the effective

modeling of a broader set of 3D structures. However, the

sheer number of subspaces that can be entertained by the

sparsity prior is its fundamental drawback. Since there are

so many possible subspaces to choose from, the approach

is sensitive to noise, dramatically limiting its applicability

to “real-world” NRSf M problems. In this paper we want to

leverage the elegance and expressibility of the sparsity prior

without suffering from its inherent sensitivity to noise.

3. Background
Sparse dictionary learning can be considered as an unsu-

pervised learning task and divided into two sub-problems:

(i) dictionary learning, and (ii) sparse code recovery. Let us

consider sparse code recovery problem, where we estimate

a sparse representation z for a measurement vector x given

the dictionary D i.e.

min
z

‖x−Dz‖22 s.t. ‖z‖0 < λ, (1)

where λ related to the trust region controls the sparsity of re-

covered code. One classical algorithm to recover the sparse

representation is Iterative Shrinkage and Thresholding Al-

gorithm (ISTA) [11, 26, 5]. ISTA iteratively executes the

following two steps with z
[0] = 0:

v = z
[i] − αDT (Dz

[i] − x), (2)

z
[i+1] = argmin

u

1

2
‖u− v‖22 + τ‖u‖1, (3)

which first uses the gradient of ‖x−Dz‖22 to update z
[i] in

step size α and then finds the closest sparse solution using

an ℓ1 convex relaxation. It is well known in literature that

the second step has a closed-form solution using the soft

thresholding operator. Therefore, ISTA can be summarized

as the following recursive equation:

z
[i+1] = hτ

(

z
[i] − αDT (Dz

[i] − x)
)

, (4)

where hτ is a soft thresholding operator and τ is related to

λ for controlling sparsity.

Recently, Papyan [25] proposed to use ISTA and sparse

coding to reinterpret feed-forward neural networks. They

argue that feed-forward passing a single-layer neural net-

work z = ReLU(DT
x − b) can be considered as one iter-

ation of ISTA when z ≥ 0, α = 1 and τ = b. Based on

this insight, the authors extend this interpretation to feed-

forward neural network with n layers

z1 = ReLU(DT
1 x− b1)

z2 = ReLU(DT
2 z1 − b2)

...

zn = ReLU(DT
nzn−1 − bn)

(5)
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as executing a sequence of single-iteration ISTA, serving

as an approximate solution to the multi-layer sparse coding

problem: find {zi}
n
i=1, such that

x = D1z1, ‖z1‖0 < λ1, z1 ≥ 0,

z1 = D2z2, ‖z2‖0 < λ2, z2 ≥ 0,

... ,
...

zn−1 = Dnzn, ‖zn‖0 < λn, zn ≥ 0,

(6)

where the bias terms {bi}
n
i=1 (in a similar manner to τ ) are

related to {λi}
n
i=1, adjusting the sparsity of recovered code.

Furthermore, they reinterpret back-propagating through the

deep neural network as learning the dictionaries {Di}
n
i=1.

This connection offers a novel breakthrough for understand-

ing DNNs. In this paper, we extend this to the block sparse

scenario and apply it to solving our NRSf M problem.

4. Deep Non-Rigid Structure from Motion
Under orthogonal projection, NRSf M deals with the

problem of factorizing a 2D projection matrix W ∈ R
p×2

as the product of a 3D shape matrix S ∈ R
p×3 and camera

matrix M ∈ R
3×2. Formally,

W = SM, (7)

W =











u1 v1
u2 v2
...

...

up vp











, S =











x1 y1 z1
x2 y2 z2
...

...
...

xp yp zp











, MT
M = I2,

(8)

where (ui, vi), (xi, yi, zi) are the image and world coordi-

nates of the i-th point. The goal of NRSf M is to recover

simultaneously the shape S and the camera M for each pro-

jection W in a given set W of 2D landmarks. In a general

NRSf M including Sf C, this set W could contain deforma-

tions of a non-rigid object or various instances from an ob-

ject category.

