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Abstract

We tackle the problem of synthesizing a video of multi-
ple moving people as seen from a novel view, given only an
input video and depth information or human poses of the
novel view as prior. This problem requires a model that
learns to transform input features into target features while
maintaining temporal consistency. To this end, we learn an
invariant feature from the input video that is shared across
all viewpoints of the same scene and a view-dependent fea-
ture obtained using the target priors. The proposed ap-
proach, View-LSTM, is a recurrent neural network struc-
ture that accounts for the temporal consistency and target
feature approximation constraints. We validate View-LSTM
by designing an end-to-end generator for novel-view video
synthesis. Experiments on a large multi-view action recog-
nition dataset validate the proposed model.

1. Introduction

Generating a video from cues such as a textual descrip-
tion, information on a specific object or scene type, or a
single frame is an interesting challenge with applications in
data augmentation and action imitation. Generating a realis-
tic video without specific priors is a challenging task. Deep-
generative models can synthesize (predict) a video using an
approximation of the density distribution of the data (prob-
abilistic methods [16, 30, 19]) or an input representation
(context-based methods [42, 41, 51]). Temporal Generative
Adversarial Nets (TGAN) [30] produces a fix length vector
that corresponds to a latent representation of frames that is
used in the decoder of the GAN [7] structure to synthesize
a video.

Recent works [55, 23] include priors to help the gener-
ation but produce more intractable results. For example,
style-content based models [11, 39, 38] separate the genera-
tion as content generation (e.g. background scene) from the
generation of the motion or dynamics. Pose Guided [54, 2]
models rely on the 2D body pose information as guidance in
the generation process. Other methods predict Optical flow
and use it along with a conditioned image to synthesize the

next frame [5] or a sequence of frames [24].

Multi-view data can be decomposed into a generic, view-
invariant component, and a view-dependent component.
This concept was used for 3D object generation via the so-
called intact space and noise as prior [52]. Feature aggrega-
tion between view-invariant and view-dependent informa-
tion is performed using summation. However, joining two
different feature points as summation for real world data
such as image or video stream might not be appropriate
with deep learning models. Features are coming from non-
linear mapping and using a linear operator (summation) as
a way to combine them can damage important feature infor-
mation. In fact concatenation is preferred in recent architec-
tures [21, 45, 41]. Similarly, features can be projected into
appearance space that is common for the same 3D object
and pose space that contains the object 3D orientation [25].

We propose View-LSTM, a novel convolutional Long
Short-Term Memory (LSTM) structure that takes advan-
tage of the temporal learning capability of Recurrent Neural
Network (RNN) to approximate the target view sequence
in the feature space. It does so by learning to aggregate a
view-invariant representation of the input view with view-
dependent information from the target prior. Moreover, we
extend the perceptual loss [14] to account for relevant tem-
poral information as needed in our video prediction task.
For this we use the features obtained from the intermediate
layers of a 3D CNN as spatiotemporal representations and
verify empirically that Conv-LSTM implicitly learns invari-
ant feature representation.

2. Related Work

Recurrent structures can predict frames from a sequence
of previous frames. Spatiotemporal LSTM (ST-LSTM) [48]
keeps track of a memory cell between subsequent time
steps to prevent the vanishing gradient problem. Pre-
dRNN++ [46] extends ST-LSTM to allow deeper stacking
of layers through an additional gating mechanism. Eidetic
3D LSTM [47] extends ST-LSTM to 3D convolution inside
the RNN gating computation thus enabling local temporal
memory. The problem of spatiotemporal prediction using
stationary and non-stationary components can be addressed
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with two modules inside the recurrent structure that achieve
longer predictions [49]. All the aforementioned single-view
predictive methods were tested on small datasets only, such
as KTH [31] and Moving-MNIST [35].

