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Figure 1: We study the task of Canonical Surface Mapping (CSM). This task is a generalization of keypoint estimation and involves map-

ping pixels to canonical 3D models. We learn CSM prediction without requiring correspondence annotations, by instead using geometric

cycle consistency as supervision. This allows us to train CSM prediction for diverse classes, including rigid and non-rigid objects.

Abstract

We explore the task of Canonical Surface Mapping (CSM).

Specifically, given an image, we learn to map pixels on the

object to their corresponding locations on an abstract 3D

model of the category. But how do we learn such a map-

ping? A supervised approach would require extensive man-

ual labeling which is not scalable beyond a few hand-picked

categories. Our key insight is that the CSM task (pixel to

3D), when combined with 3D projection (3D to pixel), com-

pletes a cycle. Hence, we can exploit a geometric cycle con-

sistency loss, thereby allowing us to forgo the dense manual

supervision. Our approach allows us to train a CSM model

for a diverse set of classes, without sparse or dense keypoint

annotation, by leveraging only foreground mask labels for

training. We show that our predictions also allow us to infer

dense correspondence between two images, and compare

the performance of our approach against several methods

that predict correspondence by leveraging varying amount

of supervision.

1. Introduction

Plato famously remarked that while there are many cups in

the world, there is only one ‘idea’ of a cup. Any partic-

ular instance of a category can thus be understood via its

relationship to this platonic ideal. As an illustration, con-

sider an image of a bird in Figure 1. When we humans see

this image, we can not only identify and segment the bird

but also go further and even map pixels to an abstract 3D

representation of the category. This task of mapping pixels

in an image to locations on an abstract 3D model (which

we henceforth call canonical surface mapping) is general-

ization and densification of keypoint estimation and is key

towards rich understanding of objects. But how do we learn

to do this task? What is the right data, supervision or mod-

els to achieve dense rich understanding of objects?

One way to learn the canonical surface mapping task is to

collect large-scale labeled data. Specifically, we can label

hundreds or thousands of keypoints per image for thousands

* the last two authors were equally uninvolved.
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of images. As each keypoint location defines which pixel

corresponds to a specific location on the 3D surface, this

approach of manually labeling the keypoints can provide

dense supervision for learning. This approach has in fact

been shown to be quite successful for specific categories

such as humans [2]. But of course collecting such labeled

data requires enormous manual labeling effort, making it

difficult to scale to generic categories.

Is there an alternative supervisory signal that can allow one

to learn without reliance on such labelled data? Interest-

ingly, we note that this task of canonical surface mapping is

an inverse graphics task. Any such mapping is constrained

by the geometry operating on the underlying 3D, and any

predicted mapping should also respect this structure. In par-

ticular, for the pixels that belong to the object given by the

object mask, the CSM function maps these pixels onto the

3D shape. These points on the 3D shape, when projected

back using (known/predicted) camera, should map back to

the same pixels. Our key insight is that one can complete

the cycle (pixels → 3D → pixels) and use the consistency

loss as an objective. The gradients from the loss can be

propagated back to the CSM function prediction function,

thereby allowing us to learn this mapping without reliance

on strong forms of supervision.

In this paper, we present an approach to learn the task of

canonical surface mapping from the set of images belonging

to semantic category, their input masks and an abstract 3D

model which represents the semantic category. Addition-

ally, we show that predicting a canonical surface mapping

for images allows us to infer dense correspondence across

images of a category, and our approach enables recovery of

dense correspondences without any correspondence super-

vision! In comparison to approaches that use dense supervi-

sion for this task [2], or approaches that leverage keypoints

for the related tasks of semantic correspondence [7], or 3D

reconstruction [18], this is significant decrease in supervi-

sion. This allows us to train our CSM model for a diverse

set of classes: birds, zebras, cars and more (See Figure 1).

We believe our approach can pave the way for large-scale

internet-driven 3D understanding and correspondence infer-

ence since both semantic imagesets and masks are easy to

obtain (and automatic approaches can be used as well).

