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Abstract

To model radial distortion there are two main ap-

proaches; either the image points are undistorted such that

they correspond to pinhole projections, or the pinhole pro-

jections are distorted such that they align with the image

measurements. Depending on the application, either of the

two approaches can be more suitable. For example, distor-

tion models are commonly used in Structure-from-Motion

since they simplify measuring the reprojection error in im-

ages. Surprisingly, all previous minimal solvers for pose es-

timation with radial distortion use undistortion models. In

this paper we aim to fill this gap in the literature by propos-

ing the first minimal solvers which can jointly estimate dis-

tortion models together with camera pose. We present a

general approach which can handle rational models of ar-

bitrary degree for both distortion and undistortion.

1. Introduction

Jointly estimating the 6 degree-of-freedom (6DOF) pose

of a camera and its intrinsic calibration is an important prob-

lem with applications in camera calibration [2], visual lo-

calization [37], and Structure-from-Motion (SfM) [38, 41]

for uncalibrated images, e.g. from Internet photo collections

such as Flickr. A common approach to this problem is to

use a minimal solver [13,20,28,29] inside a RANSAC [11]

loop. Given a set of 2D-3D matches between pixels in an

image and 3D point coordinates in the scene, the solvers

provide an initial estimate of the intrinsic and extrinsic pa-

rameters. Later, the best model estimated by RANSAC is

typically refined by minimizing the reprojection errors [46].

The images taken by real cameras do not perfectly fol-

low a pinhole model. For perfectly centered lenses con-

sisting of flawless elements, the distortion is radially sym-

metric around the principal point1. Such lens distortion is

known as radial distortion. Due to manufacturing imperfec-

tions, the optical centers of various lens elements may be

misaligned and the CCD sensor array may not be perfectly

1Which often gives a good approximation of the true distortion center.

Figure 1: Two-step approach for radial distortion absolute

pose. First, using radial alignment constraints we estimate

the pose of the camera up to an unknown translation along

the principal axis (blue line). Using the full projection equa-

tions we then solve for the remaining translational degree of

freedom jointly with focal length and distortion parameters.

perpendicular to the optical axis. These misalignments can

be modeled by adding a tangential component. For most

modern cameras, the radial component of the lens distortion

is dominant and the tangential component is often negligi-

ble. Therefore, most methods for camera calibration or joint

estimation of camera pose and its intrinsic calibration con-

sider distortion models consisting only of the radial compo-

nent. The tangential component is either neglected entirely

or is estimated only in a final, non-linear, refinement step.

There are two approaches for handling radial distortion:

undistortion models estimate a function that maps the orig-

inal distorted 2D pixel measurements to undistorted mea-

surements. Such models are useful if unprojection, i.e.

mapping from image space to world space, is of particular

interest. For example, undistorting an image for processing

in Multi-View Stereo [39, 40]. In the context of minimal

solvers, the main advantage of undistortion models is that

they decouple the camera pose parameters, i.e., the param-

eters describing the rotation and translation of the camera,

from the distortion parameters. To the best of our knowl-

edge, all minimal solvers for problems with radial distor-

tion [6, 12, 16, 20–22, 24, 25, 27–29, 34–36] in the literature

are based on undistortion models.

Distortion models determine a mapping from undistorted
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projections of 3D points to the corresponding distorted mea-

surements. Such models are preferable if the applications

requires projecting points into image space, e.g., phone-

based Augmented Reality applications. Distortion models

are also common in Structure-from-Motion pipelines and

other 3D vision frameworks (see Table 3): it is usually

preferable to minimize reprojection error in the original im-

age, e.g., for triangulation [24], and distortion models allow

for easier computation of reprojection errors in image space.

Due to a lack of distortion-based solvers, one approach

is to first estimate the camera pose using an undistortion-

based solver and then re-fit a distortion model on the inliers.

However, there is usually no closed form solution for con-

verting between two distortion/undistortion models. Rather,

one needs to estimate the parameters using iterative (least-

squares) optimization. This implies that the undistortion

model needs to accurately describe the camera distortion.

While this approach is likely to work in many cases, it po-

tentially introduces additional failure modes.

