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Abstract

While many action recognition datasets consist of collec-

tions of brief, trimmed videos each containing a relevant ac-

tion, videos in the real-world (e.g., on YouTube) exhibit very

different properties: they are often several minutes long,

where brief relevant clips are often interleaved with seg-

ments of extended duration containing little change. Apply-

ing densely an action recognition system to every temporal

clip within such videos is prohibitively expensive. Further-

more, as we show in our experiments, this results in subop-

timal recognition accuracy as informative predictions from

relevant clips are outnumbered by meaningless classifica-

tion outputs over long uninformative sections of the video.

In this paper we introduce a lightweight “clip-sampling”

model that can efficiently identify the most salient temporal

clips within a long video. We demonstrate that the com-

putational cost of action recognition on untrimmed videos

can be dramatically reduced by invoking recognition only

on these most salient clips. Furthermore, we show that this

yields significant gains in recognition accuracy compared

to analysis of all clips or randomly/uniformly selected clips.

On Sports1M, our clip sampling scheme elevates the accu-

racy of an already state-of-the-art action classifier by 7%
and reduces by more than 15 times its computational cost.

1. Introduction

Most modern action recognition models operate by ap-

plying a deep CNN over clips of fixed temporal length [40,

6, 44, 50, 11]. Video-level classification is obtained by ag-

gregating the clip-level predictions over the entire video, ei-

ther in the form of simple averaging or by means of more

sophisticated schemes modeling temporal structure [33, 45,

17]. Scoring a clip classifier densely over the entire se-

quence is a reasonable approach for short videos. How-

ever, it becomes computationally impractical for real-world

videos that may be up to an hour long, such as some of

the sequences in the Sports1M dataset [24]. In addition to

the issue of computational cost, long videos often include

segments of extended duration that provide irrelevant infor-

mation for the recognition of the action class. Pooling in-

formation from all clips without consideration of their rel-

evance may cause poor video-level classification, as infor-

mative clip predictions are outnumbered by uninformative

predictions over long unimportant segments.

In this work we propose a simple scheme to address these

problems (see Fig. 1 for a high-level illustration of the ap-

proach). It consists in training an extremely lightweight net-

work to determine the saliency of a candidate clip. Because

the computational cost of this network is more than one or-

der of magnitude lower than the cost of existing 3D CNNs

for action recognition [6, 44], it can be evaluated efficiently

over all clips of even long videos. We refer to our net-

work as SCSampler (Salient Clip Sampler), as it samples

a reduced set of salient clips from the video for analysis

by the action classifier. We demonstrate that restricting the

costly action classifier to run only on the clips identified as

the most salient by SCSampler, yields not only significant

savings in runtime but also large improvements in video

classification accuracy: on Sports1M our scheme yields a

speedup of 15× and an accuracy gain of 7% over an already

state-of-the-art classifier.

Efficiency is a critical requirement in the design of SC-

Sampler. We present two main variants of our sampler. The

first operates directly on compressed video [23, 52, 56], thus

eliminating the need for costly decoding. The second looks

only at the audio channel, which is low-dimensional and

can therefore be processed very efficiently. As in recent

multimedia work [2, 4, 15, 35], our audio-based sampler

exploits the inherent semantic correlation between the au-

dio and the visual elements of a video. We also show that

combining our video-based sampler with the audio-based

sampler leads to further gains in recognition accuracy.

We propose and evaluate two distinct learning objectives

for salient clip sampling. One of them trains the sampler

to operate optimally with the given clip classifier, while the

second formulation is classifier-independent. We show that,

in some settings, the former leads to improved accuracy,

while the benefit of the latter is that it can be used with-

out retraining with any clip classifier, making this model a
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general and powerful off-the-shelf tool to improve both the

runtime and the accuracy of clip-based action classification.

Finally, we show that although our sampler is trained over

specific action classes in the training set, its benefits extend

even to recognition of novel action classes.

2. Related work

The problem of selecting relevant frames, clips or seg-

ments within a video has been investigated for various ap-

plications. For example, video summarization [18, 19, 29,

37, 56, 57, 58] and the automatic production of sport high-

lights [30, 31] entail creating a much shorter version of the

original video by concatenating a small set of snippets cor-

responding to the most informative or exciting moments.

The aim of these systems is to generate a video composite

that is pleasing and compelling for the user. Instead the ob-

jective of our model is to select a set of segments of fixed

duration (i.e., clips) so as to make video-level classification

as accurate and as unambiguous as possible.

More closely related to our task is the problem of action

localization [22, 39, 38, 54, 61], where the objective is to

localize the temporal start and end of each action within a

given untrimmed video and to recognize the action class.

