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Abstract

Unlike vision modalities, body-worn sensors or passive

sensing can avoid the failure of action understanding in

vision related challenges, e.g. occlusion and appearance

variation. However, a standard large-scale dataset does not

exist, in which different types of modalities across vision

and sensors are integrated. To address the disadvantage

of vision-based modalities and push towards multi/cross

modal action understanding, this paper introduces a new

large-scale dataset recorded from 20 distinct subjects with

seven different types of modalities: RGB videos, keypoints,

acceleration, gyroscope, orientation, Wi-Fi and pressure

signal. The dataset consists of more than 36k video clips for

37 action classes covering a wide range of daily life activi-

ties such as desktop-related and check-in-based ones in four

different distinct scenarios. On the basis of our dataset, we

propose a novel multi modality distillation model with at-

tention mechanism to realize an adaptive knowledge trans-

fer from sensor-based modalities to vision-based modali-

ties. The proposed model significantly improves perfor-

mance of action recognition compared to models trained

with only RGB information. The experimental results con-

firm the effectiveness of our model on cross-subject, -view,

-scene and -session evaluation criteria. We believe that this

new large-scale multimodal dataset will contribute the com-

munity of multimodal based action understanding.

1. Introduction

Human action understanding is an important fundamen-

tal technology for supporting several real world applications

such as surveillance system, health care services and factory

efficiency services. In recent years, vision-based models

dominate the community of action understanding due to the

∗Work is done during internship at Hitachi.
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Figure 1. The illustration of our dataset. Each column shows ac-

tions under a scenario. Each row denotes the action under one of

four camera views.

advance of deep learning technologies [39, 27, 34]. Mean-

while, utilizing of body-worn inertial sensors, e.g. accelera-

tor, gyroscope and orientation, to capture human motions is

another typical way of realizing human action recognition

[28, 22, 7]. It is well known that vision-based and sensor-

based information in action recognition is complementary.

To go beyond vision-only modalities which can not address

vision related challenges, e.g. occlusions and appearance

variation, it is considerable to leverage both vision-based

and sensor-based modalities to improve performance of ac-

tion understanding in multimodal [26, 10, 20] and cross-

modal [38, 3, 19] manners.

However, in the community of action understanding, a

standard large-scale benchmark does not exist, in which

both vision-based and sensor-based modalities are aggre-

gated and a wide range of activities are provided. The

current multimodal datasets for action understanding have

following four limitations. First, there is the limited scale

of vision-based and sensor-based modalities. There are

some but limited number of large-scale multimodal action

datasets [25, 17] focusing on 3D human action recognition

or detection. However, only three to four vision related
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modalities are provided in the existing datasets. Second,

there is the limited number of supported action understand-

ing tasks with enough instances per action. Most existing

datasets only support action recognition but can hardly be

utilized for action detection. Third, actions in the existing

datasets are taken in a fixed location. Therefore, the dis-

tance between the actor and the camera does not change. In

addition, the actions always appear in the center of the cam-

era. These limit the naturality and variance under the cam-

era view. Forth, there is the limited number of instances for

each modality with distinct subject, scenario, view and ses-

sion in a factored data structure, especially for crossmodal

related researches. This paper proposes a new multimodal

dataset to overcome the above limitations, especially for ex-

panding the crossmodal research on human action under-

standing.

Our dataset, named as multimodal action dataset

(MMAct), consists of 36,000+ trimmed clips with seven

types of modalities captured from 20 subjects, which in-

clude RGB videos, keypoints, acceleration, gyroscope, ori-

entation, Wi-Fi and pressure signal. MMAct is designed

under a semi-natural data collection protocol [4] that a ran-

dom walk is performed between the end of current action

and the start of next action. The action is only performed

after a start sign given from the outside monitor. This pro-

tocol makes sure that the action will be occurred randomly

in the action area to provide various action video in different

camera views.