2. Related Work

Dense Semantic Correspondences. A fundamental task

that is equivalent to pursuing canonical surface mapping is

that of inferring dense semantic correspondence – given two

images, the goal is to predict for each pixel in the former, the

corresponding pixel in the latter. Methods prior to the re-

cent resurgence of deep learning [22, 24] demonstrated that

matching using features such as SIFT could allow recover-

ing correspondence across instances, and later work showed

similar results using CNN features [13, 25]. While these

generic features allow recovering correspondence, learning

specifically for the task using annotated data can improve

results [7]. However, collecting such annotation can be te-

dious, so several approaches have attempted to relax the su-

pervision for learning correspondence.

Among these, a common paradigm is to learn correspon-

dence by self-supervision, where random perturbations of

images are used as training pairs. This allows predicting

parametric warping [17, 31, 32] to relate images, or learn

equivariant embeddings [38] for matching. However, the

these methods are fundamentally restricted to training data

of the same instance, with no change in the visible content,

thereby limiting the performance for different instances

with viewpoint changes. While for certain categories of in-

terest e.g. humans, some approaches [27, 30, 35, 36, 42]

show that it is possible to use calibrated multi-view or mo-

tion capture to generate supervision, this form of supervi-

sion is slightly tedious to collect for all classes. An alternate

form of supervision can come via synthetic data, where syn-

thetic image pairs rendered using the same pose as a real

image pair, can help learn a correspondence function be-

tween real images that is cycle-consistent [52]. However,

this approach relies on availability of large-scale synthetic

data and known pose for real images to generate the super-

visory signal, and we show that both these requirements can

be relaxed.

Learning Invariant Representations. Our work is broadly

related to methods that learn pixel embeddings invariant

to certain transforms. These approaches leverage track-

ing to obtain correspondence labels, and learn representa-

tions invariant to viewpoint transformation [34, 49] or mo-

tion [44]. Similar to self-supervised correspondence ap-

proaches, these are also limited to training using observa-

tions of the same instance, and do not generalize well across

instances. While our canonical surface mapping is also a

pixel-wise embedding invariant to certain transforms, it has

a specific geometric meaning i.e. correspondence to a 3D

surface, and leveraging this is what allows learning without

the correspondence supervision.

Category-Specific 3D Reconstruction. A related line of

work pursued in the community is that of reconstructing

the instances in a category using using category-specific de-

formable models. Dating back to the seminal work of Blanz

& Vetter [4], who operationalized D’Arcy Thompson’s in-

sights into the manifold of forms [39], morphable 3D mod-

els have been used to model faces [4], hands [21, 37], hu-

mans [3, 26] and other generic classes [5, 18, 19, 46].

In conjunction with known/predicted camera parameters,

this representation also allows one to extract a pixelwise

canonical mapping. However, these methods often rely

on 3D training data to infer this representation. Even ap-

proaches that relax this supervision [18, 19, 46] crucially
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rely on (sparse or dense) 2D keypoint annotations during

training. In contrast, we show that learning a canonical

surface mapping is feasible even without such supervision.

Further, we demonstrate that directly learning the mapping

function leads to more accurate results than obtaining these

via an intermediate 3D estimate.

Consistency as Meta-Supervision. Ours is not the only

task where acquiring direct supervision is often infeasible,

and the idea of leveraging some form of consistency to over-

come this hurdle has been explored in several domains. Re-

cent volumetric reconstruction [12, 29, 41, 48] or depth

prediction [10, 11, 50] approaches use geometric consis-

tency between the predicted 3D and available views as su-

pervision. Similarly, the notion that when learning some

transformations, their composition often respects a cycli-

cal structure has been used for image generation [23, 53],

correspondence estimation [50, 51] etc. In our setup, we

also observe that the approach of using consistency as meta-

supervision allows bypassing supervision. We do so by

leveraging insights related to both, geometry and cycle con-

sistency – given a surface mapping, there is a geometrically

defined inverse transform with which the canonical surface

mapping predictions should be cycle-consistent.

3. Approach

Given an image, our goal is to infer for each pixel on the

object, its mapping onto a given canonical template shape

of the category. We do so by learning a parametrized CNN

fθ, which predicts a pixelwise canonical surface mapping

(CSM) given an input image. We show that our method,

while only relying on foreground masks as supervision, can

learn to map pixels to the given category-level template

shape. Our key insight is that this mapping function we aim

to learn has a geometric structure that should be respected

by the predictions. We operationalize this insight, and learn

a CSM predictor using a geometric cycle consistency loss,

thereby allowing us to bypass the need for supervision in

the form of annotated (sparse or dense) keypoints.