Action localization is often approached through a two-step

mechanism [5, 8, 5, 14, 15, 21, 28, 1], where first an ac-

tion proposal method identifies candidate action segments,

and then a more sophisticated approach validates the class

of each candidate and refines its temporal boundaries. Our

framework is reminiscent of this two-step solution, as our

sampler can be viewed as selecting candidate clips for ac-

curate evaluation by the action classifier. However, sev-

eral key differences exist between our objective and that

of action localization. Our system is aimed at video clas-

sification, where the assumption is that each video contains

a single action class. Action proposal methods solve the

harder problem of finding segments of different lengths and

potentially belonging to different classes within the input

video. While in action localization the validation model is

typically trained using the candidate segments produced by

the proposal method, the opposite is true in our scenario:

the sampler is learned for a given pretrained clip classifier,

which is left unmodified by our approach. Finally, the most

fundamental difference is that high efficiency is a critical

requirement in the design of our clip sampler. Our sampler

must be orders of magnitude faster than the clip classifier

to make our approach worthwhile. Conversely, most ac-

tion proposal or localization methods are based on optical

flow [27, 28] or deep action-classifier features [5, 15, 54]

that are typically at least as expensive to compute as the

output of a clip classifier. For example, the TURN TAP

system [14] is one of the fastest existing action proposal

methods and yet, its computational cost exceeds by more

than one order of magnitude that of our scheme. For 60
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Figure 1: Overview: video-level classification by averaging (a)

dense clip-level predictions vs (b) selected predictions computed

only for salient clips. SCSampler yields accuracy gains and run-

time speedups by eliminating predictions over uninformative clips.

seconds of untrimmed video, TURN TAP has a cost of

4128 GFLOPS; running densely our clip classifier (MC3-

18 [44]) over the 60 seconds would actually cost less, at

1097 GFLOPs; our sampling scheme lowers the cost down

dramatically, to only 168 GFLOPs.

Closer to our intent are methods that remove from con-

sideration uninformative sections of the video. This is typi-

cally achieved by means of temporal models that “skip” seg-

ments by leveraging past observations to predict which fu-

ture frames to consider next [55, 10, 53]. Instead of learning

to skip, our approach relies on a fast sampling procedures

that evaluates all segments in a video and then performs fur-

ther analysis on the most salient ones.

Our approach belongs to the genre of work that performs

video classification by aggregating temporal information

from long videos [13, 32, 33, 36, 45, 46, 47, 48, 49, 51, 62].

Our aggregation scheme is very simple, as it merely av-

erages the scores of action classifiers over the selected

clips. Yet, we note that the most recent state-of-the-art ac-

tion classifiers operate precisely under this simple scheme.

Examples include Two-Stream Networks [40], I3D [6],

R(2+1)D [44], Non-Local Networks [50], SlowFast [11].

While in these prior studies clips are sampled densely or at

random, our experiment suggest that our sampling strategy

yields significant gains in accuracy over both dense, ran-

dom, and uniform sampling and it is as fast as random sam-

pling.

3. Technical approach

Our approach consists in extracting a small set of rele-

vant clips from a video by scoring densely each clip with a

lightweight saliency model. We refer to this model as the

“sampler” since it is used to sample clips from the video.

We formally define the task in subsection 3.1, proceed to

present two different learning objectives for the sampler in

section 3.2, and finally discuss sampler architecture choices

and features in subsection 3.3.
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3.1. Problem Formulation

Video classification from clip-level predictions. We

assume we are given a pretrained action classifier f :
R

F×3×H×W → [0, 1]C operating on short, fixed-length

clips of F RGB frames with spatial resolution H ×W and

producing output classification probabilities over a set of ac-

tion classes {1, . . . , C}. We note that most modern action

recognition systems [6, 12, 42, 44] fall under this model

and, typically, they constrain the number of frames F to

span just a handful of seconds in order to keep memory con-

sumption manageable during training and testing. Given a

test video v ∈ R
T×3×H×W of arbitrary length T , video-

level classification through the clip-classifier f is achieved

by first splitting the video v into a set of clips {v(i)}Li=1

with each clip v(i) ∈ R
F×3×H×W consisting of F adja-

cent frames and where L denotes the total number of clips

in the video. The splitting is usually done by taking clips

every F frames in order to have a set of non-overlapping

clips that spans the entirety of the video. A final video-level

prediction is then computed by aggregating the individual

clip-level predictions. In other words, if we denote with

aggr the aggregation operator, the video-level classifier f̂ is

obtained as f̂(v) = aggr({f(v(i))}Li=1).
Most often, the aggregator is a simple pooling operator

which averages the individual clip scores (i.e., f̂(v) =

1/L
∑L

i=1 f(v
(i))) [6, 11, 40, 44, 50] but more sophisticated

schemes based on RNNs [34] have also been employed.