4.1. Modeling via multi­layer sparse coding

To alleviate the ill-posedness of NRSf M and also guar-

antee sufficient freedom on shape variation, we propose a

novel prior assumption on 3D shapes via multi-layer sparse

coding: The vectorization of S satisfies

s = D1ψ1, ‖ψ1‖0 < λ1,ψ1 ≥ 0,

ψ1 = D2ψ2, ‖ψ2‖0 < λ2,ψ2 ≥ 0,

... ,
...

ψn−1 = Dnψn, ‖ψn‖0 < λn,ψn ≥ 0,

(9)

where D1 ∈ R
3p×k1 ,D2 ∈ R

k1×k2 , . . . ,Dn ∈ R
kn−1×kn

are hierarchical dictionaries. In this prior, each non-rigid

shape is represented by a sequence of hierarchical dictio-

naries and corresponding sparse codes. Each sparse code is

determined by its lower-level neighbor and affects the next-

level. Clearly this hierarchy adds more parameters, and thus

more freedom into the system. We now show that it para-

doxically results in a more constrained global dictionary

and sparse code recovery.

More constrained code recovery: In a classical single

dictionary system, the constraint on the representation is

element-wise sparsity. Further, the quality of its recov-

ery entirely depends on the quality of the dictionary. In

our multi-layer sparse coding model, the optimal code not

only minimizes the difference between measurements s

and D1ψ1 along with sparsity regularization ‖ψ1‖0, but

also satisfies constraints from its subsequent representa-

tions. This additional joint inference imposes more con-

straints on code recovery, helps to control the uniqueness

and therefore alleviates its heavy dependency on the dictio-

nary quality.

More constrained dictionary: When all equality con-

straints are satisfied, the multi-layer sparse coding model

degenerates to a single dictionary system. From Equa-

tion 9, by denoting D
(l) =

∏l
i=1 Di, it is implied that

s = D1D2 . . .Dnψn = D
(n)ψn. However, this differs

from other single dictionary models [36, 37, 18, 19, 34]

in terms that a unique structure is imposed on D
(n) [28].

The dictionary D
(n) is composed by simpler atoms hier-

archically. For example, each column of D
(2) = D1D2

is a linear combination of atoms in D1, each column of

D
(3) = D

(2)
D3 is a linear combination of atoms in D

(2)

and so on. Such a structure results in a more constrained

global dictionary and potentially leads to higher quality

with lower mutual coherence [14].

4.2. Multi­layer block sparse coding

Given the proposed multi-layer sparse coding model, we

now build a conduit from the proposed shape code {ψi}
k
i=1

to the 2D projected points. From Equation 9, we reshape

vector s to a matrix S ∈ R
p×3 such that S = D

♯
1(ψ1 ⊗

I3), where ⊗ is Kronecker product and D
♯
1 ∈ R

p×3k1 is a

reshape of D1 [10]. From linear algebra, it is well known

that AB⊗ I = (A⊗ I)(B⊗ I) given three matrices A,B,

and identity matrix I. Based on this lemma, we can derive

that

S = D
♯
1(ψ1 ⊗ I3), ‖ψ1‖0 < λ1,ψ1 ≥ 0,

ψ1 ⊗ I3 = (D2 ⊗ I3)(ψ2 ⊗ I3), ‖ψ2‖0 < λ2,ψ2 ≥ 0,

... ,
...

ψn−1 ⊗ I3 = (Dn ⊗ I3)(ψn ⊗ I3), ‖ψn‖0 < λn,ψn ≥ 0.
(10)

Further, from Equation 7, by right multiplying the cam-

era matrix M ∈ R
3×2 to the both sides of Equation 10 and
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Figure 2: Deep NRSf M architecture. The network can be divided into two parts: encoder and decoder that are symmetric

and share convolution kernels (i.e. dictionaries). The symbol a× b, c→ d refers to the operator using kernel size a× b with c
input channels and d output channels.

denote Ψi = ψi ⊗M, we obtain that

W = D
♯
1Ψ1, ‖Ψ1‖

(3×2)
0 < λ1,

Ψ1 = (D2 ⊗ I3)Ψ2, ‖Ψ2‖
(3×2)
0 < λ2,

... ,
...