Long Short-Term Attention (LSTA) [36] extends the
Conv-LSTM [33] to focus on relevant spatial parts through
attention pooling for smooth temporal tracking. The model
was used for Egocentric Action Recognition with cross-
modal fusion in a two-stream architecture. Coupled Recur-
rent Network (CRN) [37] is a two-stream architecture using
independent Conv-LSTMs for each stream. The results of
the two streams are fused to distill reciprocal representa-
tions. However, these methods are not directly applicable
to novel-view video synthesis. Because they keep track of
a separate hidden state memory for each stream (modality)
whereas for the synthesis problem we only maintain one
hidden state that represents the appearance feature.

Novel-view rendering has been applied to faces and hu-
man bodies. Deep Appearance Model [26] matches ob-
ject shape (mesh) and appearance (texture) to a new (un-
seen) viewpoint. The model uses an autoencoder whose
encoder uses a mesh and an average texture from all the
views. The novel-view face rendering is then obtained us-
ing the compact feature from the encoder and a target view-
point as an input to the decoder. Estimating the 3D full
body mesh with the pose [43] is an active area of research.
Synthesizing a full body is based on the availability of pre-
recorded body scans [1]. Self-supervised models also exist
for frame-based novel view synthesis of multiple subjects
using a static background as guidance and by decomposing
the image into a latent representation that corresponds to
rotation and translation matrices [28]. However, our prob-
lem is different in two aspects. First, we target the tempo-
ral domain and thus need to ensure consistency across the
synthesized frames. Second, we need to cope with natural
variations in the background of different views.

View-invariant action representations from an input
frame and a ground-truth target prior can synthesize a
target-view optical flow [23] using a global temporal fea-
ture learning with Bidirectional-LSTM [8]. Unlike our
problem, this model does not have to hallucinate the back-
ground. Actions can also be synthesized from a given view
to a target view from non-overlapping input and output time
frames [44]. This model restricts the learning of the motion
representation to a set of predefined patterns to synthesize
the action in the target view. We instead focus on learning to
approximate the target view in the feature space with more
freedom in the types of motions that can be synthesized.

3. Temporal target feature approximation

We define the view decomposition assumption for a fea-
ture point €’ of view ¢ as a decomposition into an invariant
feature z, which is common to all the views, and a view-

dependent feature 7, which is specific to the view 4. z and
7" are combined through the operator

€ = P(z, 7). (1)

In multi-view video synthesis, we are only given an in-
put video sequence I° from a view 4 and a set of M priors
PI = {PIIM_| of atarget view j, where I’ and P}, have
T frames.

Suppose that we are given a decoder fp that takes a spa-
tiotemporal appearance feature point of view j and decodes
it back to the pixel space I7. Hence the problem of multi-
view video synthesis is reduced to approximating the target
spatiotemporal appearance feature point €/ of view j.

In what follows, we provide details on how to obtain
each component of the view decomposition assumption. We
show an architectural constraint on enforcing the invariance
to obtain z. Then 77 is presented as a linear combination
of the encoded feature representation of the prior PJ, for
m € [1..M]. Finally, we present View-LSTM that extends
the Conv-LSTM [33] to implement the aggregator ).

3.1. Invariant feature

We extract the feature input (resp. target) view sequence
I' (resp. I7) using the encoder f}; (resp. f%). A straight-
forward way to enforce invariance is to share the weights of
f}é and f7, using Siamese architecture [4] as in FD-GAN [6]
for example.

Let Wg be the shared weight between the encoder [}
and f]JE The backpropagation using the reconstruction loss
L, with respect to Wg is given as:

oL, oL, 07" 0L, 0z
8WE o 821 GWE 82]’ 8WE’

where the term z% (resp. 27) is given as fi(I?) (resp.
fé([j )). The weights of fé will also be affected by the
error coming from the reconstruction loss. We found empir-
ically that this affects the synthesis process where the model
failed to synthesize the target sequence.