Video classification from selected clips In this paper

we are interested in scenarios where the videos v are

untrimmed and may be quite long. In such cases, apply-

ing the clip classifier f to every clip will result in a very

large inference cost. Furthermore, aggregating predictions

from the entire video may produce poor action recognition

accuracy since in long videos the target action is unlikely

to be exhibited in every clip. Thus, our objective is to de-

sign a method that can efficiently identify a subset S(v;K)
of K salient clips in the video (i.e., S(v;K) ∈ 2{1,...,L}

with |S(v;K)| = K) and to reduce video-level prediction

to be computed from this set of K clip-level predictions

as f̂S(v;K)(v) = aggr({f(v(i))}i∈S(v;K)) (K is hyper-

parameter studied in our experiments). By constraining the

application of the costly classifier f to only K clips, infer-

ence will be efficient even on long videos. Furthermore,

by making sure that S(v;K) includes a sample of the most

salient clips in v, recognition accuracy may improve as ir-

relevant or ambiguous clips will be discarded from consid-

eration and will be prevented from polluting the video-level

prediction. We note that in this work we address the prob-

lem of clip selection for a given pretrained clip classifier f ,

which is left unmodified by our method. This renders our

approach useful as a post-training procedure to further im-

prove performance of existing classifiers both in terms of

inference speed as well as recognition accuracy.

Our clip sampler. In order to achieve our goal we pro-

pose a simple solution that consists in learning a highly

efficient clip-level saliency model s(.) that provides for

each clip in the video a “saliency score” in [0, 1]. Specif-

ically, our saliency model s(.) takes as input clip features

φ(i) = φ(v(i)) ∈ R
d that are fast to compute from the raw

clip v(i) and that have low dimensionality (d) so that each

clip can be analyzed very efficiently. The saliency model

s : R
d → [0, 1] is designed to be orders of magnitude

faster than f , thus enabling the possibility to score s on ev-

ery single clip of the video to find the K most salient clips

without adding any significant overhead. The set S(v;K)
is then obtained as S(v;K) = topK({s(φ(i))}Li=1) where

topK returns the indices of the top-K values in the set. We

show that evaluating f on these selected set, i.e., computing

f̂S(v;K)(v) = aggr({f(v(i))}i∈S(v;K))) results in signifi-

cantly higher accuracy compared to aggregating clip-level

prediction over all clips.

In order to learn the sampler s, we use a training set D
of untrimmed video examples, each annotated with a la-

bel indicating the action performed in the video: D =
{(v1, y1), . . . , (vN , yN )} with vn ∈ R

Tn×3×H×W denot-

ing the n-th video and yn ∈ {1, . . . , C} indicating its action

label. In our experiments, we use as training set D the same

set of examples that was used to train the clip classifier f .

This setup allows us to demonstrate that the gains in recog-

nition accuracy are not due to leveraging additional data but

instead are the result of learning to detect the most salient

clips for f within each video.

Oracle sampler. In this work we compare our sampler

against an “oracle” O that makes use of the action label

y to select the best K clips in the video for classification

with f . The oracle set is formally defined as O(v, y;K) =
topK({fy(v

(i))}Li=1). Note that O is obtained by looking

for the clips that yield the K highest action classification

scores for the ground-truth label y under the costly action

classifier f . In real scenarios the oracle cannot be con-

structed as it requires knowing the true label and it involves

dense application of f over the entire video, which defeats

the purpose of the sampler. Nevertheless, in this work we

use the oracle to obtain an upper bound on the accuracy of

the sampler. Furthermore, we apply the oracle to the train-

ing set D to form pseudo ground-truth data to train our sam-

pler, as discussed in the next subsection.

3.2. Learning Objectives for SCSampler

We consider two choices of learning objective for the

sampler and experimentally compare them in 4.2.1.

3.2.1 Training the sampler as an action classifier

A naı̈ve way to approach the learning of the sampler s is

to first train a lightweight action classifier h(φ
(i)
n ) ∈ [0, 1]C

on the training set D by forming clip examples (φ
(i)
n , yn) us-
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ing the low-dimensional clip features φ
(i)
n = φ(v

(i)
n ) ∈ R

d.

Note that this is equivalent to assuming that every clip in

the training video contains a manifestation of the target

action. Then, given a new untrimmed test video v, we

can compute the saliency score of a clip in the video as

the maximum classification score over the C classes, i.e.,

s(φ(i)) = maxc∈{1,...,C} hc(φ
(i)). The rationale behind

this choice is that a salient clip is expected to elicit a strong

response by the classifier, while irrelevant or ambiguous

clips are likely to cause weak predictions for all classes. We

refer to this variant of our loss as AC (Action Classification).