Ψn−1 = (Dn ⊗ I3)Ψn, ‖Ψn‖
(3×2)
0 < λn,

(11)

where ‖ · ‖
(3×2)
0 divides the argument matrix into blocks

with size 3 × 2 and counts the number of active blocks.

Since ψi has active elements less than λi, Ψi has active

blocks less than λi, that is Ψi is block sparse. This deriva-

tion demonstrates that if the shape vector s satisfies the

multi-layer sparse coding prior described by Equation 9,

then its 2D projection W must be in the format of multi-

layer block sparse coding described by Equation 11. We

hereby interpret NRSf M as a hierarchical block sparse dic-

tionary learning problem i.e. factorizing W as products of

hierarchical dictionaries {Di}
n
i=1 and block sparse coeffi-

cients {Ψi}
n
i=1.

4.3. Block ISTA and DNNs solution

Before solving the multi-layer block sparse coding prob-

lem in Equation 11, we first consider the single-layer prob-

lem:

min
Z

‖X−DZ‖2F s.t. ‖Z‖
(3×2)
0 < λ. (12)

Inspired by ISTA, we propose to solve this problem by iter-

atively executing the following two steps:

V = Z
[i] − αDT (DZ

[i] −X), (13)

Z
[i+1] = argmin

U

1

2
‖U−V‖2F + τ‖U‖

(3×2)
F1 , (14)

where ‖ · ‖
(3×2)
F1 is defined as the summation of Frobenius

norm of each 3× 2 block, serving as a convex relaxation of

block sparsity constraint. It is derived in [13] that the second

step has a closed-form solution computing each block sep-

arately by Z
[i+1]
j = (hτ (‖Vj‖F )/‖Vj‖F )Vj , where the

subscript j represents the j-th block and hτ is a soft thresh-

olding operator. However, soft thresholding the Frobenius

norms for every block brings unnecessary computational

complexity. We show in the supplementary material that

an efficient approximation is Z
[i+1]
j = hbj (Vj), where bj

is the threshold for the j-th block, controlling its sparsity.

Based on this approximation, a single-iteration block ISTA

with step size α = 1 can be represented by :

Z = hb
(

D
T
X
)

= ReLU(DT
X− b⊗ 13×2), (15)

where hb is a soft thresholding operator using the j-th ele-

ment bj as threshold of the j-th block and the second equal-

ity holds if Z is non-negative.

Encoder: Recall from Section 3 that the feed-forward pass

through a deep neural network can be considered as a se-

quence of single ISTA iterations and thus provides an ap-

proximate recovery of multi-layer sparse codes. We fol-

low the same scheme: we first assume the multi-layer block

sparse coding to be non-negative and then sequentially use

single-iteration block ISTA to solve it i.e.

Ψ1 = ReLU((D♯
1)

T
W − b1 ⊗ 13×2),

Ψ2 = ReLU((D2 ⊗ I3)
T
Ψ1 − b2 ⊗ 13×2),

...

Ψn = ReLU((Dn ⊗ I3)
T
Ψn−1 − bn ⊗ 13×2),

(16)

where thresholds b1, ...,bn are learned, controlling the

block sparsity. This learning is crucial because in previous

NRSf M algorithms utilizing low-rank [10], subspaces [36]

or compressible [18] priors, the weight given to this prior

(e.g. rank or sparsity) is hand-selected through a cumber-

some cross validation process. In our approach, this weight-

ing is learned simultaneously with all other parameters re-

moving the need for any irksome cross validation process.

This formula composes the encoder of our proposed DNN.

