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Abstract

Synthesizing images from a given text description in-

volves engaging two types of information: the content,

which includes information explicitly described in the text

(e.g., color, composition, etc.), and the style, which is usu-

ally not well described in the text (e.g., location, quantity,

size, etc.). However, in previous works, it is typically treated

as a process of generating images only from the content, i.e.,

without considering learning meaningful style representa-

tions. In this paper, we aim to learn two variables that are

disentangled in the latent space, representing content and

style respectively. We achieve this by augmenting current

text-to-image synthesis frameworks with a dual adversar-

ial inference mechanism. Through extensive experiments,

we show that our model learns, in an unsupervised manner,

style representations corresponding to certain meaningful

information present in the image that are not well described

in the text. The new framework also improves the quality

of synthesized images when evaluated on Oxford-102, CUB

and COCO datasets.

1. Introduction

The problem of text-to-image synthesis is to generate di-

verse yet plausible images given a text description of the

image and a general data distribution of images and match-

ing descriptions. In recent years, generative adversarial net-

works (GANs) [9] have asserted themselves as perhaps the

most effective architecture for image generation, along with

their variant Conditional GANs [22], wherein the generator

is conditioned on a vector encompassing some desired prop-

erty of the generated image.

A common approach for text-to-image synthesis is to use

a pre-trained text encoder to produce a text embedding from

the description. This vector is used as the conditioning fac-

tor in a conditional GAN-based model. The very first GAN

model for the text-to-image synthesis task [26] uses a noise

vector sampled from a normal distribution to capture image

style features left out of the text representation, enabling
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Figure 1: (a) Controlling the style (in columns) of generated im-

ages given a text description as the content (in rows). Columns

1-4 show locations (e.g., left, right and top) of the content in the

image; Columns 5-7 and columns 8-10 represent size and quantity

of the content respectively. (b) The learned content and style fea-

tures through our dual adversarial inference, visualized by t-SNE.

The inferred content is clustered solely on color (one dominant

factor that is described in the text), while the inferred style shows

a more diffused cluster pattern, with local clusters such as multiple

flowers and top-located flowers.

the model to generate a variety of images given a certain

textual description. StackGan [32] introduces condition-

ing augmentation as a way to augment the text embeddings,

where a text embedding can be sampled from a learned dis-

tribution representing the text embedding space. As a result,

current state-of-the-art methods for text-to-image synthesis

generally have two sources of randomness: one for the text

embedding variability, and the other (noise z given a normal

distribution) capturing image variability.
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Having two sources of randomness is, however, only

meaningful if they represent different factors of variation.

Problematically, our empirical investigation of some previ-

ously published methods reveals that those two sources can

overlap: due to the randomness in the text embedding, the

noise vector z then does not meaningfully contribute to the

variability nor the quality of generated images, and can be

discarded. This is illustrated in Figure 8 and Figure 9 in the

supplementary material.

In this paper we aim to learn a latent space that represents

meaningful information in the context of text-to-image syn-

thesis. To do this, we incorporate an inference mechanism

that encourages the latent space to learn the distribution

of the data. To capture different factors of variation, we

construct the latent space through two independent random

variables, representing content (‘c’) and style (‘z’). Simi-

lar to previous work [26], ‘c’ encodes image content which

is the information in the text description. This mostly in-

cludes color, composition, etc. On the other hand, ‘z’ en-

codes style which we define as all other information in the

image data that is not well described in the text. This would

typically include location, size, pose, and quantity of the

content in the image, background, etc. This new framework

allows us to better represent information found in both text

and image modalities, achieving better results on Oxford-

102 [23], CUB [29] and COCO [20] datasets at 64×64 res-

olution.

The main goal of this paper is to learn disentangled rep-

resentations of style and content through an inference mech-

anism for text-to-image synthesis. This allows us to use

not only the content information described in the text de-

scriptions but also the desired styles when generating im-

ages. To that end, we only focus on the generation of low-

resolution images (i.e., 64×64). In the literature, high-

resolution images are generally produced by iterative re-

finement of lower-resolution images and thus we consider

it a different task, more closely related to generating super-

resolution images.