Recall that a mapping fg is said to be invariant if
fe(x) = fr(y) where z # y. In order to enable the model
to synthesize a video sequence, a simple solution is to sep-
arate the parameters of f% and f7,. Since in neural network

2

the mapping has learnable weights and the encoder fJE only
serves as a guide during the training for enforcing the in-
variance, we use the same architecture for ff; and f3, and
after training with an invariance loss the weights of both
encoders will have equivalent values. We therefore have:
2= fL(I') and z ~ f}(I7) such that z has T" < T.

3.2. View-dependent feature

Let us define the encoder gg’m that maps each prior PJ,
of the view j to a lower dimensional feature 7,. We define
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Figure 1: The proposed View-LSTM recurrent structure
with one prior. The invariant feature z; (resp. view-
dependent feature 7}) is fed to the block Memg_ (resp.
Memgp) that outputs the memory cell of Conv-LSTM [33].
The memory cells C7 and C! of the invariant and the prior
feature are then combined with a fusion scheme to obtain
the hidden state H; that approximates €7 .
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the view-dependent feature vector 7/ as a linear combina-
tion weighted by the coefficient w,, for each of the prior
feature. The component of 77 at time step ¢ is given as:

M
Trg = Z wmﬂf,m. 3)
m=1
The feature 7/ is a concatenation of each of w{ such that:
= (ﬂ{, . ,W;,).
3.3. Aggregator

The original LSTM [12] model uses fully connected
layer in the state transitions which cause the loss of spa-
tial information. Conv-LSTM [33] solves this problem by
keeping track of the spatiotemporal feature in its state tran-
sitions using convolutions. The equations to compute the
memory cell are given as:

gy = tanh(Wyg % x4 + Wiy * Hy—1) (4a)
it = 0o(Wai xxp + Wi x Hy_q) (4b)
fr=0Wypxxy+ Wy xHi1) (4¢)
Ci= [t ©Cio1+ 1 © gi, (4d)

where the W ) with subscript are learnable weights, x is the
convolution operation, o is the sigmoid non-linearity and ®
is the Hadamard product. The gating i; and f; control how
much information should be kept, or updated with g;, to
compute the memory cell C; for each time step . We omit
the bias term in each equation for simplicity.

The View-LSTM accepts M + 1 inputs, the invariant fea-

ture z and the M prior features {77, }M_, . In order to have

a spatiotemporal consistency for each of the M + 1 inputs,
we keep track of a separate memory cell C;"* for each input,
and it is computed through the gating mechanism for each
time step t as:

cm = {Memgo (ZtarHt—hC?_l) ifm=0
= .

5
Memg" (7}, Heo1,Ci%y)  ifm € [1..M], ©)

where Memg” refers to Equation 4a to Equation 4d with the
weights 6, for the input m € [0..M]. The appearance input
2 is given with index m = 0 and C{ = C7. The hidden state
H:—1 is used in all the M + 1 blocks and it approximates
the target feature view at the time step ¢t — 1. Therefore, only
one hidden state should be tracked over time as it represents
the actual appearance feature.

We finally fuse the information of the invariant feature
memory C; and the priors memory C;" along with the cur-
rent features information as a linear combination. The out-
put gate o; regulates how much information each of the
M +1 gates will be passed to the hidden state and the equa-
tion is given as:

M
0y = a(WZO xzp + WE «Cf + Z pm>, (6)
m=1

where p™ = W, * w{ym + W2 «C{™ which relates the cur-

rent temporal prior feature 7rf7m with the memory C;" of the
m-th prior. The sum of p™ over m € [1..M] approximates
the spatiotemporal feature 7 as a linear combination of the
pre-defined set of M priors in an early fusion scheme.
Finally, the hidden state H; that approximate ¢ is ob-
tained by combining the output gate o; with the concatena-

tion of all the memory cells C;” and is computed as:

M
Ht =0 ® tanh(Wle * E?Octrn) + Nz, (7)

where W 1 is a 2D convolution with a (1, 1)-kernel that is
used to match the dimension of o;. We add a small residual
of the input view z; (n-Residual) controlled by 7 in order to
alleviate the color information loss during the approxima-
tion process (see Figure 1).