For traditional multimodal models, the more modality

a model uses, the higher cost is taken for the model to

be deployed in a realistic environment. The technique of

crossmodal transfer, i.e. knowledge distillation [12], is a

useful way to allow a model with only one modality in-

put to achieve the performances close to the use of multiple

modalities. For example, a student model with RGB input

learns complementary information from other modalities,

e.g. depth [13], which is served as teacher information. At

test phase, only RGB information is used in the student net-

work that is able to achieve better performance of action

recognition than the model trained with only RGB informa-

tion.

Different from the existing methods that focus on modal-

ity transfer across vision-based modalities, we intend to

move a further step towards knowledge transfer from

sensor-based modalities to vision-based modalities. We

propose a novel multi modality distillation model with at-

tention mechanism to realize an adaptive knowledge distil-

lation via the learning of teacher and student models. The

main contributions of our work are three-folds:

• To the best of our knowledge, MMAct is the largest

multimodal dataset that includes both vision-based and

sensor-based modalities. It helps research community

to move towards crossmodal action analysis.

• Inspired by the knowledge distillation, we propose a

novel multi modality distillation model with attention

mechanism. This model has a student network with

input of RGB information, which learns useful side in-

formation from a teacher network with input of multi-

ple sensor-based modalities.

• Our experimental results confirm the effectiveness of

our model in our dataset. A significant improvement

can be achieved in cases where RGB modality may fail

to recognize the actions.

2. Related Work

In this section, we illustrate some related datasets and

works in action understanding. The most traditional and

famous ones are listed with brief introductions. For a more

complete conclusion, readers could refer to these survey pa-

pers [1, 6, 40, 41].

2.1. Related Datasets

Some traditional and typical multimodal datasets for ac-

tion understanding are discussed below, with a comparison

between them and MMAct in Table 1.

MSR-Action3D [14] is one of the earliest datasets which

has contributed to several 3D action analysis researches.

This dataset is composed of depth sequences of gaming ac-

tions and 3D body keypoints data made up by 20 different

body joints. Multiview 3D event [35] and Northwestern-

UCLA [32] datasets utilized a multi-view method to cap-

ture the 3D videos using more than one Kinect cameras.

This method has been widely utilized in many 3D datasets.

NTU RGB+D [25] and it’s extension [18] are the state-

of-the-art large-scale benchmarks for 3D human activities

analysis. NTU RGB+D contains videos of 60 action classes

captured from 80 views with 40 subjects. It illustrated a

series of standards of large-scale dataset and was applied

by many works. Since only clipped sequences are available

in these datasets, they cannot be applied to action detection

and some other researches. G3D [5] is the earliest action

detection dataset, of which most sequences contain multiple

gaming actions in an indoor environment with a fixed cam-

era. Watch-n-Patch [36] and Compostable Activities [16]

are the first datasets focusing on the hidden correlation of

actions in supervised or unsupervised methods. However,

the number of instance actions in each video is not enough

to fulfill the basic requirement for training a deep network.

PKU-MMD [17] is a large-scale benchmark for human ac-

tion detection, which has a large number of instances for

different modalities, including RGB, depth, infrared radia-

tion and keypoints. Nevertheless, it was still limited to the

vision modalities.

CMU-MMAC [28] is a multi modality human activity

dataset combining vision modalities with sensor signals, in-
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Table 1. Comparison between different multimodal datasets for action understanding. D:Depth, Acc:Acceleration, Mic:Microphone,

Gyo:Gyroscope, Ori:Orientation.