Decoder: Let us for now assume that we can extract camera

M and regular sparse hidden code ψn from Ψn by some
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functions i.e. M = F(Ψn) and ψn = G(Ψn), which will

be discussed in the next section. Then we can compute the

3D shape vector s by:

ψn−1 = ReLU(Dnψn − b
′

n),

...

ψ1 = ReLU(D2ψ2 − b
′

2),

s = D
♯
1ψ1,

(17)

Note we preserve the ReLU and bias term during decoding

to further enforce sparsity and improve robustness. These

portion forms the decoder of our DNN.

Variation of implementation: The Kronecker product of

identity matrix I3 dramatically increases the time and space

complexity of our approach. To eliminate it and make pa-

rameter sharing easier in modern deep learning environ-

ments (e.g. TensorFlow, PyTorch), we reshape the filters

and features and show that the matrix multiplication in each

step of the encoder and decoder can be equivalently com-

puted via multi-channel 1×1 convolution (∗) and transposed

convolution (∗T ) i.e.

(D♯
1)

T
W = d

♯
1 ∗

T
w, (18)

where d
♯
1 ∈ R

3×1×k1×p,w ∈ R
1×2×p1.

(Di+1 ⊗ I3)
T
Ψi = di+1 ∗

T Ψi, (19)

where di+1 ∈ R
1×1×ki+1×ki ,Ψi ∈ R

3×2×ki .

Diψi = di ∗ ψi, (20)

where di ∈ R
1×1×ki×ki−1 , ψi ∈ R

1×1×ki .

Code and camera recovery: Estimating ψn and M

from Ψn is discussed in [18] and solved by a closed-form

formula. Due to its differentiability, we could insert the so-

lution directly within our pipeline. An alternative solution

is using an approximation i.e. a fully connected layer con-

necting Ψn and ψn and a linear combination among each

blocks of Ψn to estimate M, where the fully connected

layer parameters and combination coefficients are learned

from data. In our experiments, we use the approximate so-

lution and represent them via convolutions, as shown in Fig-

ure 2, for conciseness and maintaining proper dimensions.

Since the approximation has no way to force the orthonor-

mal constraint on the camera, we seek help from the loss

function.

Loss function: The loss function must measure the repro-

jection error between input 2D points W and reprojected

2D points SM while simultaneously encouraging orthonor-

mality of the estimated camera M. One solution is to use

1The filter dimension is height×width×# of input channel×# of output

channel. The feature dimension is height×width×# of channel.

Furnitures Bed Chair Sofa Table Mean Relative

KSTA [16] 0.069 0.158 0.066 0.217 0.128 12.19

BMM [10] 0.059 0.330 0.245 0.211 0.211 20.12

CNR [20] 0.227 0.163 0.835 0.186 0.352 33.55

NLO [12] 0.245 0.339 0.158 0.275 0.243 23.18

RIKS [17] 0.202 0.135 0.048 0.218 0.117 11.13

SPS [18] 0.971 0.946 0.955 0.280 0.788 74.96

SFC [19] 0.247 0.195 0.233 0.193 0.217 20.67

OURS 0.004 0.019 0.005 0.012 0.010 1.00

Table 1: Quantitative comparison against state-of-the-art al-

gorithms using IKEA dataset in normalized 3D error.

spectral norm regularization of M because spectral norm

minimization is the tightest convex relaxation of the or-

thonormal constraint [34]. An alternative solution is to hard

code the singular values of M to be exact ones with the

help of Singular Value Decomposition (SVD). Even though

SVD is generally non-differentiable, the numeric computa-

tion of SVD is differentiable and most deep learning pack-

ages implement its gradients (e.g. PyTorch, TensorFlow).

In our implementation and experiments, we use SVD to en-

sure the success of the orthonormal constraint and a simple

Frobenius norm to measure reprojection error,

Loss = ‖W − SM̃‖F , M̃ = UV
T , (21)

where UΣV
T = M is the SVD of the camera matrix.

5. Experiments
We conduct extensive experiments to evaluate the per-

formance of our deep solution for solving NRSf M and Sf C

problems. For quantitative evaluation, we follow the metric

i.e. normalized mean 3D error, reported in [4, 10, 16, 2].