We first present in Section 3.2 our training setup in a sce-

nario where the camera pose for each training image is

given. We then show how we can relax this requirement

of known camera in Section 3.3. Learning a CSM predictor

implicitly allows us to capture the correspondence across

instances, and we describe in Section 3.4 the procedure to

recover dense semantic correspondence given two images.

3.1. Preliminaries

Surface Parametrization. The template shapes we learn

mappings to are in fact two-dimensional surfaces in 3D

space. The surface S of the template shape can therefore be

parametrized via two parameters u ∈ (0, 1) and v ∈ (0, 1)
(or equivalently a 2D vector u). This parametrization im-

plies that we can obtain a mapping φ such that φ(u) repre-

sents a unique point on the surface S.

Figure 2: Surface Parametrization. We show the mapping from

(u, v) space to the surface of the 3D model for two categories.

While there are several ways to construct such a mapping,

one intuitive way is to consider u to represent the polar an-

gles to parametrize points on the surface of a hollow sphere,

which can be mapped to a surface S by pushing it inward

[28]. Given a template shape with a surface S, we use this

approach to obtain the parametrization φ. We show some

visualizations in Figure 2 for the mapping from a 2D square

to template 3D shapes for two categories.

Canonical Surface Mapping. A canonical surface map-

ping C for an image I is a mapping from pixels onto the

template 3D shape. Given a pixel p ≡ (x, y), C[p] repre-

sents the corresponding point on the surface. As the surface

has a two-dimensional parametrization, C is equivalently

an image of the same size as I , with a two-channel value

at each pixel. Our parametrized CNN fθ that predicts this

mapping from an input image, therefore learns a per-pixel

prediction task – given an RGB input image, it outputs a 2

dimensional vector for each pixel.

Camera Projection. We model the camera as a weak per-

spective (scaled orthographic) transformation. We represent

the camera for every image I as π, parameterized by the

scale s ∈ R, translation t ∈ R2 and rotation r are three eu-

ler angles. We denote by π(P ) as the projection of a point P

to the image coordinate frame using the camera parameters

π ≡ (s, t, r).

3.2. Learning via Geometric Cycle Consistency

We aim to learn a per-pixel predictor fθ that outputs a

canonical surface mapping given an input image I . We

present an approach to do so using only foreground masks

as supervision. However, for simplicity, we first describe

here how we can learn this CSM predictor assuming known

camera parameters for each training image, and relax this

requirement in Section 3.3.

Our approach is to derive learning signal from the geometric
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Figure 3: Geometric Cycle Consistency Loss. A pixel mapped

to u by CSM function fθ gets mapped onto the 3D template via φ.

Our loss enforces that this 3D point, when projected back via the

camera π, should map back to the pixel.

nature of this task. In particular, as the 3D shapes underly-

ing instances of a category are often similar (and therefore

similar to the template shape), a pixel-wise mapping onto

the 3D surface should be (approximately) cycle-consistent

under reprojection. We capture this constraint via a geomet-

ric cycle consistency loss. This loss, in conjunction with an

objective that allows the prediction to respect certain visi-

bility constraints, allows us to learn fθ.

Geometric Cycle Consistency Loss. Given an image I

with associated camera π and foreground mask If , we wish

to enforce that the predicted canonical surface mapping

C ≡ fθ(I), respects the underlying geometric structure.

Concretely, as the instances across a category bear resem-

blance to the template shape, given a pixel p on the object

foreground, we would expect that its corresponding point

on the 3D surface φ(C[p]) to (approximately) project back

under the camera π which we denote as p̄. We define a ge-

ometric consistency loss (see Figure 3) that penalizes this

inconsistency for all foreground pixels, thereby encourag-

ing the network to learn pixel → 3D mapping functions that

are cycle-consistent under the 3D → pixel reprojection.