Datasets Classes Instances Subjects Scene Views Modalities
Temporal

Localization

Random

Walk Occlusion Year

MSR-Action3D [14] 20 567 10 1 1 D+Keypoints No No No 2010

CAD-60 [29] 12 60 4 5 - RGB+D+Keypoints No No No 2011

RGBD-HuDaAct [21] 12 60 4 1 - RGB+D+Keypoints No No No 2011

Act42[8] 14 6844 24 1 4 RGB+D No No No 2012

UTKinect-Action3D [37] 10 200 10 1 4 RGB+D+Keypoints No No No 2012

3D Action Pairs [23] 12 360 10 1 1 RGB+D+Keypoints No No No 2013

Multiview 3D Event [35] 8 3815 8 1 3 RGB+D+Keypoints No No No 2013

Northwestern-UCLA [32] 10 1475 10 1 1 RGB+D+Keypoints No No No 2014

Office Activity [33] 20 1180 10 - 3 RGB+D+Keypoints No No No 2014

NTU RGB+D [25] 60 56880 40 1 80 RGB+D+Keypoints+IR No No No 2016

G3D [5] 20 1467 10 1 - RGB+D+Keypoints Yes No No 2012

CAD-120 [30] 20 1200 4 1 - RGB+D+Keypoints Yes No No 2013

Compostable Activities [16] 16 2529 14 1 1 RGB+D+Keypoints Yes No No 2014

Watch-n-Patch [36] 21 2500 7 13 - RGB+D+Keypoints Yes No No 2015

OAD [15] 10 700 - 1 1 RGB+D+Keypoints Yes No No 2016

PKU-MMD [17] 51 21545 66 1 3 RGB+D+IR+Keypoints Yes No No 2017

CMU-MMAC [28] 5 186 39 1 5 RGB+D+Keypoints+Acc+Mic No No No 2010

MHAD [22] 11 660 12 1 12 RGB+D+Keypoints+Acc+Mic No No No 2013

UTD-MHAD [7] 27 861 8 1 1 RGB+D+Keypoints+Acc+Gyo No No No 2015

MMAct 37 36764 20 4 4+Ego
RGB+Keypoints+Acc+

Gyo+Ori+Wi-Fi+Presure
Yes Yes Yes 2019

cluding RGB, depth, keypoints, and sensor signals obtained

by accelerometers and microphones. This dataset was col-

lected in a kitchen and 25 subjects were recorded cook-

ing and food preparation. MHAD [22] and UTD-MHAD

[7] include sensor signals as well, providing more action

classes and instances to support the evaluation of new al-

gorithms. However, these datasets are no longer sufficient

and satisfied enough for fast developing data-driven algo-

rithms. Thus, we considered to build a large-scale dataset

MMAct with various kinds of modalities and actions, com-

bining with random walk and occlusion scene, providing

both untrimmed and action-clipped data to support differ-

ent level researches.

2.2. Multimodal Action Recognition

Action recognition has been developed for a long pe-

riod, but action recognition based on multi modalities is a

relatively new topic due to the development of deep learn-

ing technology and hardware such as depth cameras and

wearable devices. There are some typical ideas of deal-

ing with multi modality data. The two-stream architecture

introduced by [27] has been widely developed in several

works. [31] proposed a 3D ConvNets for extracting spatio-

temporal features to model appearance and motion infor-

mation simultaneously. [26] designed a deep auto-encoder

architecture to decompose its multimodal input (RGB and

depth) to modality-specific parts and a structured sparsity

learning machine for a proper fusion of decomposed feature

components, achieving state-of-the-art accuracy for action

classification on 5 challenging datasets. [10] is the most re-

lated work sharing the same task with our work. It proposed

a new multimodal stream network to exploit and leverage

multiple data modalities. However, the modalities used in

this work are still RGB and depth, the same as most multi-

modal works, which shows limitation in modality diversity.

2.3. Crossmodal Transfer

The concept most related to our work is the transfer

learning across different modalities. While conventional

transfer learning works only focus on category-level knowl-

edge transfer, crossmodal transfer works devote to modality

shift, which transfers knowledge learned in one data modal-

ity to another. [13] proposed a modality hallucination ar-

chitecture to mimic the depth mid-level features to enhance

an RGB object detection model. [38] designed a network to

learn a non-linear feature mapping from the RGB channels

to the thermal channel, in order to reconstruct the thermal

channel when only RGB images are available in the pedes-

trian detection task. Unlike most works focusing on transfer

between vision modalities, [42] suggests using vision data

to provide crossmodal supervision for a radio data based hu-

man pose estimation task. And [3] learns sound representa-

tions by transferring discriminative visual knowledge from

visual recognition models to the sound modality using un-

labeled videos. These works provided promising evaluation

results on some multi modality datasets, but nonetheless for

most of them, only limited modalities were tested due to

the lack of large-scale multimodal datasets, which can pro-

vide more than vision modalities and reach the demand of

enough samples for network training.
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3. MMAct Dataset

MMAct1 is a novel large-scale dataset focusing on action

recognition/detection tasks and crossmodal action analysis.