3.2.2 Training the sampler as a saliency ranker

One drawback of AC is that the sampler is trained as an

action classifier independently from the model f and by as-

suming that all clips are equally relevant. Instead, ideally

we would like the sampler to select clips that are most use-

ful to our given f. To achieve this goal we propose to train

the sampler to recognize the relative importance of the clips

within a video with respect to the classification output of f

for the correct action label. To achieve this goal, we define

pseudo ground-truth binary labels z
(i,j)
n for pairs of clips

(i, j) from the same video vn:

z(i,j)n =

{

1 if fyn
(v

(i)
n ) > fyn

(v
(j)
n )

−1 otherwise
(1)

We train s by minimizing a ranking loss over these pairs:

ℓ(φ(i)
n , φ(j)

n ) = max
(

−z(i,j)n [s(φ(i)
n )− s(φ(j)

n ) + η], 0
)

(2)

where η is a margin hyper-parameter. This loss encourages

the sampler to rank higher clips that produce a higher clas-

sification score under f for the correct label. We refer to this

sampler loss as SAL-RANK (Saliency Ranking).

3.3. Sampler Architecture

Due to the tight runtime requirements, we restrict our

sampler to operate on two types of features that can be

computed efficiently from video and that yield a very com-

pact representation to process. The first type of features

are obtained directly from the compressed video without

the need for decoding. Prior work has shown that fea-

tures computed from compressed video can even be used

for action recognition [52]. We describe in detail these fea-

tures in subsection 3.3.1. The second type of features are

audio features, which are even more compact and faster

to compute than the compressed video features. Recent

work [2, 3, 4, 15, 26, 35, 60] has shown that the audio chan-

nel provides strong cues about the content of the video and

this semantic correlation can be leveraged for various ap-

plications. In subsection 3.3.2 we discuss how we can ex-

ploit the low-dimensional audio modality to find efficiently

salient clips in a video.

3.3.1 Visual sampler

Wu et al. [52] recently introduced an accurate action

recognition model directly trained on compressed video.

Modern codecs such as MPEG-4 and H.264 represent video

in highly compressed form by storing the information in

a set of sparse I-frames, each followed by a sequence of

P-frames. An I-frame (IF) represents the RGB-frame in

a video just as an image. Each I-frame is followed by 11

P-frames, which encode the 11 subsequent frames in terms

of motion displacement (MD), and RGB-residual (RGB-R).

MDs capture the frame-to-frame 2D motion while RGB-Rs

store the remaining difference in RGB values between ad-

jacent frames after having applied the MD field to rewarp

the frame. In [52] it was shown that each of these three

modalities (IFs, MDs, RGB-Rs) provides useful informa-

tion for efficient and accurate action recognition in video.

Inspired by this prior work, here we train three separate

ResNet-18 networks [20] on these three inputs as samplers

using the learning objectives outlined in the previous sub-

section. The first ResNet-18 takes as input an IF of size

H × W × 3. The second is trained on MD frames, which

have size H/16 × W/16 × 2: the 2 channels encode the

horizontal and vertical motion displacements at a resolution

that is 16 times smaller than the original video. The third

ResNet-18 is fed individual RGB-Rs of size H×W ×3. At

test time we average the predictions of these 3 models over

all the I-frames and P-frames (MDs and RGB-Rs) within

the clip to obtain a final global saliency score for the clip.

As an alternative to ResNet-18, we experimented also with

a lightweight ShuffleNet architecture [59] of 26 layers. We

compare these models in 4.2.2. We do not present results

for the large ResNet-152 model that was used in [52], since

it adds a cost of 3 GFLOPS per clip which far exceeds the

computational budget of our application.

3.3.2 Audio sampler

We model our audio sampler after the VGG-like au-

dio networks used in [7, 2, 26]. Specifically, we first ex-

tract MEL-spectrograms from audio segments twice as as

long as the video-clips, but with stride equal to the video-

clip length. This stride is chosen to obtain an audio-based

saliency score for every video clip used by the action recog-

nizer f. However, for the audio sampler we use an observa-

tion window twice as long as the video clip since we found

this to yield better results. A series of 200 time samples

is taken within each audio segment and processed using 40
MEL filters. This yields a descriptor of size 40× 200. This

representation is compact and can be analyzed efficiently by

the sampler. We treat this descriptor as an image and pro-

cess it using a VGG network [41] of 18 layers. The details

of the architecture are given in the supplementary material.
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3.3.3 Combining video and audio saliency

Since audio and video provide correlated but distinct

cues, we investigated several schemes for combining the

saliency predictions from these two modalities. With AV-

convex-score we denote a model that simply combines

the audio-based score sA(v(i)) and the video-based score

sV (v(i)) by means of a convex combination αsV (v(i)) +
(1 − α)sA(v(i)) where α is a scalar hyperparameter. The

scheme AV-convex-list instead first produces two separate

ranked lists by sorting the clips within each video according

to the audio sampler and the visual sampler independently.

Then the method computes for each clip the weighted av-

erage of its ranked position in the two lists according to a

convex combination of the two positions. The top-K clips

according to this measure are finally retrieved. The method

AV-intersect-list computes an intersection between the top-

m clips of the audio sampler and the top-m clips of the

video sampler. For each video, m is progressively increased

until the intersection yields exactly K clips. In AV-union-

list we form a set of K clips by selecting K ′-top clips ac-

cording to the visual sampler (with hyperparameter K ′ s.t.