To the best of our knowledge, this is the first time an at-

tempt has been made to explicitly separate the learning of

style and content for text-to-image synthesis. We believe

that capturing these subtleties is important to learn richer

representations of the data. As shown in Figure 1, by learn-

ing disentangled representations of content and style, we

can generate images that respect the content information

from a text source while controlling style by inferring the

style information from a style source. It is worth noting that

although we hope to learn the style from the image modal-

ity, the style information could possibly be connected to (or

leaked into) some text instances. Despite this, the integra-

tion of the style in the model eventually depends on how

well it is represented in both modalities. For example, if

certain types of style information are commonly present in

the text, then according to our definition, those types of in-

formation are considered as content. If only a few text in-

stances describe that information however, then it would not

be fully representative of a shared commonality among texts

and therefore would not be captured as content, and whether

it can be captured as style depends on how well it is repre-

sented in the image modality. On the other hand, we would

also like to explore modalities other than text as the con-

tent in our future work using the proposed method, which

may bring us closer to image-to-image translation [18] if we

choose both modalities to be image.

The contributions of this paper are twofold: (i) we are

the first to learn two variables that are disentangled for con-

tent and style in the context of text-to-image synthesis using

inference; and (ii) by incorporating inference we improve

on the state-of-the-art in image quality while maintaining

comparable variability and visual-semantic similarity when

evaluated on the Oxford-102, CUB and COCO datasets.

2. Related Work

Text-to-image synthesis methods Text-to-image synthe-

sis has been made possible by Reed et al. [26], where

a conditional GAN-based model is used to generate text-

matching images from the text description. Zhang et al. [32]

use a two-stage GAN to first generate low-resolution im-

ages in stage I and then improve the image quality to high-

resolution in stage II. By using a hierarchically-nested GAN

(HDGAN) which incorporates multiple loss functions at in-

creasing levels of resolution, Zhang et al. [35] further im-

prove the state-of-the-art on this task in an end-to-end man-

ner. Several attempts have been made to leverage additional

available information, such as object location [27], class la-

bel [5, 2], attention extracted from word features [30, 24]

and text regeneration [24]. Hong et al. [12] propose another

approach by providing the image generator with a semantic

structure that is sequentially constructed with a box genera-

tor followed by a shape generator; however, their approach

would not be applicable for single-object image synthesis.

Compared to all previous work, our method incorporates the

inference mechanism into the current framework for text-

to-image synthesis, and by doing so, we explicitly force the

model to simultaneously learn separate representations of

content and style. Reed et al. [26] have also investigated

the separation of content and style information. The differ-

ences are elaborated in the supplementary material.

Adversarial inference methods Various papers have ex-

plored learning representations through adversarial training.

Notable mentions are BiGANs [6, 7] where a bidirectional

discriminator acts on pairs (x, z) of data and generated

points. While these models assume that a single random

variable z encodes data representations, in this work we ex-

tend the adversarial inference to two random variables that
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Figure 2: Overview of the current state-of-the-art methods (left top) and our proposed method (right) for text-to-image synthesis at low-

resolution scale. By default, the current state-of-the-art methods adopt conditioning augmentation (CA), which introduces variable c ∼
p(c|ϕt), in addition to variable z ∼ N (0, 1) as the inputs for the image generator Gx. The removal of z (left bottom) does not affect

the model performance (viz. Figure 9 in supplementary material for quantitative evaluations). In our method (right), we incorporate the

inference mechanism, where Gz,c encodes both z and c, and the discriminator D(x,z)/(x,c) distinguishes between joint pairs. For the cycle

consistency, sampled ẑ and ĉ are also used to reconstruct x′.

are disentangled with each other. Our model is also closely

related to [19], where the authors incorporate an adversar-

ial reconstruction loss into the BiGAN framework. They

show that the additional loss term results in better recon-

structions and more stable training. Although Dumoulin

et al. [7] show results for conditional image generation,

in their model the conditioning factor is discrete, fully ob-

served and not inferred through the inference model. In our

model however, ‘c’ can be a continuous conditioning vari-

able that we infer from the text and image.

Relation to InfoGAN While the matching-aware loss

(Section 3.1) used in many text-to-image works can also be

viewed as maximizing mutual information between the two

modalities (i.e., text and image), the way it is approximated

is different. InfoGAN [3] uses the variational mutual in-

formation maximization technique, whereas the matching-

aware loss uses the concept of matched and mismatched

pairs. In addition, InfoGAN concentrates all semantic fea-

tures on the latent code c, which contains both content and

style, whereas in this work, we only maximize mutual infor-

mation on the content since we consider text as our content.