In this paper, we present a general framework for min-

imal absolute pose solvers which can handle both distor-

tion and undistortion models. Our approach is based on two

stages: Following [7, 20], the first stage uses a 1D cam-

era model [44] to estimate the pose of the camera up to an

unobservable translation along its principal axis. In the sec-

ond stage, we apply novel minimal solvers to jointly de-

termine the radial distortion parameters of the camera and

the remaining pose parameter. In detail, this paper makes

the following contributions: 1) we present a framework for

estimating the absolute pose of a camera together with a dis-

tortion model. To the best of our knowledge, ours is the first

work to use a distortion rather than an undistortion model.

2) We derive novel minimal solvers for the family of ratio-

nal distortion models, covering both polynomial and divi-

sion models. 3) Detailed experiments compare our solvers

to state-of-the-art undistortion-based pose solvers, demon-

strating similar performance.

2. Related Work

Lens distortion models. Research on camera lens dis-

tortions dates back to the beginning of the 20th century.

Due to some manufacturing imperfections, the optical cen-

ters of various lens elements may be misaligned and CCD

sensor arrays may not be perpendicular to the optical axis.

These misalignments can be modeled by adding a tangen-

tial component to the radial component of the distortion.

In 1919, Conrady [9] introduced the first decentering dis-

tortion model. Later in 1966, this model was improved

by the now commonly used Brown-Conrady model [5]. It

models the radial and tangential components of the distor-

tion by placing a thin prism in front of a perfectly centered

lens. The model is used in several popular calibration tool-

boxes [2, 3] for precise calibration of camera distortion.

As outlined above, radial distortion is the dominant dis-

tortion effect observed in modern cameras. Radial distor-

tion is usually modeled using a rational function [4,8,32,43]

that is dependent on the radius, i.e., on the distance of the

image point from the distortion center. Rational functions

can be used to model either distortion or undistortion. Ra-

dial distortion models [8, 12, 43] differ in the degree and

form of the polynomials used in numerators and denomina-

tors of these rational functions. For some special rational

distortion functions, an analytical inverse formula can be

derived [32]. However, in general these models lack an an-

alytical inverse and the inversion can only be done locally

using iterative schemes.

Popular sub-classes of rational distortion models are

polynomial and division models [12]. For example, the

Brown-Conrady model [5] uses a polynomial function to

model radial distortion. Division models, popularized by

Fitzgibbon [12], contain radial distortion parameters only

in the denominator. They are often preferred over polyno-

mial models in minimal solvers (see e.g. [6, 16, 20–22, 24,

25, 28, 35, 36]) as they usually result in simpler equations

and can get sufficient accuracy even with few parameters.

In general, for rational radial distortion models the dis-

tortion is dominated especially by the first few terms. More-

over, it has been shown that using polynomials with higher-

order terms may cause numerical instabilities [47]. There-

fore, most of the commonly used radial distortion models

contain only up to 3 parameters in numerator and / or de-

nominator. Section 3 provides a more detailed description

of the different radial distortion models used in this paper.

Absolute pose estimation. Given n 2D-3D point matches,

the absolute camera pose estimation problem (PnP) aims

to estimate the rotation matrix R and the translation vector

t describing the absolute camera pose w.r.t. the coordinate

system of the 3D points, and potentially (part of) the intrin-

sic calibration of the camera.

For absolute pose estimation without radial distortion

many different minimal or non-minimal solutions exist,

i.e. P3P and PnP solutions for calibrated cameras [11, 13,

17, 31], P3.5Pf and P4Pf solutions for cameras with un-

known focal length [26, 28, 50, 51] or P4.5Pfuv and P5Pfuv

solvers for cameras with unknown focal length and princi-

pal point [28, 45]. There are also solvers that model other

non-linear distortions, e.g. from rolling-shutter [1, 18].

Since consumer photography is now dominated by

mobile-phone and wide-angle cameras (e.g. GoPro-type

cameras), images with significant radial lens distortion are

increasingly common. Therefore, several solutions to the

absolute camera pose estimation problem with unknown ra-

dial distortion appeared recently. To our knowledge all ex-

isting radial distortion absolute pose solvers use the division

model [12] to model the undistortion function. Josephson
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and Byröd [16] simultaneously estimated the absolute pose,

the focal length, and a one-parameter division undistortion

model from the minimal number of four 2D-3D point corre-

spondences (P4Pfr). To reduce the size of the solver, Bujnak

et al. [6] split this P4Pfr problem into planar and non-planar

cases. Recently, Larsson et al. [28] significantly reduced

the elimination template size and proposed a degenerate-

free minimal solution to the P4Pfr problem.