Lcyc =
∑

p∈If

‖p̄− p‖2
2

; p̄ = π(φ(C[p])) (1)

Incorporating Visibility Constraints. Enforcing that the

pixels when lifted to 3D, project back to the same location

is desirable, but not a sufficient condition. As an illustra-

tion, for a front facing bird, both the beak and tail project at

similar locations, but only the former would be visible. This

implies that points on the surface that are self-occluded un-

der π can also result in minimizing Lcyc. Our solution is

to discourage fθ from predicting u values that map to self-

occluded regions under camera π.

A point on the 3D shape is self-occluded under a camera π,

its z-coordinate in camera frame is larger than the rendered

depth at the corresponding pixel. We use Neural Mesh Ren-

derer (NMR) [20] to render a depth map Dπ for the template

shape S under camera π, and define a visibility loss for each

pixel p by checking if the z-coordinate (say zp) of its cor-

responding point φ(C[p]) on the 3D shape, when projected

under π, has a larger z-coordinate.

Lvis =
∑

p∈If

max(0, zp −Dπ[p̄]) (2)

Network Details. We implement fθ as a network with

UNet [33] style architecture. This network takes as input

an image of size 256 x 256 and outputs a unit vector per

pixel representing a point on surface of sphere which is

then converted to a (u, v) coordinate analogous to latitude

and longitude. We train our network to minimize the cycle-

consistency and visibility objectives:

Lconsistency = Lvis + Lcyc (3)

Even though we do not have direct supervision for the map-

pings, as we train a shared predictor across instances, the

explicit priors for geometric consistency, and the implicit

inductive biases in CNNs for spatial equivariance are suffi-

cient for us to learn a meaningful predictor.

Foreground Mask Prediction. While the training proce-

dure described above encourages cycle-consistent predic-

tions at pixels belonging to the object, the learned CNN fθ
also predicts some (possibly spurious) values at other pix-

els. To allow us to ignore these background pixels for infer-

ring correspondence (see Section. 3.4), as well as for gen-

erating visualizations, we train an additional per-pixel mask

predictor using standard cross-entropy loss Lfg against the

ground-truth masks. To do so, we simply modify fθ to yield

an additional per-pixel foreground probability as output.

Input CSM

Figure 4: Overview of Training Procedure. We train a network

to predict, for each pixel on the foreground, its mapping to the

canonical shape. We also jointly learn to predict camera pose, and

the geometric cycle-consistency loss Lcyc along with foreground

supervision, provides learning signal to train our system.
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3.3. Learning without Pose Supervision

We have presented our approach to learn a canonical sur-

face mapping predictor fθ assuming known cameras π for

each training image. We note that our training objective is

also differentiable w.r.t. the camera parameters, and we can

therefore simply use predicted cameras instead of known

cameras, and jointly learn pose and CSM prediction. This

joint training can allow us to bypass the requirement of even

camera supervision, and learn CSM prediction using only

foreground mask annotations and a given template shape.

We therefore learn an additional camera-prediction CNN

gθ′ , and use the predicted cameras to learn the CSM predic-

tor via the geometric consistency training objectives. How-

ever, to overcome certain trivial solutions, we also add a

mask reprojection error, and following [16, 40] use a multi-

hypothesis camera predictor to avoid local minima. Our

overall training setup is depicted in Figure 4.

Mask Re-projection Loss. If the only learning objective

comprises of the self-consistency between camera predic-

tions and the predicted CSMs, the networks can learn some

trivial solutions e.g. always predict a ‘frontal’ camera and

corresponding CSM. To avoid this we enforce that the the

template shape, when viewed under a predicted camera π,

should approximately match the known foreground image

Ifg . To implement this loss, we use (NMR) [20] to obtain a

differentiable render frender, that given the template shape

S and a camera π, renders a mask. While the poses may

still be ambiguous e.g. front and back facing cars, this ad-

ditional mask reprojection loss allows us to circumvent the

mentioned trivial solutions. This reprojection loss is defined

as follows:

Lmask = ‖frender(S, π)− If‖
2

(4)

Multi-Hypothesis Pose Prediction. Instead of predicting

a single camera π ≡ gθ′(I), we follow previous meth-

ods [16, 40] and predict multiple hypotheses to overcome

local minima. Our pose predictor outputs {(πi, ci)} ≡
gθ′(I) - a set of Nc = 8 pose hypotheses πi, each with an

associated probability ci. We initialize the camera predictor

gθ′ using a pre-trained ResNet-18 network [15].