3. Methods

3.1. Preliminaries

We start by describing text-to-image synthesis. Let ϕt

be the text embedding of a given text description associ-

ated with image x. The goal of text-to-image synthesis is to

generate a variety of visually-plausible images that are text-

matched. Reed et al. [26] first propose a conditional GAN-

based framework, where a generator Gx takes as input a

noise vector z sampled from p(z) = N (0, 1) and ϕt as the

conditioning factor to generate an image x̃ = Gx(z, ϕt). A

matching-aware discriminator Dx,ϕt
is then trained to not

only judge between real and fake images, but also discrim-

inate between matched and mismatched image-text pairs.

The minimax objective function for text-to-image (subscript

denoted as t2i) framework is given as:

min
G

max
D

Vt2i(Dx,ϕt
, Gx) =

E(xa,ta)∼pdata
[logDx,ϕt

(xa, ϕta)]+

1

2

{

E(xa,tb)∼pdata
[log(1−Dx,ϕt

(xa, ϕtb))]+

E
z∼p(z),ta∼pdata

[log(1−Dx,ϕt
(Gx(z, ϕta), ϕta))]

}

, (1)

where (xa, ta) is a matched pair and (xa, tb) is a mis-

matched pair.

To augment the text data, Zhang et al. [32] replace the

deterministic text embedding ϕt in the generator with a la-

tent variable c, which is sampled from a learned Gaussian

distribution p(c|ϕt) = N (µ(ϕt), Σ(ϕt)), where µ and Σ
are functions of ϕt parameterized by neural networks. For

simplicity in notation, we denote p(c|ϕt) as p(c). As a re-

sult, the objective function (1) is updated to:

min
G

max
D

Vt2i(Dx,ϕt
, Gx) =

E(xa,ta)∼pdata
[logDx,ϕt

(xa, ϕta)]+

1

2

{

E(xa,tb)∼pdata
[log(1−Dx,ϕt

(xa, ϕtb))]+

E
z∼p(z),c∼p(c),ta∼pdata

[log(1−Dx,ϕt
(Gx(z, c), ϕta))]

}

.

(2)
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In addition to the matching-aware pair loss that guaran-

tees the semantic consistency, Zhang et al. [35] propose an-

other type of adversarial loss that focuses on the image fi-

delity (i.e., image loss), further updating (2) to:

min
G

max
D

Vt2i(Dx, Dx,ϕt
, Gx) =

Exa∼pdata
[logDx(xa)] + E

z∼p(z),c∼p(c)[log(1−Dx(Gx(z, c)))]+

E(xa,ta)∼pdata
[logDx,ϕt

(xa, ϕta)]+

1

2

{

E(xa,tb)∼pdata
[log(1−Dx,ϕt

(xa, ϕtb))]+

E
z∼p(z),c∼p(c),ta∼pdata

[log(1−Dx,ϕt
(Gx(z, c), ϕta))]

}

,

(3)

where Dx is a discriminator distinguishing between images

sampled from pdata and those sampled from the distribution

parameterized by the generator (i.e., pmodel).

Consider two general probability distributions q(x) and

p(z) over two domains x ∈ X and z ∈ Z , where q(x)
represents the empirical data distribution and p(z) is usu-

ally specified as a simple random distribution, e.g., a stan-

dard normal N (0, 1). Adversarial inference [6, 7] aims to

match the two joint distributions q(x, z) = q(z|x)q(x) and

p(x, z) = p(x|z)p(z), which in turn implies that q(z|x)
matches p(z|x). To achieve this, an encoder Gz(x) : ẑ =
Gz(x),x ∼ q(x) is introduced in the generation phase, in

addition to the standard generator Gx(z) : x̃ = Gx(z), z ∼
p(z). The discriminator D is trained to distinguish joint

pairs between (x, ẑ) and (x̃, z). The minimax objective of

adversarial inference can be written as:

min
G

max
D

V (D,Gx, Gz) =

E
x∼q(x),ẑ∼q(z|x)[logD(x, ẑ)]+

E
x̃∼p(x|z),z∼p(z)[log(1−D(x̃, z))]. (4)