A detailed description of our architectures is in the supple-

mentary material. Our implementation and processed data

will be publicly accessible for future comparison.

5.1. SfC on IKEA furniture

We first apply our method to a furniture dataset, IKEA

dataset [23, 31]. The IKEA dataset contains four object cat-

egories: bed, chair, sofa, and table. For each object cat-

egory, we employ all annotated 2D point clouds and aug-

ment them with 2K ones projected from the 3D ground-truth

using randomly generated orthonormal cameras2. The er-

ror evaluated on real images are reported and summarized

into Table 1. One can observe that our method outperforms

baselines in the order of magnitude, clearly showing the su-

periority of our model. For qualitative evaluation, we ran-

domly select a frame from each object category and show

them in Figure 6 against ground truth and baselines. It

shows that our reconstructed landmarks effectively depict

2Augmentation is utilized due to limited valid frames, because the

ground-truth cameras are partially missing.
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Methods KSTA [16] BMM [10] CNS [20] MUS [2] NLO [12] RIKS [17] SPS [18] SFC [19] OURS

Aeroplane 0.145 0.175 0.843 1.459 0.263 0.416 0.261 - - 0.876 - 0.132 - 0.930 - 0.504 - 0.024

Bicycle 0.442 0.245 0.308 1.376 - 0.356 0.178 - - 0.269 - 0.136 - 1.322 - 0.372 - 0.003

Bus 0.214 0.199 0.300 1.023 - 0.250 0.113 - - 0.140 - 0.160 - 0.604 - 0.251 - 0.004

Car 0.159 0.152 0.266 1.278 0.099 0.258 0.078 - - 0.104 - 0.097 - 0.872 - 0.282 - 0.009

Chair 0.399 0.186 0.357 1.297 - 0.170 0.210 - - 0.146 - 0.192 - 1.046 - 0.226 - 0.007

Diningtable 0.372 0.267 0.422 1.00 - 0.170 0.264 - - 0.109 - 0.207 - 1.050 - 0.221 - 0.060

Motorbike 0.270 0.255 0.336 0.857 - 0.457 0.222 - - 0.432 - 0.118 - 0.986 - 0.361 - 0.002

Sofa 0.298 0.307 0.279 1.126 0.214 0.250 0.167 - - 0.149 - 0.228 - 1.328 - 0.302 - 0.004

Average 0.287 0.223 0.388 1.178 0.192 0.291 0.186 - - 0.278 - 0.159 - 1.017 - 0.315 - 0.014

Relative - 15.33 - 80.76 - 19.95 - - - 19.09 - 10.92 - 69.74 - 21.61 - 1.00

Aeroplane 0.183 0.207 0.566 1.465 0.294 0.460 0.271 - - 0.758 - 0.146 - 0.888 - 0.521 - 0.032

Bicycle 0.457 0.232 0.307 1.404 - 0.359 0.188 - - 0.275 - 0.139 - 0.851 - 0.379 - 0.007

Bus 0.218 0.197 0.255 0.764 - 0.264 0.122 - - 0.141 - 0.159 - 1.110 - 0.264 - 0.021

Car 0.164 0.139 0.161 1.744 0.122 0.265 0.093 - - 0.105 - 0.102 - 0.804 - 0.281 - 0.010

Chair 0.396 0.203 0.258 1.197 - 0.171 0.220 - - 0.145 - 0.193 - 1.016 - 0.223 - 0.017

Diningtable 0.383 0.249 0.358 1.105 - 0.172 0.267 - - 0.114 - 0.227 - 1.213 - 0.222 - 0.034

Motorbike 0.290 0.227 0.299 1.117 - 0.459 0.233 - - 0.254 - 0.125 - 0.915 - 0.351 - 0.011

Sofa 0.294 0.436 0.240 1.143 0.228 0.255 0.174 - - 0.152 - 0.239 - 1.164 - 0.306 - 0.008