We collected 36,000+ temporally localized action instances

in 1,900+ continuous action sequences, each of which lasts

about 3∼4 minutes for desk work scene containing 9 action

instances, 7∼8 minutes for the other scenes with approxi-

mately 26∼28 action instances. More details are introduced

in the following parts.
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Figure 2. Average length of trimmed action clip per class. Overall

there is high variation of the duration among each action.
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Figure 3. Distribution of the trimmed action clip length. Most sam-

ples are in a range from about 3 sec. to 8 sec.

3.1. Data Modalities

Seven types of modality are provided with the MMAct

dataset: RGB videos, keypoints, acceleration, gyroscope,

orientation, Wi-Fi and pressure signal.

RGB videos were captured by four commercial surveil-

lance cameras (Hitachi DI-CB520) aligned at the four top

corners of the space capturing the scene with a resolution of

1920× 1080 at 30 FPS.

Subjects are wearing a smart glass (Google Glass) to

record egocentric videos with a resolution of 1280 × 720
at 30 FPS to support action recognition research in this di-

rection.

A smartphone (ASUS ZenPhone AR) installed with

some initial sensors, such as accelerator and gyroscope, was

1https://mmact19.github.io/2019/

used to obtain data of acceleration, gyroscope, orientation,

Wi-Fi and pressure signal. The smartphone was carried and

put inside the pocket of the subject’s pants. The accelera-

tion and gyroscope signal both have 3-dimensional axis in-

formation, and the orientation modality is represented by 3

types: azimuth, pitch, roll. These 3 modalities are collected

at a 100 Hz, 50Hz and 50 Hz sampling rate respectively,

while for the Wi-Fi signal and the pressure is 1 Hz and 25

Hz respectively. Subjects are also wearing a smartwatch

which further extends the provided acceleration data. Wi-Fi

access points were installed at the four corners of the space

in order to transmit as well as receive the Wi-Fi signals from

the smartphone and each other.

3.2. Data Construction

Class: A total of 37 action classes were considered,

which have been categorized into 3 major groups: 16 com-

plex actions: carrying, talking, exiting, etc. 12 simple ac-

tions: kicking, talking on phone, jumping, etc. and 9 desk

actions: sitting, using PC, pocket out, etc. The grouping

of actions tries to follow the pattern introduced by [2]. We

summarized the duration of each class and printed the min-

imum, average and maximum duration of each class in Fig-

ure 2, which illustrates that each action class has plenty of

distinct samples with high variation in our dataset. All the

classes we collected are illustrated in the horizontal axis of

Figure 2. Figure 3 shows the distribution of number of sam-

ples for different clip duration, illustrating that we have a

large number of sequences among different duration and

most sequences last 3∼8 seconds.

Subject: We invited 20 subjects balanced between 10

males and 10 females for our data collection. The ages of

the subjects are between 21 and 49 and their heights are

between 147 cm and 180 cm. Each subject has a consistent

ID number over the entire dataset.

Scene: We designed 4 scenes in an indoor environment:

free space, occlusion, entrance and desk work. In the scene

of free space, there’s nothing set up in the area. This is a

standard scene following most related datasets. In the scene

of occlusion, 3 potted plants were arranged in the space in

order to mimic blind spots for the cameras. The subject

could be occluded by the potted plants at some directions

and positions. Occlusion is a weak point of vision based

algorithms, thus we provide this scene aiming to prove that

sensor signals are worth exploited to enhance the vision re-

lied systems. In the entrance scene, 3 gates like objects were

set in parallel with a space large enough to go through with

a suitcase. It was designed to simulate a real world appli-

cation scene. In the scene of desk work, a sofa and a desk

was arranged in the center of the space for the purpose of

recording desk actions.