3.2. Dual adversarial inference

As described in Section 3.1, the current state-of-the-

art methods for text-to-image synthesis can be viewed as

variants of conditional GANs, where the conditioning is

initially on ϕt itself [26] and later on updated to the la-

tent variable c sampled from a distribution learned through

ϕt [32, 35, 30, 24]. The generator then has two latent vari-

ables z and c: z ∼ p(z), c ∼ p(c) (left, Figure 2). The

priors can be Gaussian or non-Gaussian distributions such

as the Bernoulli distribution 1. To learn disentangled rep-

resentations for style (z) and content (c) and to enforce the

separation between these two variables, we incorporate dual

adversarial inference into the current framework for text-to-

image synthesis (right, Figure 2). In this dual inference pro-

cess, we are interested in matching the conditional q(z, c|x)

1In this paper, we experiment with both Gaussian and Bernoulli distri-

butions for p(c) (More details in Section 4).

to the posterior p(z, c|x), which under the independence

assumption can be factorized as follows:

q(z, c | x) = q(z | x)q(c | x),

p(z, c | x) = p(z | x)p(c | x).

This formulation allows us to match q(z|x) with p(z|x)
and q(c|x) with p(c|x), respectively. Similar to previous

work [7, 6], we achieve this by matching the two pairs of

joint distributions:

q(z,x) = p(z,x),

q(c,x) = p(c,x).

The encoder for our dual adversarial inference then encodes

both z and c: ẑ, ĉ = Gz,c(x),x ∼ q(x), while the genera-

tor decodes z and c sampled from their corresponding prior

distributions into an image: x̃ = Gx(z, c), z ∼ p(z), c ∼
p(c). To compete with Gx and Gz,c, the discrimination

phase also has two components: the discriminator Dx,z

is trained to discriminate (x, z) pairs sampled from either

q(x, z) or p(x, z), and the discriminator Dx,c for the dis-

crimination of (x, c) pairs sampled from either q(x, c) or

p(x, c). Given the above setting, the original adversarial

inference objective (4) is updated as:

min
G

max
D

Vdual(Dx,z, Dx,c, Gx, Gz,c) =

E
x∼q(x),ẑ,ĉ∼q(z,c|x)[logDx,z(x, ẑ) + logDx,c(x, ĉ)]+

E
x̃∼p(x|z,c),z∼p(z),c∼p(c)[log(1−Dx,z(x̃, z)) + log(1−Dx,c(x̃, c))].

(5)

3.3. Cycle consistency

In unsupervised learning, cycle-consistency refers to the

ability of the model to reconstruct the original image x

from its inferred latent variable z. It has been reported

that bidirectional adversarial inference models often have

difficulties in reproducing faithful reconstructions as they

do not explicitly include any reconstruction loss in the ob-

jective function [7, 6, 19]. The cycle-consistency crite-

rion, as having been demonstrated in many previous works

such as CycleGAN [36], DualGAN [31], DiscoGAN [14]

and augmented CycleGAN [1], enforces a strong connec-

tion between domains (here x and z) by constraining the

models (e.g., encoder and decoder) to be consistent with

one another. Li et al. [19] show that the integration of the

cycle-consistency objective stabilizes the learning of adver-

sarial inference, thus yielding better reconstruction results.

With the above in mind, we integrate cycle-consistency in

our dual adversarial inference framework in a similar fash-

ion to [19] . More concretely, we use another discrimina-

tor Dx,x′ to distinguish between x and its reconstruction
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Figure 3: Disentangling content and style on MNIST-CB dataset. (a) Generated samples given digit identities as the content c. Each column

uses the same style z sampled from N (0, 1). (b) The t-SNE visualizations of inferred content ĉ and inferred style ẑ. (c) Reconstructed

samples using inferred content ĉ (in rows) and inferred style ẑ (in columns) from image sources.

x
′ = Gx(ẑ, ĉ), where ẑ, ĉ = Gz,c(x), by optimizing:

min
G

max
D

Vcycle(Dx,x′ , Gx, Gz,c) =

E
x∼q(x)[logDx,x′(x,x)]+

E
x∼q(x),(ẑ,ĉ)∼q(z,c|x)[log(1−Dx,x′(x, Gx(ẑ, ĉ)))].(6)

We later show in an ablation study (Section 4.6) that using

l2 loss for cycle-consistency leads to blurriness in the gen-

erated images, which agrees with previous studies [17, 31].