Overall Training Objective. As our pose predictor yields

multiple pose hypotheses πi, each with an associated prob-

ability ci, we can train our networks by minimizing the

expected loss. We denote by Li
cyc, L

i
vis, L

i
mask the corre-

sponding losses under the camera prediction πi. In addi-

tion to minimizing the expected loss over these terms, we

also use an additional diversity prior Ldiv to encourage di-

verse pose hypotheses (see appendix for details). The over-

all training objective using these, is:

Ltot = Ldiv(gθ′(I)) +

Nc∑

i=1

ci(L
i
cyc + Li

vis + Li
mask) (5)

This framework allows us to learn the canonical surface

mapping function fθ via geometric cycle consistency, using

only foreground mask annotations in addition to the given

template shape. Once the network fθ is learned, we can

infer a canonical surface map from any unannotated image.

3.4. Dense Correspondences via CSM

We described an approach for predicting canonical surface

mappings without relying on pose or keypoint annotations.

This allows us to infer dense semantic correspondences

given two images of the same semantic object category,

because if pixels across images correspond, they should

get mapped to the same region on the canonical surface.

Given a (source, target) image pair (Is, It), let us denote

by (Cs, Ct, I
s
fg, I

t
fg) the corresponding predicted canonical

surface mappings and foreground masks. Given these pre-

dictions, for any pixel ps on Is, we can infer its correspond-

ing pixel Ts→t[ps] on It by searching for the (foreground)

pixel that maps closest to φ(Cs[ps]).

Ts→t[ps] = arg min
pt∈It

fg

‖φ(Cs[ps])− φ(Ct[pt])‖ (6)

Not only does our approach allow us to predict correspon-
dences for pixels between two images, it also allows us to

infer regions of non-correspondence i.e. pixels in source im-

age for which correspondences in the target image do not

exist (e.g. most pixels between a left and right facing bird

do not correspond). We can infer these by simply denoting

pixels for which the minimum distance in Eq. 6 is above a

certain threshold as not having a correspondence in the tar-

get image. This ability to infer non-correspondence is par-

ticularly challenging for self-supervised methods that gen-

erate data via random warping [17, 31, 38] as the training

pairs for these never have non-corresponding regions.

4. Experiments

Our approach allows us to predict canonical surface map-

pings across generic categories. However, due to lack of

annotation for the task, which is in fact our motivation for

learning without supervision, it is difficult to directly eval-

uate the predictions. Instead, as our approach also allows

us to recover correspondences across any two images (Sec-

tion 3.4), we can evaluate these using the task of keypoint

transfer. This is a well-studied task by approaches that learn

semantic correspondence, and we report comparisons to

baselines that leverage varying degree of supervision while

training. We first report these comparisons in Section 4.1,

and then present results for additional generic categories

(e.g. horses, sheep, cows) in Section 4.2, using Imagenet

images with automatically obtained segmentation masks.

4.1. Evaluation via Keypoint Transfer

We use our learned CSM prediction models for the task of

keypoint transfer – given a source and target image pair,
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Figure 5: Keypoint transfer results. We show the quality of dense correspondence results by transferring ground-truth keypoints from

source images in the top-row to target images in the bottom-row. It is interesting to note that method is able to transfer keypoints despite

significant changes in the viewpoint.

where the source image has some annotated keypoints, the

goal is to predict the location of these keypoints in the tar-

get image. We first describe the datasets used to train our

model, and then briefly survey the various baselines we

compare to and then present the evaluation results.

4.1.1 Experimental Setup

Datasets. We use bird images from the CUB-200-2011[43]

and the car images from PASCAL3D+ [47] dataset for

quantitative evaluation. CUB-200-2011 contains 6000

training and test images with 200 different species. Each

bird has 14 annotated keypoints, a segmentation mask, and a

bounding box. Note that we only use keypoint annotation at

test time to evaluate our method on the task of dense corre-

spondence as described earlier. We also train a model on the

car category from PASCAL3D+ [47] which has over 6000

training and test images but evaluate only on cars from PAS-

CAL VOC [9] with 12 keypoint annotations per instance.