View: We have videos from 5 views in total. Four of

them were recorded from 4 top corners of the space, and
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one was recorded from the egocentric view by wearing the

smart glass. The cameras were located at the same height

recording from a top view.

Session: We defined a session as one untrimmed video

consisting of 9 actions for desk work scene and 26 to 28

actions for the other scenes. Each subject was asked to per-

form each session for almost 5 times with random changes

in motion, direction and position. In this way, the collected

data could be distinct and well balanced for each scene,

view and subject.

3.3. Data Collection

8m
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Cam ・

Cam ・
Sensor nodes ・

・ Cam
・ Sensor nodes
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Ego-cam
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5m
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Camera
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Figure 4. The environmental setup of the action area showing the

size and location of the cameras and sensors.

Generally, collecting untrimmed data for action recogni-

tion is a difficult task. The recording environment and pro-

cess must be appropriately designed and temporal bound-

aries must be controlled. MMAct was deployed under a

semi-naturalistic collection protocol [4] to make sure that

the action will occur randomly in the action area to provide

various perspective action videos in different camera views.

Recording environment: As Figure 4 shows, we built

our recording environment in a 6m×8m indoor space, with

4 cameras and 4 sensor nodes of the Wi-Fi access points

equipped at 4 corners of the space. Subjects were asked

to perform actions in a circular area of 5m radius, and were

equipped with a smartwatch on the right hand, a smartphone

in the right pocket of clothes and smart glasses.

Recording process: A series of actions was listed on

a worksheet, as Figure 5 shows as an example. Random

walk was performed by subjects between the end of current

action and the start of the next action. For the desk work

scene, this random walk is with sitting still. Unlike other

datasets recording subjects at certain positions and direc-

tions, subjects were captured at random positions and di-

rections.

An outside monitor supervising through live videos

would give an action command referring to the worksheet

when the subject was random walking. Then the moni-

tor gave a start and an end command while labelling the

temporal annotation using a toolbox provided. Data col-

lected between the start and end times were labeled with

Random walk

…
…

Figure 5. Sample of our collected action sequence.

the name of the commanded action class. After hearing

the start command, subjects should start within 3 seconds

to perform the commanded action and stop after the end

command announced. For some continuous actions such as

talking and running, subjects were required to keep doing

the action until the monitor gives the end command based

on self-judgment. For some sudden actions such as throw-

ing and kicking, the subject would randomly walk after the

action ends and the monitor would record the end time label

based on self-judgment. Thus, usually random walk of less

than 3 seconds could be clipped into the action sequences,

which is acceptable and reasonable for an action analysis

dataset. Furthermore, subjects had freedom in how they

performed each action. The monitor provided action classes

for subjects to perform, but did not design the concrete mo-

tions involved, so that subjects can perform regarding their

habits. We invited 20 professional actors to perform these

actions in order to make our dataset more naturalistic, real-

istic and diverse.

4. Proposed Method on Cross Modal

In this section, we introduce a new crossmodal learn-

ing method, which is a multi modality attention distillation

method to model the vision based human actions with the

adaptive weighted side information from inertial sensors us-

ing our MMAct dataset.

4.1. Preliminary

As for our method is a distillation based method, we in-

troduce the Knowledge Distillation (KD) [12] as our pre-

liminary in advance. The idea of KD is to allow the student

network to capture not only the information provided by the

ground truth labels, but also the finer structure learned by

the teacher network.

Neural networks generally output class probabilities by

using a softmax output layer, which converts the classifica-

tion score output zi computed for each class into a probabil-

ity pi = softmax( zi
T
), where T is a temperature parameter

to control the distribution of the probability. A higher value

for T means a softer probability distribution over classes.