4. Novel-view video synthesis

In this section we present View Decomposition Network
(VDNet), our end-to-end learning framework for novel-
view video synthesis based on view decomposition. We
first overview the proposed network architecture and then
describe how invariance is obtained. Moreover, we present
our temporal extension of the perceptual loss and detail the
training procedure.

4.1. Architecture

The network architecture of the proposed VDNet using
one prior (e.g. depth or skeleton) is presented in Figure 2.
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Figure 2: Proposed View Decomposition Network (VDNet)
for multi-view video synthesis. Given a video sequence I°
of a view ¢ and a target prior (or set of priors) e.g. depth. We
synthesize the corresponding target visual sequence of the
view j using the shown framework. During training, the in-
variance in the view decomposition assumption is enforced
using Maximum Mean Discrepancy (MMD). The target ap-
pearance feature is approximated using the proposed View-
LSTM recurrent structure. We maintain the temporal con-
sistency using the proposed temporal loss which maps the
synthesized frames and the ground-truth ones into a spa-
tiotemporal feature space and computes the loss in that
space.

When the number of priors m > 1, we only have to add an
encoder g% for each prior PJ, and the View-LSTM com-
bines them as described earlier.

We are given a video I° € RT*W>HX3 of T frames of
size W x H each from view ¢ and the (synchronized) prior
Pi ¢ RTxXWxHxce of target view j. T, W, H, c are the
number of frames, width, height, and number of channels
respectively. The prior P’ can have different representa-
tions. For example if we use depth-maps as prior the num-
ber of channels is ¢ = 3 (RGB like image). If the prior
is a 2D-skeleton with c-keypoints for one human body, the
sequence of 1" frames is represented as c-images of shape
RW>H Each image is a Gaussian heatmap [18] with the
center being the location of one body joint. If there are
N human bodies in the scene, we sum the /N heatmap se-
quences of each individual obtained as described above.

We pass the input / i (resp. prior P7) through the encoder
fL (resp. g E) that maps it to a lower dimensional feature
space obtaining z* (resp. 7). To enforce the invariance,
we add an additional encoder f7, with separate weights (as
described in Section 3.1) of the target view j during the
training such that z/ = f%(I7). After the training we set
z = fL(I") since fi is an invariant encoder.

Both z and 7; are passed through the proposed View-
LSTM structure to approximate the target appearance fea-
ture €;. The resulting feature €; is transformed to the image
space using a decoder fp resulting in a sequence I

In addition to the pixel-wise reconstruction loss £,., we
use an invariance loss based on the Maximum Mean Dis-
crepancy (MMD) [9] and a proposed temporal loss £; that
penalizes the prediction in a temporal feature space.

4.2. Invariance loss

The Maximum Mean Discrepancy (MMD) [9] is used
in domain adaptation [22, 29, 53] to learn an invariant rep-
resentation of objects of the same concept from different
domain (sources), while preserving a meaningful represen-
tation of the data. We propose to use MMD to learn the
invariance mapping between the input view ¢ and the target
view j. 4

Let Z' = {z}}£., (resp. Z7 = {z]}£_)) be the empir-
ical batch of size B of the feature of the input (resp. tar-
get) view obtained using the encoder f% (resp. f7,). MMD
compares two distributions F' and () and maps the data to
a reproducing kernel Hilbert space (RKHS) using a feature
mapping ¢. The invariance loss £,, to train our network is
given as MMD defined as:

L, =MMD(Z', Z7) = (®)

1 & . )
5 Z d(2) — o(2})

From the statistical test provided in [9] we have that
F = Q if and only if MMD(Z,Z7) = 0. The char-
acteristic kernel k associated with the feature map ¢ is
given as: k(.,.) = (&(.),¢(.)). We choose the com-
monly used Radial basis function (RBF) kernel defined as