K ′ < K) and by adding to it a set of K−K ′ different clips

from the ranked list of the audio sampler. Finally, we also

present results for AV-joint-training, where we simply av-

erage the audio-based score and the video-based score and

then finetune the two networks with respect to this average.

4. Experiments

In this section we evaluate the proposed sampling proce-

dure on the large-scale Sports1M and Kinetics datasets.

4.1. Large­scale action recognition with SCSampler

4.1.1 Experimental Setup

Action Recognition Networks. Our sampler can be used

with any clip-based action classifier f. We demonstrate

the general applicability of our approach by evaluating it

with six popular 3D CNNs for action recognition. Four of

these models are pretrained networks publicly available [9]

and described in detail in [44]: they are 18-layer instanti-

ations of ResNet3D (R3D), Mixed Convolutional Network

(MC3), and R(2+1)D, with this last network also in a 34-

layer configuration. The other two models are our own im-

plementation of I3D-RGB [6] and a ResNet3D of 152 lay-

ers leveraging depthwise convolutions (ir-CSN-152) [43].

These networks are among the state-of-the-art on Kinetics

and Sports1M. For training procedure, please refer to sup-

plementary material.

Sampler configuration. In this subsection we present re-

sults achieved with the best configuration of our sampler ar-

chitecture, based on the experimental study that we present

in section 4.2. The best configuration is a model that com-

bines the saliency scores of an audio sampler and of a video

sampler, using the strategy of AV-union-list. The video sam-

pler is based on two ResNet-18 models trained on MD and

RGB-R features, respectively, using the action classification

loss (AC). The audio sampler is trained with the saliency

ranking loss (SAL-RANK). Our sampler s(.) is optimized

with respect to the given clip classifier f. Thus, we train a

separate clip sampler for each of the 6 architectures in this

evaluation. All results are based on sampling K = 10 clips

from the video, since this is the best hyper-parameter value

according to our experiments (see analysis in supplemen-

tary material).

Baselines. We compare the action recognition accuracy

achieved with our sampler, against three baseline strategies

to select K = 10 clips from the video: Random chooses

clips at random, Uniform selects clips uniformly spaced out,

while Empirical samples clips from the discrete empirical

distribution (i.e., a histogram) of the top K = 10 Oracle

clip locations over the entire training set (the histogram is

computed by linearly remapping the temporal extent of each

video to be in the interval [0, 1]). Finally, we also include

video classification accuracy obtained with Dense which

performs “dense” evaluation by averaging the clip-level pre-

dictions over all non-overlapping clips in the video.

4.1.2 Evaluation on Sports1M

Our approach is designed to operate on long, real-world

videos where it is neither feasible nor beneficial to eval-

uate every single clip. For these reasons, we choose the

Sports1M dataset [24] as a suitable benchmark since its av-

erage video length is 5 minutes and 36 seconds, and some

of its videos exceed 1 hour. We use the official training/test

split. We do not trim the test videos and instead seek the

top K = 10 clips according to our sampler in each video.

We stress that our sampling strategy is applied to test videos

only. The training videos in Sports1M are also untrimmed.

As training on all training clips would be unfeasible, we use

the training procedure described in [44] which consists in

selecting from each training video 10 random 2-second seg-

ments, from which training clips are formed. We reserve to

future work the investigation of whether our sampling can

be extended to sample training clips from the full videos.

We present the results in Table 1, which includes for

each method the video-level classification accuracy as well

as the cumulative runtime (in days) to run the inference on

the complete test set using 32 NVIDIA P100 GPUs (this in-

cludes the time needed for sampling as well as clip-level ac-

tion classification). The most direct baselines for our eval-

uation are Random, Uniform and Empirical which use the

same number of clips (K) in each video as SCSampler. It

can be seen that compared to these baselines, SCSampler

delivers a substantial accuracy gain for all action models,

with improvements ranging from 6.0% for R(2+1)D-34 to

9.9% for R(2+1)D-18 with respect to Empirical, which does
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Classifier SCSampler S (K clips) Random / Uniform / Empirical (K clips) Dense (all clips) Oracle O (K clips)

accuracy (%) runtime (day) accuracy (%) runtime (day) accuracy (%) runtime (days) accuracy (%)

MC3-18 72.8 0.8 64.5 / 64.8 / 65.3 0.4 66.6 12.9 85.1

R(2+1)D-18 73.9 0.8 63.0 / 63.2 / 63.9 0.4 68.7 13.1 87.0

R3D-18 70.2 0.8 59.8 / 59.9 / 60.3 0.4 65.6 13.3 85.0

R(2+1)D-34 78.0 0.9 71.2 / 71.5 / 72.0 0.6 70.9 14.2 88.4

ir-CSN-152 84.0 0.9 75.3 / 75.8 / 76.2 0.5 77.0 14.0 92.6

Table 1: Video-level classification on Sports1M [24] using K clips selected by our SCSampler, chosen at “Random” or with “Uniform”

spacing, by sampling clips according to the “Empirical” distribution computed on the training set, as well as “Dense” evaluation on all

clips. Oracle uses the true label of the test video to select clips. Runtime is the total time for evaluation over the entire test set. SCSampler

delivers large gains over Dense, Random, Uniform and Empirical while keeping inference efficient. For ir-CSN-152, SCSampler yields a

gain of 7.0% over the already state-of-the-art accuracy of 77.0% achieved by Dense.