The categorization predictions ptof a teacher model or an

ensemble of models are used as ”soft target” to guide the
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training of a student model. The student network is then

trained by optimizing the following loss function based on

cross entropy:

LKD = H(ygt, ps) + λH(pt, ps) (1)

where ps is the probability prediction of the student model

and H refers to the cross entropy. The hyper-parameter

λ controls the balance between different losses. Note that

the first term corresponds to the traditional cross entropy

between the output of a network and ground truth labels,

whereas the second term enforces the student network to

learn from the ”soft target” to inherit hidden information

discovered by the teacher network.

4.2. Proposed

The overview of our proposed model is shown in Figure

6. In our framework, teachers are a set of trained special-

ist models for each teacher modality. We use acceleration,

gyroscope and orientation signal as our teacher modalities,

and RGB stream of video as our single student modality.

Training of teacher network. Let Dt = {(xi, yi)}mi∈Nt

denote the training set for the teacher modality m ∈ Nm,

Nm represents the number of teacher modalities, xi is ith

action sample, and yi is its corresponding label, Nt repre-

sents the number of samples. We use a sliding window to

generate a set of segments {(gij , yi)}i∈Nt,j∈Gi
for sample

xi, where gij is jth segment for xi, and all the segments in

this set share with the same label yi, Gi represents the num-

ber of segments for action sample xi. Each teacher model is

an adaption of CNN with 1D conv trained on a segment gij
of the corresponding modality. Note that acceleration, gyro-

scope and orientation signals in three orthogonal directions

(x, y, and z) might be sensitive to sensor placement, e.g.

in pants. To cope with the problem, we use the previously

proposed combined signal as feature extraction for sensor

data, given by Ri = arcsin( zi√
x2

i+y2
i
+z2

i

) [9], where Ri

is the ith combined signal. The combined signal Ri will be

the input to the follows 1D conv network. We sampling 64-

sample window for 100 Hz acceleration data and 32-sample

for 50 Hz gyroscope and orientation data with 70% overlaps

for each action clip.

As for body-worn sensor is sensitive enough to capture

the difference about the same action performed by differ-

ent subject. Therefore, we use a standard triplet loss [24]

to train the teacher models along with the cross-entropy

loss for classification. Here we want to ensure that a seg-

ment gaij(anchor) of a specific action of subject is closer to

the other g
p
ij(positive) of the same action of herself or the

other subject than it is to any gnij(negative) of any other

actions. Thus we want, ||Tm(gaij) − Tm(gpij)||22 + α <

||Tm(gaij)− Tm(gnij)||22, where α is used as a margin to en-

force the anchor to be closer to the positive than negative

samples. The triplet loss in our model that is being mini-

mized is then Lt =

Σ[||Tm(gaij)− Tm(gpij)||
2

2 − ||Tm(gaij)− Tm(gnij)||
2

2 + α] (2)

where Tm(gij) represents the semantic embedding from

teacher model Tm. We use offline triplet mining to ensure

the positive segment of a specific action from the other sub-

ject included in each batch.

Multi modality attention distillation. Let Ds =
{(xi, yi)}si∈Nt

denote the training set for the student modal-

ity s. Our student network is a TSN [34] based network

with only RGB branch trained on the sample xi which is

ith action’s RGB stream. During the training of student net-

work, the parameter of teacher models are fixed. Let wm
ij

be an attention weight of the jth segment for the ith ac-

tion clip when mth modality. We use M(Fij) as a mapping

function which is the attention layer consists of a four-layer

feed-forward neural network with three convolutional lay-

ers and one FC layer activated by ReLU functions to non-

linearly project the concatenated semantic codes Fij from

each teacher into a common subspace used for representing

attention weights as (w1
ij , ..., w

m
ij ,m ∈ Nm), with softmax

regression.