1
k(x,x") = exp(fﬁﬂx —x'||?) with ¢ = 0.2 as default

value in our experiments.
4.3. Temporal perceptual loss

The perceptual loss [14] for image-based generative
models operates in the feature space of a pre-trained 2D-
CNN (perceptual network ®). Current video generative
models such as [17, 20] use an averaging over the predicted
frames, but by doing so they summarize too coarsely the
temporal aspect of the problem. Another problem is the
loss of the temporal ordering. Therefore, we penalize the
prediction using spatiotemporal perceptual network ® such
as 3D-CNN. We use a pre-trained perceptual network and
freeze the weights so that it only serves as a feature map-
ping. The other reason is that we do not want to have the
perceptual network to be specific to the novel-view video
synthesis task. The Temporal perceptual loss function L is
therefore:

’cbl 1) — @,(1)

L
EZ:TZI/VZHICZ ’ 2’ (9)

where )\; is a coefficient, ®; is the [-th feature map from the
perceptual network of shape 1; x W; x H; x C; with Tj,
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W), H; and C being the time frame length, width, height
and number of channels of the feature map. L is the number
of chosen layers in the network.

4.4. Training

We use a 6-layered 3D ResNet [13] as a backbone ar-
chitecture for VDNet. Note that other feature mapping en-
coders (e.g. VGG [34]) are outside the scope of this study.
The final loss, £, we employ to train the model is:

‘C:‘Cr'i_AtEt_"An‘Cru (10)

where L, is the pixel-wise reconstruction loss between the
model synthesized sequence 17 and the ground-truth target
I7; L, is the temporal perceptual loss (see Eq. 9); and £,,
is the invariance loss (see Eq. 8). We empirically set the
regularizers as \; = 1072 and \,, = 1073, As 3D per-
ceptual network we choose I3D [3], an action recognition
model trained on the Kinetics Dataset [3]. In £; we use
the following four feature maps to obtain diverse spatiotem-
poral feature representations generated by the perceptual
network: Conv3d_la_7x7, Conv3d_2b_1x1, Mixed_3c, and
Mixed_4b. We set the coefficients A\; to 1 in all the four
layers used.

5. Experiments

In this section we validate the proposed View-LSTM
recurrent structure, and the View Decomposition Network
(VDNet). We first provide the experimental setup with
the baselines and evaluation metrics. We then motivate
the choice of using Conv-LSTM as a baseline for our pro-
posed View-LSTM, and we compare it with other aggrega-
tion schemes. Finally, we provide an extensive set of exper-
iments to validate the proposed VDNet.

5.1. Setup

There are no direct state-of-the-art methods that tackle
the problem of novel-view video synthesis. We there-
fore compare our proposed VDNet with one video-based
baseline (ResNet [13]) and two frame-based methods
(PG? [27], and VDG [18]) that solve the pose guided hu-
man synthesis problem. The ResNet model is adapted from
the paper [13] we replace the 2D convolution kernels with
3D kernels. The model serves as a baseline for video-based
model. We train the model with A\, = 10! and \,, = 1073
for all the experiments. For both PG? and VDG we re-
place the pose with depth and train the model with the same
hyperparameters as defined in the paper. Additionally, for
VDG we replace the fully connected target branch with the
input encoder structure.

To evaluate the performance of the generators, we use
Structural Similarity (SSIM) [50] score as a per-frame
quantitative measure and Fréchet Video Distance (FVD)

Layer  Conv-LSTM Lo (v',v?) Lo(vl,v3) Lo(v?,v3)
Conv X 152 4+ .072 .149 £ .072 173 £.088
! v 027 £ .020 .026 + .020 029 +.023
Conv X .273 £+ .081 .269 £ .081 .297 £+ .088
2 v 056 £+ .019 055 £ .019 .060 £ .020

Table 1: Effect of Conv-LSTM in I-Net model on the feature
map invariance between different views. KEY — v*: view i
fori € {1,2,3}.