3.4. Full objective

Taking (3), (5), (6) into account, our full objective is:

min
G

max
D

Vfull(D,G)

= Vt2i(Dx, Dx,ϕt
, Gx)

+ Vdual(Dx,z, Dx,c, Gx, Gz,c)

+ Vcycle(Dx,x′ , Gx, Gz,c), (7)

where G and D are the sets of all generators and dis-

criminators in our method: G = {Gx, Gz,c} and D =
{Dx, Dx,ϕt

, Dx,z, Dx,c, Dx,x′}.

Note that in addition to the latent variable c, the en-

coded ẑ and ĉ in our method are also sampled from the

inferred posterior distributions through the reparameteriza-

tion trick [16], i.e., ẑ ∼ q(z|x) and ĉ ∼ q(c|x). In or-

der to encourage smooth sampling over the latent space, we

regularize the posterior distributions q(z|x) and q(c|x) to

match their respective priors by minimizing the KL diver-

gence. We apply a similar regularization term to p(c), e.g.,

λDKL(p(c) || N (0, 1)) for a normal distribution prior, as

done in previous text-to-image synthesis works [32, 35].

Our preliminary experiments 2 showed that without the

above regularization, the training became unstable and the

gradients typically explode after certain number of epochs.

2We also experimented with minimizing the cosine similarity between

ẑ and ĉ, but did not observe improved performance in terms of the incep-

tion score and FID.

4. Experiments

4.1. Proof­of­concept study

To evaluate the effectiveness of our proposed dual ad-

versarial inference on the disentanglement of content and

style, we first validate our proposed method on a toy dataset:

MNIST-CB [8], where we formulate the digit generation

problem as a text-to-image synthesis problem by consider-

ing the digit identity as the text content. In this setup, digit

font and background color represent styles learned in an un-

supervised manner through adversarial inference. We add a

cross-entropy regularization term to the content inference

objective since our content in this case is discrete (i.e., one-

hot vector for digit identity). As shown in Figure 3 (a), the

content and style are disentangled in the generation phase,

where the generator has learned to assign the same style to

different digit identities when the same z is used. More

importantly, the t-SNE visualizations (Figure 3 (b)) from

our inferred content and style (ĉ and ẑ) indicate that our

dual adversarial inference has successfully separated the

information on content (digit identity) and style (font and

background color). This is further validated in Figure 3 (c)

where we show our model’s ability to infer style and content

from different image sources and fuse them to generate hy-

brid images, using content from one source and style from

the other.

4.2. Text­to­image setup

Once validated on the toy example, we move to the orig-

inal text-to-image synthesis task. We evaluate our method

based on model architectures similar to HDGAN [35], one

of the current state-of-the-art methods for text-to-image

synthesis, making HDGAN our baseline method. The ar-

chitecture designs are the same as described in [35], keeping

in mind that we only consider the 64×64 resolution. Three

quantitative metrics are used to evaluate our method: Incep-

tion score [28], Fréchet inception distance (FID) [10] and
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Method
Inception Score FID

Oxford-102 CUB COCO Oxford-102 CUB COCO

GAN-INT-CLS [26] 2.66 ± 0.03 2.88 ± 0.04 7.88 ± 0.07 79.55 68.79 60.62

GAWWN [27] — 3.10 ± 0.03 — — 53.51 —

StackGAN [32, 33] 2.73 ± 0.03 3.02 ± 0.03 8.35 ± 0.11 43.02 35.11 33.88

HDGAN [35] — 3.53 ± 0.03 — — — —

HDGAN mean* 2.90 ± 0.03 3.58 ± 0.03 8.64 ± 0.37 40.02 ± 0.55 20.60 ± 0.96 29.13 ± 3.76

Ours mean* 2.90 ± 0.03 3.58 ± 0.05 8.94 ± 0.20 37.94 ± 0.39 18.41 ± 1.07 27.07 ± 2.55

* mean calculated on three experiments at five different epochs (600, 580, 560, 540, 520), or three different epochs (200, 190, 180) for COCO dataset

Table 1: Comparison of inception score and FID at 64×64 resolution scale. Higher inception score and lower FID mean better performance.

This flower is pink and
green in color, with

petals that are spiky.

GT Baseline

A large bird has a white
belly, long tarsus, and

webbed black feet.

Ours

A man holding a bat to
hit an incoming baseball

during as game.

Figure 4: Examples of generated images on Oxford-102 (top), CUB (middle) and COCO (bottom) datasets.