The ensemble layer is used to aggregate each weighted

semantic codes wm
ijTm(gmij ) from ith action clip’s multiple

teachers and output an ensemble soft target ẑi as follows,

ẑi =
1

Gi

Gi∑

j

Nm∑

m

wm
ijTm(gmij ) (3)

We use cross entropy loss to train the student network with

student network classification loss LCS = H(ŷi, ŝi) and

distillation loss LD = H(ẑi, ŝi), where H refers to the

cross entropy, that H(ẑi, ŝi) = −
∑

i ẑilog(ŝi), ŝi repre-

sents class probability prediction of student network. The

student network loss is organized as:

Ls =
∑

xi

[λLCS + (1− λ)LD] (4)

where λ is the balance parameter. The attention model M

aims to generate adaptive weights for providing more accu-

rate teacher information, that it is optimized by minimizing

the distillation loss and ensemble teacher classification loss

simultaneously:

LM =
∑

xi

[βLCT + (1− β)LD] (5)

where β is the balance parameter, LCT = H(ŷi, ẑi) is our

multiple teacher classification loss.

5. Evaluations

5.1. Evaluation Setting

Due to the distinct splitting of the dataset, several set-

tings have been evaluated.
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Figure 6. Architecture of our proposed multi modality attention distillation learning framework. We first train the teacher model separately

on its corresponding modality, each teacher model is a 1D Convolutional Neural Network (CNN). Then we use the semantic embedding

from the output of softmax layer as the teacher information of corresponding modality in trained teacher model. As for the softmax layer

where the influence of domain gap is the least due to teacher and student share the same semantic space. Afterwards, each semantic

embedding is weighted by the attention layer which generates adaptive weights according to the feature representation of input teacher

modalities. The semantic embedding with their attention weights are incorporated as an ensemble soft targets for distillation. Finally, we

transfer knowledge from multiple teachers into the student network by training it with classification loss and weighted ensemble soft targets

distillation loss.

Cross-Subject: samples from 80% of the subjects (sub-

ject id from 1 to 16) have been used for training the model

and the remaining 20% for testing. Cross-View: samples

from 3 views of all the subjects have been used for train-

ing the model and the 4th view (right upper in Figure 4)

for testing. Cross-Scene: samples from the scenes except

for occlusion of all the subjects have been used for train-

ing the model and the occlusion scene from all the subjects

for testing. Cross-Session: samples from top-80% sessions

in ascending order of session id for each subject have been

used for training the model and the remaining sessions for

testing.

Out of these settings, Cross-Subject is typically applied

on action classification works to confirm the realistic vari-

ation of methods for different subjects. For Cross-View,

self-occlusion (the subject is standing in a way that the ac-

tion cannot be seen from the camera) is a typical challenge

to overcome. In Cross-Scene, normal occlusion would be

typical challenges. Cross-Session is a standard setting, as

no domain transfer takes place, e.g. same subjection, view,

scenes are available during training and testing.

5.2. Evaluation Method

We evaluated the performance of our method based on

the average F-measure ( 2·precision·recall
precision+recall

). To investigate its

effectiveness, we tested the performance of the other four

different methods as shown in Table 2.

Student(Baseline):our student network trained with

only RGB modality. Mutli-Teacher: our teacher networks

trained with 3 types of inertial sensor modality separately

with an ensemble testing. SMD: Single Modality Distilla-

tion by using standard knowledge distillation method. Ac-

celeration is used as teacher modality. MMD: our proposed

Multi Modality Distillation method without attention mech-

anism. MMAD: our proposed multi modality attention dis-

tillation method. We used 1D conv ResNet-18[11] as our

teacher network, and TSN with ResNet-18 as our student

network.

5.3. Evaluation Results

Evaluation results are presented in Tables 2, 3 and 4. We

can see in Table 2 that the student model with only RGB in-

put can already achieve a performance of about 57% to 70%

across the different settings. The multi-teachers trained and

tested with the sensor modalities (accelerator, gyroscope

and orientation) can significantly outperform the student

model in some challenge settings for vision-only modality,

such as the cross-scene setting.

Introducing accelerator sensor data to the training pro-

cess improves the performance of the SMD model in most

settings, with the cross-view setting the most significant

improvement of almost 4.1%. Increasing the number of

modalities for the MMD model even further, still improves

the performance, but not as significantly as with the intro-
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Table 2. F-measure for action recognition results of all compared methods by using our MMAct dataset.