Classifier SCSampler S (K clips) Random / Uniform / Empirical (K clips) Dense (all clips) Oracle O (K clips)

accuracy (%) runtime (hr) accuracy (%) runtime (hr) accuracy (%) runtime (hr) accuracy (%)

MC3-18 67.0 1.5 63.0 / 63.4 / 63.6 1.3 65.1 2.3 82.0

R(2+1)D-18 70.9 1.6 65.9 / 66.2 / 66.3 1.4 68.0 2.4 85.4

R3D-18 67.3 1.6 63.6 / 63.8 / 64.0 1.3 65.2 2.4 83.0

R(2+1D)-34* 76.7 1.6 73.8 / 74.0 / 74.1 1.5 74.1 3.1 82.9

I3D-RGB** 75.1 1.5 71.9 / 71.8 / 71.9 1.3 72.8 2.9 81.2

ir-CSN-152* 80.2 1.6 77.8 / 78.5 / 79.2 1.5 78.8 3.0 89.0

Table 2: Video-level classification on Kinetics [25] using K clips selected using our SCSampler, chosen at “Random” or with “Uniform”

spacing, by sampling clips according to the “Empirical” distribution computed on the training set, as well as “Dense” evaluation on all

clips. Even though Kinetics videos are short (10 seconds) our sampling procedure provides consistent accuracy gains for all 6 networks,

compared to Random and Uniform clip selection or even Dense evaluation. Models marked with ”*” are pretrained on Sports1M, and

models with ”**” are pretrained as 2D CNNs on ImageNet and then 3D-inflated [6].

Clip Selector

Test Set
SCSampler

Tr: MC3-18 on Kinetics

SCSampler

Tr: MC3-18 on Sports1M

SCSampler

Tr: R(2+1)D on Kinetics

SCSampler

Tr: R(2+1)D on Sports1M
Rand. / Unif. Dense

Kinetics 67.0 65.0 65.9 65.0 63.1 / 62.3 65.1

Sports1M 69.2 72.8 68.5 72.1 64.6 / 64.8 66.6

Table 3: Cross-dataset and cross-classifier performance. Numbers report MC3-18 video-level accuracy on the validation set of Kinetics

(first row) and test set of Sports1M (second row). SCSampler outperforms Uniform even when optimized for a different classifier (R(2+1)D)

and a different dataset (e.g., 68.5% vs 64.8% for Sports1M).

only marginally better than Random and Uniform.

Our approach does also better than “Dense” prediction,

which averages the action classification predictions over all

non-overlapping clips. To the best of our knowledge the ac-

curacy of 77.0% achieved by ir-CSN-152 using Dense eval-

uation is currently the best published result on this bench-

mark. SCSampler provides an additional gain of 7.0% over

this state-of-the-art model, pushing the accuracy to 84.0%.

We note that when using ir-CSN-152, Dense requires 14

days whereas SCSampler achieves better accuracy and re-

quires only 0.65 days to run inference on the Sports1M test

set. Finally, we report also the performance of the “Oracle”

O, which selects the K clips that yield the highest classi-

fication score for the true class of the test video. This is

an impractical model but it gives us an informative upper

bound on the accuracy achievable with an ideal sampler.

Fig. 2 (left) shows the histogram of the clip temporal lo-

cations using K = 10 samples per video for the test set

of Sports1M (after remapping the temporal extent of each

video to [0, 1]). Oracle and SCSampler produce similar dis-

tributions of clip locations, with the first section and espe-

cially the last section of videos receiving many more sam-

ples. It can be noted that Empirical shows a different sample

distribution compared to Oracle. This is due to the fact that

it computes the histogram from the training set which in this

case appears to have different statistics from the test set.

Thumbnails of top-ranked and bottom-ranked clips for

two test videos are shown in Fig. 3.