We downloaded a freely available mesh from [1] to serve as

a bird template shape, used an average of 10 Shapenet [6]

models to obtain a template shape for cars.

Baselines. We report comparisons to several methods that

leverage varying amount of supervision for learning:

Category Specific Mesh Reconstruction (CMR) [18] learns

to reconstruct the 3D shape and predict pose for a given in-

stance, but relies on training time supervision of known key-

point locations and segmentation masks. Since a common

morphable model is used across a category, we can compute

the implied surface mappings via computing for each pixel,

the coordinate of the mean shape that is rendered at its lo-

cation (or nearest location in case of imperfect projection).

We can then infer correspondences as in Section 3.4.

Zhou et al. [52] exploit a large collection of 3D syn-

thetic models to learn dense correspondence via cycle-

consistency. During training, they crucially rely on pose

supervision (from PASCAL 3D+), as each cycle consists of

synthetic images rendered from the same view as the real

image pair. Their method outputs dense correspondences in

the form of a per-pixel flow, and infers non-correspondence

using a ‘matchability’ score.

Dense Equivariance (DE) [38] is a self-supervised method

to learn correspondences, and does not require any pose or

keypoint annotations. We re-implement this baseline such

that it can exploit the annotations for object masks (see ap-

pendix for details). DE learns a per-pixel feature vector,

and enforces corresponding pixels to have a similar feature.

The supervision for correspondences is obtained via apply-

ing known in-plane random warps to images. During infer-

ence, we can recover the correspondence for a source pixel

by searching for the most similar feature in the target image.

VGG Transfer. Inspired by Long et al.’s [25] observation

that generic learned features allow recovering correspon-

dences, we designed a baseline which infers correspon-

dence via nearest neighbours in this feature space. Specifi-

cally for a pixel in the source image we lookup its VGG fea-

ture from the conv4 layer and finds its corresponding near-

est neighbour in the target image (we found these features

to perform better than AlexNet used by Long et al. [25]).

4.1.2 Evaluation Metrics

We evaluate the various methods on two metrics: a) Per-

centage of Correct Keypoints (PCK), and b) Keypoint

Transfer AP (APK). We use two separate metrics, because

while the PCK metric evaluates the accuracy of keypoint

transfer for keypoints that are visible in both, source and

target image, it does not disambiguate if an approach can

infer that a particular source keypoint does not correspond

to any pixel on the target. So therefore, while PCK lets us

evaluate correspondence accuracy, the APK metric also lets

us measure accuracy at inferring non-correspondence.

Percentage of Correct Keypoints (PCK): Given a (source,

target) image pair with keypoint annotations on the source,
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Figure 6: Predicted Canonical Surface mapping for six different categories. The color at each image pixel depicts the color at the

corresponding surface point on the 3D template shape in the left row. While the predictions are mostly accurate, some error modes include:

a) inferring globally incorrect CSM due to pose ambiguity (e.g. third horse), or b) incorrect local predictions due to missing segmentation

(e.g. the second sheep).

each method predicts a single estimate for the correspond-

ing location in the target image. The PCK metric reports the

mean accuracy of keypoint predictions across keypoints that

are common across pairs. A prediction is considered correct

only when the predicted location lies within α ∗max(h,w)
radius around the ground truth annotation for the transfer.

We report results with α = 0.1, and h,w refer to height and

width of the image to which the keypoints were transferred.

Keypoint Transfer AP (APK): In addition to predicting a

location in target image for each each keypoint in source

image, this metric requires a confidence in the estimate.

Ideally, if a source keypoint does not correspond in a tar-

get image, the corresponding predicted confidence should

be low, whereas it should be high in case of a keypoint vis-

ible in both. Our approach and CMR [18] can rely on the

(inverse) distance on the template/mean shape as a confi-

dence measure. Zhou et al. [52] produce a ‘matchability’

score, and the feature based methods ‘DE’ [38] and ‘VGG

transfer’ [25] can leverage feature similarity as confidence.