Average 0.298 0.236 0.305 1.232 0.215 0.300 0.196 - - 0.243 - 0.166 - 0.995 - 0.318 - 0.017

Relative - 16.90 - 88.78 - 21.49 - - - 17.39 - 11.90 - 71.11 - 22.78 - 1.27

Table 2: Quantitative evaluation on PASCAL3D+ dataset. We conduct experiments on both original and noisy 2D annota-

tions, listed at the upper and lower half of table respectively. The symbol ‘-’ indicates either algorithm implementation or

data is missing. The shaded columns are erros using our processed data and others are copied from Table 2 in [2]. Rela-

tive errors are computed with respect to our method, the most accurate solution, without noise perturbation. Our data and

implementation will be publicly accessible for future comparison.

the 3D geometry of objects and our method is able to cover

subtle geometric details.

5.2. Sf C on PASCAL3D+

We then apply our method to PASCAL3D+ dataset [33]

which contains twelve object categories and each category

is labeled by approximately eight 3D CADs. To compare

against more baselines, we follow the experiment setting

reported in [2] and use the same normalized 3D error met-

ric. We report our errors in Table 2 emphasized by shad-

ing and concatenate the numbers copied from the Table 2

in [2] for comparison. Note that the errors are not exactly

reproduced even though using the same dataset and algo-

rithm implementation, because the data preparation details

are missing. However, one can clearly see that our pro-

posed method achieves extremely accurate reconstructions

with more than ten times of smaller 3D error. This large

margin makes the slight difference caused by data prepara-

tion even less noticeable. It clearly demonstrates the high

precision of our proposed deep neural network and also the

superior robustness in noisy situations.

5.3. Large­scale NRSfM on CMU MoCap

We finally apply our method to solving the problem of

NRSf M using the CMU motion capture dataset3. We ran-

domly select 10 subjects out of 144 and for each subject

3http://mocap.cs.cmu.edu/

we concatenate 80% of motions to form large image collec-

tions and remain the left 20% as unseen motions for testing

generalization. Note that in this experiment, each subject

contains more than ten thousands of frames. We compare

our method against state-of-the-art methods, summarized

in Table 3. Due to huge volume of frames, KSTA [16],

BMM [10], MUS [2], RIKS [17] all fail and thus are omit-

ted in the table. We also report the normalized 3D error on

unseen motions, labeled as UNSEEN. One can see that our

method obtains impressive reconstruction performance and

outperforms others again in every sequences. Moreover,

our network also show a well generalization to unseen data

which improve the effectiveness in real world applications.

For qualitative evaluation, we randomly select a frame from

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
Noise ratio

0.00
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0.20
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3D
 e

rr
or

Figure 3: NRSf M with noise perturbation. The red solid

line is ours while the green dashed line is CNS [20], the best

performance of state-of-the-arts with no noise perturbation.
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Subjects 01 05 18 23 64 70 102 106 123 127 Average Relative

CNS [20] 0.613 0.657 0.541 0.603 0.543 0.472 0.581 0.636 0.479 0.644 0.577 5.66

NLO [12] 1.218 1.160 0.917 0.998 1.218 0.836 1.144 1.016 1.009 1.050 1.057 10.37

SPS [18] 1.282 1.122 0.953 0.880 1.119 1.009 1.078 0.957 0.828 1.021 1.025 10.06

OURS 0.175 0.220 0.081 0.053 0.082 0.039 0.115 0.113 0.040 0.095 0.101 1.00

UNSEEN 0.362 0.331 0.437 0.387 0.174 0.090 0.413 0.194 0.091 0.388 0.287 2.81

Table 3: Quantitative comparison on solving large-scale NRSf M problem using CMU MoCap dataset. Each subject contains

more than ten thousand of frames. Due to huge volume of frames, KSTA [16], BMM [10], MUS [2], RIKS [17] all fail and

thus are omitted in the table. UNSEEN refers to the errors of the motions that are not accessible during training. This is used

to demonstrate the well generalization of our proposed network, which is especially important in real world applications.

each subject and render the reconstructed human skeleton in

Figure 5. This visually verifies the impressive performance

of our deep solution.