Kukelova et al. [20] used five point correspondences to

solve the absolute pose problem with unknown focal length

and up to three parameters for a division undistortion model.

This method uses the property that the camera pose can be

estimated up to a translation along its principal axis using

five point correspondences and a 1D camera model [44]. In

a second step, [20] then estimated the remaining translation

parameter, the unknown focal length and the undistortion

parameters. Nakano [34] extended [20] to solve the PnPfr

problem for n ≥ 5 point matches in the least square sense.

Larsson et al. [29] used a similar two step method based

on the 1D radial camera model to first estimate the camera

pose up to a translation along its principal axis together with

the unknown principal point from seven point correspon-

dences. In the second step the unknown translation param-

eter, focal length and one-parameter division undistortion

model were estimated linearly in a least-square sense.

In this paper, we propose multiple solvers for rational

distortion models. Following [20], we first estimate most of

the camera pose parameters in a first stage and then solve

for the remaining translation parameter and the distortion

parameters jointly in a second stage.

3. Background

3.1. Radial Distortion

Unlike focal length, which uniformly scales the image,

radial distortion is characterized by scaling the image points

differently depending on the their distance to the distortion

center. Typically points further from the distortion center

are more heavily distorted. Since the magnitude of radial

distortion only depends on the distance to the image center

it can be modelled as

x′ = h(‖x‖)x, (1)

if the coordinate system is aligned with the distortion center.

Radial distortion models can be divided into two main

categories; distortion models and undistortion models. In a

distortion model, the pinhole projections are distorted such

that they match the observed image points, i.e.

K−1x = D (π (RX + t)) (2)

where π is the pinhole projection and D is some non-

linear function on the form (1) which models the distortion.

Conversely, in an undistortion model, the image points are

undistorted such that they match the pinhole projections, i.e.

D(K−1x) = π (RX + t) . (3)

The non-linear distortion mappings D are usually approxi-

mated with a rational function,

h(r) =
1 + µ1r

2 + µ2r
4 + µ3r

6 + . . .

1 + λ1r2 + λ2r4 + λ3r6 + . . .
. (4)

It is common to either only include non-linear terms in the

numerator, giving rise to the polynomial models,

h(r) = 1 + µ1r
2 + µ2r

4 + µ3r
6 + . . . , (5)

or analogously the division model,

h(r) =
1

1 + λ1r2 + λ2r4 + λ3r6 + . . .
. (6)

As far as the authors know, all previous work on minimal

solvers uses the division model for undistortion, as in (3),

since it in general results in simpler equation systems.

3.2. Pose under Radial Projections

Determining the 6 DOF pose of a camera with unknown

radial distortion is a difficult task due to the extra non-

linearities in the projection equations. One approach, orig-

inally introduced by Tsai [47], is to only consider the pro-

jections modulo a radial scaling. In the context of camera

resectioning, this means that we only require that the projec-

tions lie on the radial lines passing though the image points.

See Figure 1 for an illustration. While these constraint are

weaker, they are also invariant to changes in focal length

and radial distortion, since these will just move projections

along these lines. Unfortunately, these constraints are also

invariant to translation along the principal axis, thus it is

only possible to recover the camera pose up to this unob-

servable forward translation using these constraints. This

projection model is sometimes called the 1D radial camera

model, see [44] and the supplementary material for more

details. The resection problem for 1D radial cameras can be

linearly solved using 7 point correspondences (see [7]). The

minimal problem (with 5 points) was solved in [20] as part

of their two-step distortion pose solver. This was recently

extended to also estimate the principal point (from 7 points)

by Larsson et al. [29].

4. Radial Distortion Absolute Pose

Our approach for radial distortion absolute pose follows

the two-step approach used in previous work [7,20], by first

estimating a 1D radial camera and then estimating the fo-

cal length/distortion parameters jointly with the remaining

degree of freedom in the translation. Compared to previous
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work we consider more general distortion models, for both

distortion and undistortion.