Given these predictions, we vary the confidence thresholds,
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Annotation Method Birds Cars

PCK APK PCK APK

KP + Seg. Mask CMR [18] 47.3 22.4 44.1 16.9

Pose + Syn. Data Zhou et. al [52] - - 37.1 10.5

Pose + Seg. Mask CSM (ours) w/ pose 56.0 30.6 51.2 21.0

Seg. Mask

Dense Equi [38] 34.8 11.1 31.5 5.7

VGG Transfer 17.2 2.6 11.3 0.6

CSM (ours) 48.0 22.4 40.0 11.0

Table 1: PCK and APK. Percentage of correct keypoints (PCK)

and Keypoint Transfer AP (APK) at α = 0.1. See Section 4.1.2

for metric descriptions. All evaluations are on 10000 image pairs

per category. Higher is better.
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Figure 7: Keypoint Transfer PR Curves. We report the trans-

fer precision vs recall curves for all the methods on the task of

keypoint transfer. Dashed lines represent methods with pose or

keypoint supervision. Solid lines denote approaches without such

supervision. The area under the curve is reported in the legend for

each of the plots (higher is better). The plot on left is for CUBS-

Birds [43], and the one on the right is on cars and keypoints from

PascalVOC [9]. See Section 4.1.2 for metric descriptions.

and plot ‘Transfer Precision’ vs ‘Transfer Recall’ and re-

port the area under the curve as the AP. ‘Transfer Recall’

measures the fraction of correspondences in the ground-

truth that have been recovered above the threshold (at the

lowest confidence threshold, this value is similar to PCK).

‘Transfer Precision’ measures the fraction of correspon-

dences above the threshold that are correct (a prediction for

a non-corresponding keypoint is always deemed incorrect).

For a high precision, a method should predict low confi-

dence scores for non-corresponding keypoints. We explain

these metrics in more detail in the appendix.

4.1.3 Results

In addition to reporting the performance of our method,

without any pose supervision, we also evaluate our ap-

proach when using pose supervision (denoted as ‘CSM

w/Pose’) to better compare to baselines that use similar [52]

or more [18] annotations. However, note that all results vi-

sualization in the paper are in a setting without known pose.

We report the PCK and APK results in Table 1, and observe

that our approach performs better than the alternatives. We

also show the Transfer AP plots in Figure 7, and note large

the relative performance boost (in particular over the self-

supervised method [38]), indicating that our approach, in

addition to inferring correspondences when they exist, can

realize when regions do not correspond. We also visualize

some qualitative results for keypoint transfer in Figure 5.

4.2. Learning from Unannotated Image Collections

As our method does not require keypoint supervision during

training, we can apply it to learn canonical surface map-

pings for generic classes using just category-level image

collections (with automatically obtained segmentation). We

use images for various categories from ImageNet [8], obtain

instance segmentation using an off-the-shelf system [14],

and manually filter out instances with heavy occlusion. This

results in about 1000 instances per category, and we train

our CSM predictors using a per-category template model

downloaded from the web (in fact, for zebras we use a horse

model). We show qualitative results (on held-out images)

in Figure 6 and observe that we learn accurate mappings

that also respect correspondence across instance. Please see

supplementary for additional visualizations.

5. Discussion

We present an approach to learn canonical surface mappings

for generic categories using a geometric cycle consistency

objective. Our approach allows us to do so without key-

point or pose supervision, and learn CSM prediction and in-

fer dense correspondence while only relying on foreground

masks as supervision. While this is an encouraging step

towards understanding the underlying 3D structure and as-

sociations across images, several challenges still remain. In

particular, as we seek to explain the per-pixel predictions

via a reprojection of a single rigid template, our approach is

not directly applicable to categories where the shapes across

instances differ significantly or undergo large articulation.

It would be interesting to extend our method to also allow

for predicting the underlying deformation and articulation

in addition to camera transforms. Additionally, while our

approach allowed relaxing correspondence supervision, it

would be desirable to take a step further, and learn from

unannotated image collections without foreground mask su-

pervision. Lastly, our approach leveraged geometric cycle

consistency, and videos may provide an additional learn-

ing signal by enforcing consistency of predictions through

time [45].
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