2.00

0.50

0.00 0.00

(a) 1-Net w/o Conv-LSTM

(b) 1-Net
Figure 3: Visual result of the £, difference between the
third channel of the first convolution layer of 1-Net w/o (and
with) Conv-LSTM between view 1 and view 2.

[40] to measure the video quality and we use I3D [3] to
extract the embeddings.

For all our experiments we use the NTU RGB+D [32]
dataset. We chose it because currently it is the only large
scale multi-view multi-modal synchronized dataset. The
dataset has 60 action classes performed by 40 participants.
Three cameras are used at the same height and different
horizontal angles during each recording. We use the cross-
subject split which is divided into train and test split with
40, 320 and 16, 560 samples.

We train all the models with a batch size of 6 and Adam
optimizer [15] with (31, B2) = (0.5,0.999) and a learning
rate of 2.107°. The size of the frames is fixed to 112 x 112
for all the experiments.

The proposed VDNet model is implemented using the
PyTorch framework. All the experiments were carried out
using a server equipped with Tesla V100 GPU.

5.2. Conv-LSTM as invariance baseline

We start with a 3D ResNet [10] model for action recog-
nition. We replace all the (k, k, k) convolution kernels in
the network with the kernel (1, k, k) which means that we
are only convolving over the spatial dimension. We refer
to this model as ”Net”. We present four variants of the Net
model. f~-Net w/o C-LSTM where we add a fully connected
layer before the classification layer. [-Net w/o C-LSTM re-
places the fully connected with an LSTM layer. We add a
Conv-LSTM after each convolution block for each of the
two models and name them f-Net and [-Net respectively.

After training the four models on action recognition, we
evaluate the invariance property of the Conv-LSTM as a re-
trieval task. We select a query frame index from an input
view and we perform a Rankj, over a target view. The fea-
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Figure 4: Multi-view retrieval scores: (a) average over all
the views; (b) retrieval from view 3 to view 2.

Model Operator 1) 1 SSIM 4 FVD
Concatenation .614 13.19
ResNet  Early-fusion .496 22.08
Late-fusion 612 22.59
View-LSTM (n = 0) .308 23.64
VDNet  View-LSTM (n = 107;) .623 11.30
View-LSTM (n = 10~ %) 710 9.35

View-LSTM (n = 10~3) .295 47.97

Table 2: Performance comparison of our proposed View-
LSTM used in VDNet against early and late fusion.

F#layers 6 (3D) 6 18 20 34
#£params 85.06M 34.70M 77.20M 84.29M 133.8™™M
SSIM (t =8) .783 .698 711 .609 .663

Table 3: 2D backbone ResNet for the proposed VDNet.

tures are obtained from the average pooling layer of each
model.

Figure 4a shows the average retrieval score between all
the views. We clearly see the advantage of using Conv-
LSTM. Using LSTM for global temporal learning also
helps. Because most of the motion happens after the first
few frames, the retrieval after the 5-th frame is below 0.7 ac-
curacy. Figure 4b reports the top-k retrieval between view 2
and view 3. For models that are not using Conv-LSTM the
graph is almost linear with respect to the frame index.

Table 1 compares the invariance score in the feature
space as an average Lo error over all the channels for the
first two convolutional blocks. We report good invariance
scores on 1-Net which suggest that the Conv-LSTM learns
better invariant representation. From the difference map
presented in Figure 3 we can see that Conv-LSTM is in-
variant to the viewpoint.