In the following sections we assume that we have esti-

mated a 1D radial camera. Using this we can then transform

the 3D points into the camera’s local coordinate system,

Xc =





x
y
z



 =





r11 r12 r13
r21 r22 r23
r31 r32 r33



Xg +





t1
t2
0



 . (7)

Note that these points are only given up to an unknown

translation in the z-direction and possibly a flipped sign for

the z-axis (corresponding to a negative focal length).

4.1. Rational Undistortion Model

We begin by considering the case of undistortion, i.e.

the rational model is used to undistort the observed image

points. This case is slightly simpler compared to the distor-

tion case, but we will show that a similar approach can be

applied to both problems.

The translation parameter t3 will move the points (7)

along the z-axis. The goal is now to determine t3 such that

the projection equations for the undistortion model (3), i.e.

h(‖K−1x‖)K−1x = π(Xc + e3t3) (8)

are satisfied.2 For a rational model (4), this becomes,

1 +
∑np

i=1
µi(

r
f
)2i

1 +
∑nd

i=1
λi(

r
f
)2i

·
1

f
x =

1

z + t3

(

x
y

)

, (9)

where x is the observed (distorted) image point, r = ‖x‖

and
(

x, y, z + t3
)T

is the 3D point in the local coordinate

system of the camera (see previous section). The change of

variables, µi → µif
2i and λi → λif

2i−1, yields

1 +
∑np

i=1
µir

2i

f +
∑nd

i=1
λir2i

x =
1

z + t3

(

x
y

)

. (10)

While it may seem that (10) gives two constraints

(since there are two equations), recall that the unknowns

(t3, f,λ,µ) only move the projections along the radial

lines. Thus only the radial component of (10) gives us a

constraint. Taking the dot product of (10) with x and mul-

tiplying with the denominators, we get

(z+t3)

(

1 +

np
∑

i=1

µir
2i

)

−α

(

f +

nd
∑

i=1

λir
2i

)

= 0, (11)

where α = xT (x, y)T / ‖x‖2. This is a polynomial equa-

tion of degree min(2, np+1) in the unknowns (t3, f,λ,µ).
Since each 2D-3D correspondence yields one such equa-

tion, we need 2+np +nd points to get a minimal problem.

2We assume that the camera has zero skew, unit aspect ratio and cen-

tered principal point, i.e. K = diag(f, f, 1)

The unknowns (f,λ) appears linearly in (11) and can be

easily eliminated. For a pure division model (i.e. np = 0,

which was considered in [20]) all of the equations are in

fact linear and the problem is reduced to solving a simple

linear system (as was also done in [20]). However, in gen-

eral (np 6= 0), the equations will be non-linear polynomials.

To tackle these we use the hidden variable trick [10]. Hiding

t3 after linearly eliminating f and λ yields



 A(t3)





(

µ

1

)

= 0, (12)

where A(t3) =
∑n

k=0
tk
3
Ak and each Ak and Ak are con-

stant matrices.

4.1.1 Reduction to Univariate Polynomial

Since the matrix A(t3) is rank-deficient we must have that

p(t3) = det(A(t3)) = 0. (13)

This gives us a single univariate polynomial in t3, whose

roots can be efficiently found using root-bracketing meth-

ods such as Sturm sequences [15].

4.1.2 Polynomial Eigenvalue Formulation

Another approach is to formulate equation (12) as a poly-

nomial eigenvalue problem (PEP), see e.g. [19] for more

details. Equation (12) can be rewritten as

(

A0 +A1t3 +A2t
2

3
+ . . .

)

(

µ

1

)

= 0, (14)

and can be further transformed to a generalized eigenvalue

problem (GEP) [10] and solved using standard efficient

eigenvalue solvers. Note that the GEP formulation can in-

troduce additional spurious solutions. As described in [19]

we can reduce the size of the eigenvalue problem by remov-

ing columns and rows which only contain zeroes. These

correspond to parasitic solutions that were introduced by

transformation of PEP to GEP. In our solvers, we were able

to remove all spurious solutions in this way.