Method Train Modality Test Modality
Cross

Subject

Cross

View

Cross

Scene

Cross

Session

Student(Baseline) RGB RGB 64.44 62.21 57.91 69.20

Mutli-Teachers Acc+Gyo+Ori Acc+Gyo+Ori 62.67 68.13 67.31 70.53

SMD[12] Acc+RGB RGB 63.89 66.31 61.56 71.23

MMD Acc+Gyo+Ori+RGB RGB 64.33 68.19 62.23 72.08

MMAD Acc+Gyo+Ori+RGB RGB 66.45 70.33 64.12 74.58

Table 3. Proposed method compared with the vision modality

based methods under Cross-Session evaluation.

Method Precision Recall F-measure

SVM+HOG[22] 45.31 47.81 46.52

TSN(RGB)[34] 68.32 70.11 69.20

TSN(Optical-Flow)[34] 71.89 73.27 72.57

TSN(Fusion)[34] 75.68 78.57 77.09

MMAD 73.34 75.67 74.58

MMAD(Fusion) 77.58 80.12 78.82

duction of the first additional modality. In the proposed

model MMAD, a more significant improvement in perfor-

mances while utilizing the same modalities in training and

testing as the MMD model.

The proposed MMAD model trained with RGB and sen-

sor modalities can outperform the multi-teacher models

with sensor modalities in both training and testing, under all

the settings except cross-scene due to the intended setting

of cross-scene emphasizing visual distortion caused by oc-

clusion. The result sheds light on incorporating body-worn

sensor modalities for improving human action recognition

in the wild with vision-only modalities. The improvements

obtained by additional support of multi modalities during

training range from about 2% to 8% over various settings.

We further evaluated the proposed method of knowl-

edge distillation compared to other state-of-the-art methods

in Table 3 for the cross-session setting. SVM+HOG[22]

is a state-of-the-art handcraft approach trained only with

RGB modality in our case. The MMAD model reaches top

performance and is only second to a TSN using RGB and

Optical-Flow(OF) as input. We also examine our approach

with TSN(Fusion) as the student of MMAD(Fusion). In

this case, RGB and OF networks are trained separately

with MMAD and then, we fuse the results from the trained

RGB and OF networks to produce the final prediction of

MMAD(Fusion) method. These results further verify the

effectiveness of the proposed method.

In Table 4 we compare the performance of a TSN with

RGB input to the MMAD model split by the most signifi-

cantly improved action classes. With more than 50% of the

improvement on the class carry light luggage is significant.

Table 4. Top 5 improved action classes by the MMAD model com-

pared to TSN with RGB input

Method C
ar

ry

li
g

h
t

O
p

en

P
o

ck
et

o
u

t

T
al

k
o

n

p
h

o
n

e

T
h

ro
w

TSN(RGB)[34] 11.12 28.41 31.57 61.53 48.79

MMAD 64.51 78.67 52.63 81.31 65.30

Acc (leg)

Acc (hand)

Gyro (leg)

Ori (leg)

Carry heavy Carry light…
…

Figure 7. Sample clips with their paired sensors data related to

action ”carry heavy luggage” and ”carry light luggage”.

In MMAct, carry related actions are designed to be com-

posed of carrying the luggage with the same appearance but

different weight from light to heavy. Figure 7 shows the ex-

ample of ”carry” related action clips with their paired sen-

sors data. Without any further modalities it is difficult to

distinguish class ”carry light” with other carry actions, like

carry heavy luggage. The visual input of a person moving

a luggage does not give enough mutual information during

training. Similar arguments hold for open, pocket out, talk

on phone, etc.

5.4. Conclusion

This paper introduces a new large-scale mutlimodal

dataset MMAct for action understanding. Compared to

the current datasets for multimodal action understanding,

MMAct has the largest number of modalities include both

vision-based and sensor-based modalities. We also pro-

posed a novel multi modality distillation model with atten-

tion mechanism, which makes student network with input

of RGB learn useful information from a teacher network

trained by multiple sensor-based modalities. Experimen-

tal results under 4 different setting show the availability of

MMAct on the potential of cross modal action understand-

ing across vision and sensors modalities.
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