Visual-semantic similarity [35]. It has been noticed in our

experiments and also reported by others [21] that, due to the

variations in the training of GAN models, it is unfair to draw

a conclusion based on one single experiment that achieves

the best result; therefore, in our experiments, we perform

three independent experiments for each method, with aver-

ages reported as final results. More implementation, dataset

and evaluation details can be found in the supplementary

material.

4.3. Quantitative results

To get a global overview of how our method, the base-

line method and its variants (by either fixing or removing

the noise vector z) behave throughout training, we eval-

uate each model in 20 epoch intervals. Figure 9 (supple-

mentary material) shows inception score (left axis) and FID

(right axis) for both Oxford-102 and CUB datasets. Con-

sistent with the qualitative results presented in Figure 8

(supplementary material), we quantitatively show that by

either fixing or removing z, the baseline models retain

unimpaired performance, suggesting that z has no contri-

bution in the baseline models. However, with our proposed

dual adversarial inference, the model performance is sig-

nificantly improved on FID scores for both datasets (red

curves, Figure 9), indicating the proposed method’s abil-

ity to produce better-quality images. Table 1 summarizes

the comparison of the results of our method to the baseline

method and also other reported results of previous state-of-

the-art methods for the 64 × 64 resolution task on the three

benchmark datasets: Oxford-102, CUB and COCO. Our

method achieves the best performance based on the mean

scores for both metrics on all datasets; on the FID score,

it shows a 5.2% improvement (from 40.02 to 37.94) on the

Oxford-102 dataset, and a 10.6% improvement (from 20.60

to 18.41) on the CUB dataset. In addition, we also achieve

comparable results on visual-semantic similarity (Table 3,

supplementary material).

4.4. Qualitative results

In this subsection, we present qualitative results on text-

to-image generation and interpolation analysis based on in-

ferred content (ĉ) and inferred style (ẑ).

First, we visually compare the quality and diversity of

images generated from our method against the baseline.

Figure 4 shows one example for each dataset, illustrating

that our method is able to generate better-quality images

compared to the baseline method, which agrees with our

quantitative results in Table 1. We provide more examples

in the supplementary material (Section 6.8).

To make sure we are not overfitting, and to investigate

whether we have learned a representative latent space, we

look at interpolations of projected locations in the latent

space. Interpolations also enable us to examine whether

the model has indeed learned to separate style from con-

tent in an unsupervised way. To do this, we provide the

trained inference model with two images: the source image

and the target image, and extract their projections ẑ and ĉ

for interpolation analysis. As shown in Figure 5, the rows

correspond to reconstructed images of linear interpolations

in ĉ from source to target image and the same for ẑ as dis-
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Figure 5: Examples of reconstructed images by interpolation of inferred content ĉ and inferred style ẑ from sources to targets. The learned

style information includes: (a) quantity, (b) pose, (c) size and (d) background.

This flower is pink and yellow in
color, and has petals that are
ruffled and spotted.

This flower has thick and pointed
petals in shades of bright red.

This flower has a large purple
petal with a white colored anther.

This flower has petals that are
purple with white stamen.

This flower has white petals
as well as a pedicel.

This flower has petals that are
yellow and are very thin.

This flower has petals that are
yellow and has dark lines.

This flower petals is light
bluish and purplish color.
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Figure 6: Disentangling content (in rows) and style (in columns) on Oxford-102 dataset by using content sources either from text descrip-

tions (left) or images (right). More results are provided in the supplementary material (Section 6.9).

played in columns. The smooth transitions of both the con-

tent represented by ĉ from the left to right and the style rep-

resented by ẑ from the top to bottom indicate a good gener-

alization of our model representing both latent spaces, and

more interestingly, we find promising results showing that

ẑ is indeed controlling some meaningful style information,

e.g., the number and pose of flowers, the size of birds and

the background (Figure 5, more examples in supplementary

material).

4.5. Disentanglement constraint

Despite promising results evidenced by many such ex-

amples as shown in Figure 5, we notice that the information

captured by inferred style (ẑ) is not always consistent and

faithful when we use Gaussian priors for both content and

style. Inspired by the theories from independent component

analysis (ICA) for separating a multivariate signal into ad-

ditive subcomponents [4], we use a Bernoulli distribution

for the content representation to satisfy the non-Gaussian

constraint. This provides us with a better disentanglement

of content and style. Note that an alternative approach for

ICA has also recently been explored in [13]. As shown in

Figure 6 and Figure 7, our models learn to synthesize im-

ages by combining content and style information from dif-

ferent sources while preserving their respective properties

(e.g., color for the content; and location, pose, quantity, etc.

for the style), which suggests the disentanglement of con-

tent and style. Note that the content information can either

directly come from a text description (left, Figure 6 and Fig-

ure 7) or be inferred from an image source (right, Figure 6

and Figure 7). More examples and discussions are provided

in the supplementary material (Section 6.9).