4.2. Rational Distortion Model

We now turn our attention to the case of the rational dis-

tortion model. In this case, we have that the projection of

the 3D point, i.e.
(

x, y
)

/(z + t3), undergoes rational dis-

tortion such that it matches the image point (as in (2)). This

case is more difficult since the radius (used in the distor-

tion) depends on the unknown t3, which makes the equa-

tions highly non-linear. The reprojection equations are

x =
f +

∑np

i=1
µi(

r
d
)2i

1 +
∑nd

i=1
λi(

r
d
)2i

(

x/d
y/d

)

, (15)
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where r =
√

x2 + y2 and d = z + t3. Here we have made

the change of variables, µi → µi/f . Note that d = z + t3
will be different for each point, thus we cannot remove the

extra non-linearity with a simple change of variables as was

the case for the undistortion model. Taking the dot product

with x and multiplying with the denominators we get

dn+

nd
∑

i=1

λir
2idn−2i−αfdn−1+α

np
∑

i=1

µir
2idn−2i−1 = 0,

(16)

where n = max(2np + 1, 2nd) and α is defined as before.

This is a polynomial equation of degree n. In contrast to the

undistortion case, only one of the unknowns appear linearly

in these equations (either µnp
or λnd

).

Note that while the polynomial system is of degree n,

only the translation t3 appears in higher order degrees.

Again, this makes the hidden variable technique [10] es-

pecially suitable. Hiding t3 the equations can be written as



 A(t3)













f
λ

µ

1









= 0, (17)

where A(t3) =
∑n

k=0
tk
3
Ak and Ak are constant matrices.

Using the same approach as in Section 4.1.1 or Section 4.1.2

we can solve for the unknown translation t3.

4.3. Frontoparallel Plane Degeneracy

It is well-known that estimating the absolute pose jointly

with focal length is degenerate for fronto-parallel planar

scenes. The problem is that it becomes impossible to dis-

ambiguate forward motion (changes in t3) from changes in

the focal length. Consider (15): For fronto-parallel planar

scenes we may w.l.o.g. assume z = 0 for all points. In

this case the unknowns in (15) only appear as quotients of

t3, i.e. f/t3, µi/t
2i
3
, λi/t

2i
3

. Thus any change in t3 can be

compensated by the corresponding scaling of f,µ,λ.

4.4. Recovering Distortion Parameters

Once the forward translation t3 has been determined, it is

easy to recover the remaining unknowns. Inserting t3 into

(10) or (15) and multiplying with the denominators yields

linear equations in f,µ and λ. For each solution t3 returned

from the solver, these equations will have a single exact so-

lution. Of course, since these are just linear equations it also

naturally extends to estimation from non-minimal samples,

by simply solving the equations in a least squares sense, i.e.

min
f,µ,λ

‖M(f,µ,λ)⊤ − b‖2. (18)

In practice we found that adding a small dampening factor

to the distortion parameters to prevent overfitting, i.e.

min
f,µ,λ

‖M(f,µ,λ)⊤ − b‖2 + ǫ‖µ‖2 + ǫ‖λ‖2, (19)

µ

D(µ, λ) 0 1 2 3

λ

0 1 5 11 19

1 3 6 14 24

2 9 10 15 27

3 17 20 21 28

µ

U(µ, λ) 0 1 2 3

λ

0 1 2 3 4

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

Table 1: Number of solutions for rational model for radial

distortion. Problems which are minimal together with cam-

era pose estimation are highlighted in bold. The first col-

umn in in the right table corresponds to the division solver

from Kukelova et al. [20].

for some small ǫ > 0 usually gives slightly better results.

In [14], the authors show how to solve such a opti-

mization problems with additional constraints, e.g. that the

first and second derivative of the distortion function should

be positive (which is the case for barrel distortion), using

SDP relaxations. This method could essentially be used as

a drop-in replacement of the linear least squares solution

(19). However, since the method comes with a significantly

higher computational cost we do not consider it in the ex-

perimental evaluation.

4.5. Implementation Details

In the previous sections we derived a general method

which can handle distortion models of arbitrary degrees.

We have implemented code for generating C++/MATLAB

solvers using the proposed approach. The complexity of the

solvers varies with the complexity of the distortion model.

Table 1 shows the number of solutions w.r.t. the degree of

the rational function. Note that this is for the upgrade step

where we estimate the forward translation t3. It is per-

formed for each pose estimate returned by the 1D radial

solver (at most four). In [23], it was reported that radial P5P

returns on average 1.7 real solutions for non-planar scenes.

Runtime. The runtime of a C++ implementation of the

solver is shown in Table 2. The table includes the solvers

based on extracting a univariate polynomial (Section 4.1.1)

as well as the polynomial eigenvalue formulation (Sec-

tion 4.1.2), which are significantly slower in comparison.