5.3. View-LSTM

We fix 7 as defined in Equation 7 to 1072 in all the
experiments. Table 2 shows the sensitivity results of the
n-residual. We note that when the residual is too small
n = 1073) or not used as in standard methods n =0
the model performs poorly. The best score was obtained
with n = 1072, With 7 = 107! still preforming better than

7
t=1

I,
Depth
.544
Late-fusion
Depth
Skeleton |

.632 .504 433

672 761 767
V-LSTM ( = 10~2,m = 2)

.748 791 .697

Figure 5: Synthesized first frame (SSIM score on the bot-
tom) with early, late fusion and different configurations of
View-LSTM.

n = 1073, Figure 6 shows one example of the synthesized
first frame by varying 1. For € {0,1073} View-LSTM
was able to get the structure of the bodies but the color infor-
mation could not be recovered. For n € {107%,1072} the
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.649 778 .448

Figure 6: Synthesized first frame (SSIM score on the bot-
tom) with different 7 values in View-LSTM using depth as
prior.

colors were recovered with the residual. The 0.649 SSIM
for n = 107! is justified by the fact that View-LSTM may
be influenced more by the input than in 7 = 1072,

Table 2 compares View-LSTM with the early and late fu-
sion. In early fusion both the input feature and the prior fea-
ture are first concatenated and fed to a single Conv-LSTM.
In late fusion both the input and target prior feature have
separate Conv-LSTM and the last hidden state of each re-
current model are concatenated together (see Figure 7). The
improvement with the three methods is almost linear with
SSIM. View-LSTM shows advantage compared to standard
fusion schemes. This is because the recurrent structure is
built to approximate the target feature directly in its out-
put gate. The late fusion outperforms the early fusion. Note
that using only concatenation as fusion scheme works better
than early and late fusion. Figure 5 shows three examples
of depth with early, late fusion, and our View-LSTM with
n = 10~2. We notice some irregularities in the generation
for early and later fusion (i.e., frequent flickering images)
whereas our View-LSTM produces regular images.

5.4. VDNet

Table 4 shows the SSIM scores with the baselines us-
ing T' = 8 time steps. Video based models surpass frame
based models by a noticeable margin. Using only the pixel-
wise reconstruction loss VDNet got .710 £ .076 against
.614 4= .144 for ResNet. This is because View-LSTM inher-
its the implicit invariance property from the Conv-LSTM
as shown in Section 5.2. On both ResNet and VDNet
we clearly see the advantage of the invariance loss term
(L, L,—1) compared to only using the reconstruction term
L,.. MMD invariance loss £, shows good performance
in our VDNet model. The proposed temporal loss £; im-
proves over the perceptual loss £,,. Finally, combining all
the losses our VDNet gets the best performance. Figure 8a

i ei—r Conv-LSTM

‘\é—v Conv-LSTM —— &7 ‘ >€B—>€j
77]/ ﬂ-j Conv-LSTM

(a) Early-fusion (b) Late-fusion

G’L

. View-RNN
e

Y]

(¢) View-LSTM

Figure 7: Aggregator ¢ scheme to approximate ¢/: (a) both
features are concatenated and fed to a Conv-LSTM; (b) each
feature has a separate Conv-LSTM and then concatenated
together; (c) the two features are combine using the pro-
posed View-LSTM structure.

shows one example of all the models. On both PG? and
VDG the models were not able to synthesize the target view
which shows the effectiveness of the 3D models compared
to 2D ones. We further run additional experiments with the
2D CNN version of our proposed VDNet (see Table 3) with
different layer depths. Results confirm our claim that the
spatiotemporal features considerably help video synthesis.
ResNet model shows good reconstruction of the body and
background but has visible artifacts which cause the SSIM
score of about .50 on each of the frames. Our model was
able to synthesize well the body and the background with a
good use of the input color information using the n-residual
in v-LSTM.

Figure 8b shows the FVD distance as a boxplot. Except
for the poor invariance loss £,, performance of VDNet, we
can see the advantage of VDNet compared to ResNet.

We ran additional experiments to test models behaviour
on longer video sequences. Figure 8c shows the per-frame
average SSIM scores of the four models presented above.
The decrease of the ResNet and VDNet from 7' = 8 to
T = 16 is almost linear. For T' = 24 the ResNet model
has similar score with 7' = 16 whereas VDNet was heavily
affected by the temporal length of T' = 24.