4.1.3 Evaluation on Kinetics

We further evaluate SCSampler on the Kinetics [25]

dataset. Kinetics is a large-scale benchmark for action

recognition containing 400 classes and 280K videos (240K

for training and 40K for testing), each about 10 seconds

long. The results are reported in Table 2. Kinetics videos

are short and thus in principle the recognition model should
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Figure 2: Histogram of clip-sample locations on the test set of

Sports1M (left) and validation set of Kinetics (right). The distri-

bution of SCSampler matches fairly closely that of the Oracle.

not benefit from a clip-sampling scheme such as ours. Nev-

ertheless, we see that for all architectures SCSampler pro-

vides accuracy gains over Random/Uniform/Empirical se-

lection and Dense evaluation, although the improvements

are understandably less substantial than in the case of

Sports1M. To the best of our knowledge, the accuracy of

80.2% achieved by ir-CSN-152 with our SCSampler is the

best reported result so far on this benchmark.

Note that [43] reports an accuracy of 79.0% using Uni-

form (instead of the 78.5% we list in Table 2, row 6) but this

accuracy is achieved by applying the clip classifier spatially

in a fully-convolutional fashion on frames of size 256x256,

whereas here we use a single center spatial crop of size

224x224 for all our experiments. Sliding the clip classifier

spatially in a fully-convolutional fashion (as in [43]) raises

the accuracy of SCSampler to 81.1%.

Fig. 2 (right) shows the histogram of clip temporal lo-

cations on the validation set of Kinetics. Compared to

Sports1M, the Oracle and SCSampler distributions here is

much more uniform.

4.1.4 Unseen Action Classifiers and Novel Classes

While our SCSampler has low computational cost, it

adds the procedural overhead of having to train a special-

ized clip selector for each classifier and each dataset. Here

we evaluate the possibility of reusing a sampler s(.) that

was optimized for a classifier f on a dataset D, for a new

classifier f ′ on a dataset D′ that contains action classes dif-

ferent from those seen in D. In Table 3, we present cross-

dataset performance of an SCSampler trained on Kinetics

but then used to select clips on Sports1M (and vice-versa).

We also report cross-classifier performance obtained by op-

timizing SCSampler with pseudo-ground truth labels (see

section 3.2.2) generated by R(2+1)D-18 but then used for

video-level prediction with action classifier MC3-18. On

the Kinetics validation set, using an SCSampler that was

trained using the same action classifier (MC3) but a differ-

ent dataset (Sports1M) causes a drop of about 2% (65.0%

vs 67.0%) while training using a different action classifier

(R(2+1)D) to generate pseudo-ground truth labels on the

the same dataset (Kinetics) causes a degradation of 1.1%

(65.9% vs 67.0%). The evaluation on Sports1M shows

Figure 3: Top-ranked and bottom-ranked clips by SCSampler

for two test videos from Sports1M. Top-ranked clips often show

the sports in action, while bottom-ranked clips tend to be TV-

interviews or static segments with scoreboard. Clips are shown

as thumbnails. To see the videos please visit http://scsampler.ai.

a similar trend, where cross-dataset accuracy (69.2%) is

lower than cross-classifier accuracy (72.1%). Even in the

extreme setting of cross-dataset and cross-classifier, the ac-

curacies achieved with SCSampler are still better than those

obtained with Random or Uniform selection. Finally, we

note that samplers trained using the AC loss (section 3.2.1)

do not require pseudo-labels and thus are independent of the

action classifier by design.

4.2. Evaluating Design Choices for SCSampler

In this subsection we evaluate the different choices in

the design of SCSampler. Given the many configurations to

assess, we make this study more computationally feasible

by restricting the evaluation to a subset of Sports1M, which

we name miniSports. The dataset is formed by randomly

choosing for each class 280 videos from the training set and

69 videos from the test set. This gives us a class-balanced

set of 136,360 training videos and 33,603 test videos. All

videos are shortened to the same length of 2.75 minutes.

For our assessment, we restrict our choice of action classi-

fier to MC3-18, which we retrain on our training set of min-

iSports. We assess the SCSampler design choices in terms

of how they affect the video-level accuracy of MC3-18 on

the test set of miniSports, since our aim is to find the best

configuration for video classification.

4.2.1 Learning objective

We begin by studying the effect of the loss function used

for training SCSampler, by considering the two loss vari-

ants described in section 3.2. For this evaluation, we as-

sess separately the visual sampler and the audio sampler.

The video sampler is based on two ResNet-18 networks

with MD and RGB-R features, respectively. These 2 net-

works are pretrained on ImageNet and then finetuned on

the training set of miniSport for each of the three different

SCSampler loss functions. The audio sampler is our VGG

network pretrained for classification on AudioSet [16] and

then finetuned on the training set of miniSports. The MC3-

18 video classification accuracy is 73.1% when the visual

sampler is trained with the Action Classification (AC) loss

whereas it is 64.8% when it is trained with the Saliency
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Ranking (SAL-RANK) loss. Conversely, we found that the

audio sampler is slightly more effective when trained with

the SAL-RANK loss as opposed to the AC loss (video-level

accuracy is 67.8% with SAL-RANK and 66.4% with AC).