Univ. µ
D(µ, λ) 0 1 2 3

λ

0 0.2 1.4 5.3 15.7

1 0.7 2.0 8.7 25.6

2 3.5 4.6 9.8 42.8

3 12.4 16.8 21.5 64.0

Univ. µ
U(µ, λ) 0 1 2 3

λ

0 0.2 0.4 0.7 1.1

1 0.2 0.3 0.7 1.1

2 0.3 0.4 0.7 1.2

3 0.4 0.6 0.9 1.4

PEP µ
D(µ, λ) 0 1 2 3

λ

0 - 3.8 16.3 49.0

1 1.3 4.8 24.7 80.2

2 11.2 13.1 30.2 104.5

3 38.0 53.3 60.1 111.2

PEP µ
U(µ, λ) 0 1 2 3

λ

0 - 0.3 1.4 2.3

1 0.0 0.3 1.3 2.3

2 0.0 0.3 1.4 2.3

3 0.2 0.5 1.6 2.4

Table 2: Runtime of the solvers in microseconds (µs).
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Inverting distortion models. For the rational distortion

models, (4), that we consider, there will in general not exist

any closed form expressions for the inverse. However, in

some cases it is necessary to locally find the inverse, e.g. if

we have a distortion model and want to undistort the image,

or similarly if we have an undistortion model and want to

project something into image space. In either case we are

given some x and want to find x′ such that h(‖x′‖)x′ = x.

Since the distortion is purely radial we can w.l.o.g. assume

that x′ = r
‖x‖x for some r ∈ R. This reduces the problem

to solving the univariate equation, h(r)r = ‖x‖, which can

be done using iterative methods (starting from r = ‖x‖).

5. Experimental Evaluation

The methods proposed in Section 4.1 and Section 4.2

work for arbitrary degrees of the rational distortion mod-

els. In the experimental evaluation, we focus on five dis-

tinct models (c.f . Table 3). These models were chosen since

they are commonly used in 3D vision applications such

as Structure-from-Motion [38]. We note that the undistor-

tion model U(0, 1) corresponds to the state-of-the-art solver

from Kukelova et al. [20], where the problem reduces to a

linear system. Kukelova et al. [20] can linearly solve also

for U(0, 2) and U(0, 3) models, however these models are

less common in SfM applications and according to our ex-

periments they do not bring a significant improvement over

U(0, 1). For all other models however, there are currently

no previous solvers which are able to estimate the distor-

tion parameters jointly with camera pose.

We first evaluate the numerical stability of our solvers

through synthetic experiments in Section 5.1. Sections 5.2

and 5.3 then consider two applications of our solvers.

5.1. Synthetic Data Experiments

We evaluate the numerical stability of the proposed

solvers on synthetic data. We follow the setup used in [50,

51] to generate synthetic scenes. For each camera model,

we select intrinsic and distortion parameters which approx-

imately correspond to a GoPro camera with a wide-field-of-

view settings (see Figure 3 for some examples). For each

synthetic scene, we use the solvers to estimated the camera

poses. We report the error in the translational component3.

Each solver creates multiple pose hypotheses. We use the

hypothesis closest to the ground truth pose when measuring

the numerical stability of the solvers.

In the experiment, we compare using a root-bracketing

method with Sturm sequences [15] (Section 4.1.1) and con-

verting the problem into a polynomial eigenvalue problem

(PEP) (Section 4.1.2). Figure 2 shows the distribution of

translation errors for our new solvers, generated from 1000

synthetic scenes each. As can be seen, it is necessary to

3Since we solve an exact instance, all errors are qualitatively similar.

−20 −15 −10 −5 0 5
0

0.1

0.2

0.3

log10 translation error

−20 −15 −10 −5 0 5
0

0.2

0.4

0.6

log10 translation error

U(1, 0)

D(2, 0)

D(3, 0)

D(3, 3)

Figure 2: Solver stability on synthetic data. Top: Root-

bracketing with Sturm chains (Section 4.1.1). Bottom:

Polynomial eigenvalue formulation (Section 4.1.2).

use the more computationally expensive PEP solver for the

more complicated models D(3, 0) and D(3, 3). As can be ex-

pected, complex models with more parameters are numeri-

cally less stable than models with fewer parameters. Still,

all solvers are sufficiently stable.