Higgins et al. [11] and Zhang et al. [34] have proposed

quantitative metrics for the disentanglement analysis which

involve classification of the style attributes or comparison of

the distance between generated style and true style. How-

ever, in our case, the dataset does not contain any labeled

attribute that can be used to evaluate a captured style. As a
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Figure 7: Disentangling content (in rows) and style (in columns) on CUB dataset by using content sources either from text descriptions

(left) or images (right). More results are provided in the supplementary material (Section 6.9).

result, their proposed metrics would not be suitable in our

case. One possible solution would be to artificially create a

new dataset that has the same content over multiple known

styles. We leave this exploration for future work.

4.6. Ablation study

In our method, we have multiple components, each of

which is optimized by its corresponding objective. The pre-

vious works [26, 32, 35] for text-to-image synthesis use

the discriminator Dx,ϕt
to discriminate whether the image

x matches its text embedding ϕt. However, with the in-

tegration of adversarial inference, where a new discrimi-

nator Dx,c is designed to match the joint distribution of

(x, ĉ) and (x̃, c), we now question whether the discrimi-

nator Dx,ϕt
is still required, given the fact that c is learned

from ϕt. To answer this question, we remove the objective

Vt2i(D,G) from our method, and as seen in Table 2, the per-

formance on the CUB dataset significantly drops for both

inception score and FID, indicating that Dx,ϕt
is not redun-

dant in our method by providing strong supervision over the

text embeddings. Similarly, we examine the role of cycle-

consistency loss in our method by removing Vcycle(D,G)
from the objective. We observe a slight drop in both in-

ception score and FID (Table 2), suggesting that cycle-

consistency can further improve the learning of adversarial

inference, which is in agreement with [19]. It is also worth

mentioning that our method without cycle-consistency still

achieves better FID scores than the baseline method on the

CUB dataset (Table 1 and Table 2), which additionally sup-

ports our proposal to integrate the inference mechanism in

the current text-to-image framework. We also examine the

model performance by using l2 loss for cycle-consistency

instead of the adversarial loss. The resulting degradation in

quality is unexpectedly dramatic (Table 2). Figure 10 (sup-

Method Inception Score FID

ours 3.58 ± 0.05 18.41 ± 1.07

ours without Vt2i 3.31 ± 0.04 20.65 ± 0.47

ours without Vcycle 3.53 ± 0.06 19.29 ± 0.90

l2 loss for Vcycle 1.73 ± 0.15 149.8 ± 16.4

Table 2: Ablation study on CUB dataset. Note that the ablation on

Vdual eventually turns into the baseline.

plementary material) shows the generated images using ad-

versarial loss compared with those using l2 loss, and it is

clear that the latter gives blurrier images.

5. Conclusion

In this paper, we incorporate a dual adversarial inference

procedure in order to learn disentangled representations of

content and style in an unsupervised way, which we show

improves text-to-image synthesis. It is worth noting that the

content is learned both in a supervised way through the text

embedding and in an unsupervised way through the adver-

sarial inference. The style, however, is learned solely in an

unsupervised manner. Despite the challenges of the task,

we show promising results on interpreting what has been

learned for style. With the proposed inference mechanism,

our method achieves improved quality and comparable vari-

ability in generated images evaluated on Oxford-102, CUB

and COCO datasets.

Acknowledgements This work was supported by Mitacs

project IT11934. The authors thank Nicolas Chapados for

his constructive comments, and Gabriel Chartrand, Thomas

Vincent, Andew Jesson, Cecile Low-Kam and Tanya Nair

for their help and review.