A possible explanation for this difference in results is that

the AC loss defines a more challenging problem to address

(action classification vs binary ranking) but provides more

supervision (multiclass vs binary labels). The model using

compressed video features is a stronger model that can ben-

efit from the AC supervision and do well on this task (as

already shown in [52]) but the weaker audio model does

better when trained on the simpler SAL-RANK problem.

4.2.2 Sampler architecture and features

In this subsection we assess different architectures and

features for the sampler. For the visual sampler, we use

the AC loss and consider two different lightweight archi-

tectures: ResNet-18 and ShuffleNet26. Each architecture is

trained on each of the 3 types of video-compression features

described in section 3.3.1: IF, MD and RGB-R. We also

assess performance of combination of these three features

by averaging the scores of classifiers based on individual

features. The results are reported in Table 4. We can ob-

serve that given the same type of input features, ResNet-18

provides much higher accuracy than ShuffeNet-26 at a run-

time that is only marginally higher. It can be noticed that

MD and RGB-R features seem to be quite complementary:

for ResNet-18, MD+RGB-R yields an accuracy of 73.1%

whereas these individual features alone achieve an accuracy

of only 68.0% and 63.5%. However, adding IF features to

MD+RGB-R provides a modest gain in accuracy (74.9 vs

73.1) but impacts noticeably the runtime. Considering these

tradeoffs, we adopt ResNet-18 trained on MD+RGB-R as

our visual sampler on all subsequent experiments.

We perform a similar ablation study for the audio sam-

pler. Given our VGG audio network pretrained for clas-

sification on AudioSet, we train it on miniSport using the

following two options: finetuning the entire VGG model

vs training a single FC layer on several VGG activations.

Finetuning the audio sampler yields the best classification

accuracy (see detailed results in supplementary material).

4.2.3 Combining audio and visual saliency

In this subsection we assess the impact of our differ-

ent schemes for combining audio-based and video-based

saliency scores (see 3.3.3). For this we use the best configu-

rations of our visual and audio sampler (described in 4.1.1).

Table 5 shows the video-level action recognition accuracy

achieved for the different combination strategies.

Perhaps surprisingly, the best results are achieved with

AV-union-list, which is the rather naı̈ve solution of taking

K ′ clips based on the video sampler and K − K ′ differ-

ent clips based on the audio sampler (K ′ = 8 is the best

SCSampler

features

SCSampler

architecture
accuracy (%)

runtime

(min)

MD ResNet-18 63.5 19.8

RGB-R ResNet-18 68.0 20.4

MD + RGB-R ResNet-18 73.1 20.9

IF+MD+RGB-R ResNet-18 74.9 27.3

MD + RGB-R ShuffleNet-26 67.9 19.1

IF+MD+RGB-R ShuffleNet-26 69.9 23.8

Table 4: Varying the visual sampler architecture (ResNet-18 vs

ShuffleNet-26) and the input compressed channel (IF, MD, or

RGB-R). Performance is measured as video-level accuracy (%)

achieved by MC3-18 on the miniSports test set with K = 10 sam-

pled clips. Runtime is on the full test set using 32 GPUs.

SCSampler

Audio-Video Combination
accuracy (%) runtime (min)

AV-convex-list (α = 0.8) 73.8 23.4

AV-convex-score (α = 0.9) 67.9 23.4

AV-union-list (K′
= 8) 76.0 23.4

AV-intersect-list 74.0 23.4

AV-joint-training 75.5 23.4

Visual SCSampler only 73.1 20.9

Audio SCSampler only 67.8 22.0

Random 59.5 15.1

Uniform 59.9 15.1

Dense 61.6 2293.5 (38.5 hrs)

Table 5: Different schemes of combining audio and video saliency.

Performance is measured as MC3-18 video classification accuracy

(%) on the test set of miniSports with K = 10 sampled clips.

value when K = 10). The more sophisticated approach of

joint training AV-joint-training performs nearly on-par with

it. Overall, it is clear that the visual sampler is a better clip

selector than the audio sampler. But considering the small

cost of audio-based sampling, the accuracy gain provided

by AV-union-list over visual only (76.0 vs 73.1) warrants

the use of this combination.

5. Discussion

We presented a very simple scheme to boost both the

accuracy and the speed of clip-based action classifiers. It

leverages a lightweight clip-sampling model to select a

small subset of clips for analysis. Experiments show that,

despite its simplicity, our clip-sampler yields large accuracy

gains and big speedups for 6 different strong action recog-

nizers, and it retains strong performance even when used

on novel classes. Future work will investigate strategies for

optimal sample-set selection, by taking into account clip re-

dundancies. It would be interesting to extend our sampling

scheme to models that employ more sophisticated aggrega-

tions than simple averaging, e.g., those that use a set of con-

tiguous clips to capture long-range temporal structure. SC-

Sampler scores for the test videos of Kinetics and Sports1M

are available for download at http://scsampler.ai.
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