Robustness analysis: To analyze the robustness of our

method, we re-train the neural network for Subject 70 using

projected points with Gaussian noise perturbation. The re-

sults are summarized in Figure 3. The noise ratio is defined

as ‖noise‖F /‖W‖F . One can see that the error increases

slowly with adding higher magnitude of noise and when

adding up to 20% noise to image coordinates, our method

in red still achieves better reconstruction compared to the

best baseline with no noise perturbation (in green). This ex-

periment clearly demonstrates the robustness of our model

and its high accuracy against state-of-the-art works.

Missing data: Landmarks are not always visible from the

camera owing to the occlusion by other objects or itself.

In the present paper, we focus on a complete measurement

situation not accounting for invisible landmarks. However,

thanks to recent progress in matrix completion, our method

can be easily extended to missing data. Moreover, in our

experiments, we observe that deep neural network shows

a well tolerance of missing data. Simply setting missing

2D coordinates as zeros provides satisfactory results. Such

technique is widely used in deep-learning-based depth map
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Figure 4: A scatter plot of the shape error ratio in percentage

against the final dictionary coherence. A line is fitted based

on the data. The left comes from subject 05, the middle

from subject 18, the right from subject 64.

reconstruction from sparse observations [9, 24, 21, 22, 7].

These two solutions make our central pipeline of DNN more

easily to adapt to handling missing data.

5.4. Coherence as guide

As explained in Section 4.1, every sparse codeψi is con-

strained by its subsequent representation and thus the qual-

ity of code recovery depends less on the quality of the corre-

sponding dictionary. However, this is not applicable to the

final codeψn, making it least constrained with the most de-

pendency on the final dictionary Dn. From this perspective,

the quality of the final dictionary measured by mutual co-

herence [14] could serve as a lower bound of the entire sys-

tem. To verify this, we compute the error and coherence in

a fixed interval during training in NRSf M experiments. We

consistently observe strong correlations between 3D recon-

struction error and the mutual coherence of the final dictio-

nary. We plot this relationship in Figure 4. We thus propose

to use the coherence of the final dictionary as a measure of

model quality for guiding training to efficiently avoid over-

fitting especially when 3D evaluation is not available. This

improves the utility of our deep NRSf M in future applica-

tions without 3D ground-truth.

6. Conclusion
In this paper, we proposed multi-layer sparse coding

as a novel prior assumption for representing 3D non-rigid

shapes and designed an innovative encoder-decoder neu-

ral network to solve the problem of NRSf M using no 3D

supervision. The proposed network was derived by gen-

eralizing the classical sparse coding algorithm ISTA to a

block sparse scenario. The proposed network architecture

is mathematically interpretable as solving a NRSf M multi-

layer sparse dictionary learning problem. Extensive exper-

iments demonstrated our superior performance against the

state-of-the-art methods and our generalization to unseen

data. Finally, we proposed to use the coherence of the final

dictionary as a model quality measure, offering a practical

way to avoid over-fitting and select the best checkpoint dur-

ing training without relying on 3D ground-truth.
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Figure 5: Qualitative evaluation on CMU Mocap dataset. Top to bottom: ground-truth, ours, CNS [20], SPS [18], NLO [12].

Each column corresponds to reconstructions of a certain frame, randomly selected from each subject. Spheres are recon-

structed landmarks while bars are for visualization. 3D shapes are already aligned to the ground truth by orthonormal matrix.

Figure 6: Qualitative evaluation on IKEA dataset. Landmarks projected by annotated cameras are omitted from images. In

each rendering, red cubes are reconstructed points while the planes and bars are manually added for descent visualization.

Left to right: annotated image, ground-truth, ours, RIKS [17], KSTA [16], NLO [12], SFC [19], CNS [20], BMM [10].
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