Frame based models are not affected by the time length.
This is expected since the frame ignores the time axis and
treats each frame separately regardless of the time step.
However, when looking at the generated image sequence
in Figure 8a we see that most of the score comes from the
background rather than the person.

We ran two more experiments using the skeleton prior
and by combining both the depth and skeleton.

Using the skeleton gives a constant SSIM score on longer
sequence (Figure 8c) compared to the depth prior. However,
as can be seen in Figure 5 the VDNet model could not syn-
thesis well the full body and the limbs. Combining both
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Model Losses Pair-view SSIM score Average

L, Ly Ly Ly vt = v? vl — 03 v?2 — ot v?2 — 3 v3 = ot v3 = 02
VDG [18] Vv v .502 + .058 .543 + .068 .584 4+ .060 .563 + .062 611 +.077 522 + .063 554 + .075
PG? [27] v v 1499 + .071 .561 + .060 .600 £ .064 557 +.071 598 + .075 .543 + .066 560 + .076
v 594 + .154 .603 + .153 .641 4+ .143 .620 + .135 .636 + .130 593 + .138 614 4 .144
v Ly .591 4+ .131 .580 4+ .139 .562 4 .143 .538 &+ .144 .646 + .159 .612 £ .142 .588 £ .148
ResNet v v .601 &+ .167 .584 + .160 .644 + .120 .619 + .120 .645 + .127 .623 + .136 .619 + .141
v Lp_1 773 +.078 767 + .083 .789 + .061 721 + .097 782 4+ .084 746 £+ .088 .763 + .086
v v 776 +.072 757 + .089 .785 + .071 .735 + .089 .788 + .067 .739 4+ .087 764 + .082
v v v
v .721 + .069 717 + .068 .735 4+ .067 .676 + .083 728 + .069 .685 + .079 .710 + .076
v Ly .753 £+ .087 .769 £+ .062 775 + .072 .734 1+ .083 .789 £ .055 .700 £ .118 .753 £+ .087
VDNet v v .768 + .076 772 + .069 773 +.082 .752 + .068 772 +£.071 737 £ .082 762 £ .076
v Lp_1 1346 + .221 .354 + 217 511 + .233 478 + .215 570 + .263 .541 4+ .249 467 + .249
v v 762 + .071 .763 + .070 767 + .081 737+ .074 769 + .079 737+ .077 756 + .077
v v v

Table 4: SSIM scores with T' = 8. We report the scores of all the combinations of the three views and the average score on
each model. As ablation study, we replace £, (resp. £,,) with £,, (resp. £,,—1) KEY — L,.: pixel-wise reconstruction loss,
Ly: adversarial loss, £,,_1: replacing MMD with £, term, £,,;: MMD invariance loss, £,: perceptual loss, £;: proposed
temporal loss, v’: view i fori € {1,2, 3}.
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Figure 8: Comparison of our proposed VDNet with state-of-the-art methods using 7' = 8: (a) synthesized frames (SSIM
score on bottom) where the input pose P? is only used in VDG and PG?; (b) FVD score with different losses; (c) SSIM score
when varying the time step in the synthesis.

priors (depth and skeleton) shows improvement especially tion by extending the Conv-LSTM recurrent structure to ap-
for T' = 24 compared to using only depth (Figure 8c). proximate the target feature vector. We used the proposed

View-LSTM in an end-to-end generator, VDNet, and tested
6. Conclusion it against state-of-the-art models. The experimental results

showed the effectiveness of the proposed architecture and

We proposed to solve the novel-view video synthesis validate View-LSTM in handling multiple types of priors.

problem by decomposing a view into an invariant represen-

tation, which is shared across all views of the same scene,

and a view-dependent representation, which is specific to Acknowledgements This project acknowledges the use
the selected viewpoint. We implemented this decomposi- of the ESPRC funded Tier 2 facility, JADE.
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