7574



References

[1] Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip

Bachman, and Aaron Courville. Augmented cyclegan:

Learning many-to-many mappings from unpaired data. In

ICML, 2018. 4
[2] Miriam Cha, Youngjune L Gown, and HT Kung. Adversarial

learning of semantic relevance in text to image synthesis. In

AAAI, 2019. 2
[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-

resentation learning by information maximizing generative

adversarial nets. In NIPS, 2016. 3
[4] Pierre Comon. Independent component analysis, a new con-

cept? Signal processing, 36(3):287–314, 1994. 7
[5] Ayushman Dash, John Cristian Borges Gamboa, Sheraz

Ahmed, Marcus Liwicki, and Muhammad Zeshan Afzal.

Tac-gan-text conditioned auxiliary classifier generative ad-

versarial network. In arXiv preprint arXiv:1703.06412,

2017. 2
[6] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-

versarial feature learning. In ICLR, 2017. 2, 4
[7] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier

Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron

Courville. Adversarially learned inference. In ICLR, 2017.

2, 3, 4
[8] Abel Gonzalez-Garcia, Joost van de Weijer, and Yoshua Ben-

gio. Image-to-image translation for cross-domain disentan-

glement. In NIPS, 2018. 5
[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

1
[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In NIPS, 2017. 5, 12
[11] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,

Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. beta-vae: Learning basic visual con-

cepts with a constrained variational framework. In ICLR,

2017. 7
[12] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and

Honglak Lee. Inferring semantic layout for hierarchical text-

to-image synthesis. In CVPR, 2018. 2
[13] Ilyes Khemakhem, Diederik P Kingma, and Aapo

Hyvärinen. Variational autoencoders and nonlinear ica: A

unifying framework. 2019. 7
[14] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,

and Jiwon Kim. Learning to discover cross-domain relations

with generative adversarial networks. In ICML, 2017. 4
[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 12
[16] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. In ICLR, 2014. 5
[17] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo

Larochelle, and Ole Winther. Autoencoding beyond pixels

using a learned similarity metric. In ICML, 2016. 5
[18] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh

Singh, and Ming-Hsuan Yang. Diverse image-to-image

translation via disentangled representations. In ECCV, 2018.

2
[19] Chunyuan Li, Hao Liu, Changyou Chen, Yuchen Pu, Liqun

Chen, Ricardo Henao, and Lawrence Carin. Alice: To-

wards understanding adversarial learning for joint distribu-

tion matching. In NIPS, 2017. 3, 4, 8
[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 2, 12
[21] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain

Gelly, and Olivier Bousquet. Are gans created equal? a

large-scale study. In NIPS, 2018. 6
[22] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. In arXiv preprint arXiv:1411.1784, 2014. 1
[23] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In

ICVGIP, 2008. 2, 12
[24] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao.

Mirrorgan: Learning text-to-image generation by redescrip-

tion. In CVPR, 2019. 2, 4
[25] Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele.

Learning deep representations of fine-grained visual descrip-

tions. In CVPR, 2016. 12
[26] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative ad-

versarial text to image synthesis. In ICML, 2016. 1, 2, 3, 4,

6, 8, 12, 13
[27] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka,

Bernt Schiele, and Honglak Lee. Learning what and where

to draw. In NIPS, 2016. 2, 6
[28] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In NIPS, 2016. 5, 12
[29] Peter Welinder, Steve Branson, Takeshi Mita, Catherine

Wah, Florian Schroff, Serge Belongie, and Pietro Perona.

Caltech-ucsd birds 200. 2010. 2, 12
[30] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,

Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-

grained text to image generation with attentional generative

adversarial networks. In CVPR, 2018. 2, 4
[31] Zili Yi, Hao (Richard) Zhang, Ping Tan, and Minglun Gong.

Dualgan: Unsupervised dual learning for image-to-image

translation. In ICCV, 2017. 4, 5
[32] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei

Huang, Xiaogang Wang, and Dimitris Metaxas. Stackgan:

Text to photo-realistic image synthesis with stacked genera-

tive adversarial networks. In ICCV, 2017. 1, 2, 3, 4, 5, 6, 8,

12
[33] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-

gang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-

gan++: Realistic image synthesis with stacked generative

adversarial networks. In arXiv preprint arXiv:1710.10916,

2017. 6
[34] Yexun Zhang, Ya Zhang, and Wenbin Cai. Separating style

and content for generalized style transfer. In CVPR, 2018. 7
[35] Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic

text-to-image synthesis with a hierarchically-nested adver-

sarial network. In CVPR, 2018. 2, 4, 5, 6, 8, 12
[36] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

7575



Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networkss. In ICCV, 2017. 4

7576