5.2. Application: Calibration from a Checkerboard

During offline calibration, a calibration target such as a

checkerboard pattern is commonly used to obtain an ac-

curate estimate of the camera’s intrinsic parameters. The

use of the checkerboard results in highly accurate 2D-3D

matches between image pixels and points on the pattern. In

the following, we evaluate our solvers in such a scenario.

We use a dataset consisting of 32 images captured with a

GoPro camera with a wide field-of-view and 26 images cap-

tured with the medium field-of-view setting (c.f . Figure 3).

An initial estimate for the camera poses and calibration was

obtained via a calibration toolbox [2]. We then refit a three

parameter division model for undistortion and perform bun-

dle adjustment with shared intrinsic/distortion parameters

over all images. Compared to the distortion model used

in [2] (D(3, 0) with additional tangential terms), this signifi-

cantly improved the reprojection error. We use the resulting

poses and calibration as ground truth.

We found that the U(0, 3) model performed comparably

to fitting a D(3, 3) model and chose the former to avoid a

bias in favor of our solvers.

Evaluation with ground truth poses. In a first experi-

ment, we use the ground truth poses (except for the trans-

lation component t3 that is estimated by all solvers). This

allows us to evaluate the solvers from Section 4.1 and Sec-
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Type nµ nλ New Comment

U(1, 0) Undistortion 1 0 X Used in VisualSfM [48, 49]

U(0, 1) Undistortion 0 1 Linear solver. Most common model for minimal solvers, see e.g. [6, 16, 23–25, 28, 34].

D(2, 0) Distortion 2 0 X
Used in Bundler [41], RadialCameraModel and OpenCVCameraModel† in COLMAP [38],

PinholeCameraModel in TheiaSfM [42]

D(3, 0) Distortion 3 0 X Used in Bouguet’s calibration toolbox† [2], PinholeRadialTangentialCameraModel† in TheiaSfM [42]

D(3, 3) Distortion 3 3 X OpenCV camera model, FullOpenCVCameraModel† in COLMAP [38]

Table 3: Radial distortion models used for the experiments in Section 5. †: ignoring tangential distortion terms.

Figure 3: Images of a calibration pattern recorded by a Go-

Pro camera in medium and wide field-of-view mode.

tion 4.2 independently of the initial 1D radial pose estima-

tion, which is used by all solvers as detailed in Section 3.2.

As shown in [20], the camera extrinsics computed by the

1D radial pose solver are similarly accurate a those obtained

by minimal point solvers that jointly estimate the pose and

undistortion parameters.

For each image and distortion model from Table 3, we

randomly select 1000 minimal samples and estimate the

translation t3, focal length f and distortion parameters from

them. Note that the size N of the minimal samples depends

on the degree of the model used by the solver and is given

as N = 2 + nµ + nλ. Since the minimal solvers return

multiple solutions, we project the corners in the calibration

pattern into the image and only keep the solution which has

the largest consensus set.

Table 4 shows the results of this experiment. All solvers

provide comparable results on this dataset. The new solvers

U(1, 0), D(2, 0) and D(3, 0) are slightly less accurate than

the existing U(0, 1) solver and the new D(3, 3) solver.

Evaluation with estimated poses. We repeated the exper-

iment with the but this time using pose estimates from the

1D radial solver as in [20]. As shown in Table 5, the results

follow the same trend as those obtained with ground truth

poses. One interesting observation is that D(3, 0) recovers

fewer inliers than the other solvers but still estimates poses

and calibrations of similar accuracy as U(0, 1) and D(2, 0).

Evaluation of the estimated distortion parameters. In

a next experiment, we evaluate the quality of the distortion

parameters estimated by the different models. We measure

quality as reprojection errors in pixels rather than in devi-

ation from ground truth parameters to obtain comparable

and interpretable results: We sample a dense equidistant

grid of ∼ 8000 points on the checkerboard pattern in 3D

(c.f . Figure 4). These points are then projected into the im-

ages using the ground truth camera poses and calibration.

This provides us with a set of ground truth 2D positions

that are used to measure reprojection errors for each esti-

mated (un-)distortion model. Note that the sampled points

U(0, 1) U(1, 0) D(2, 0) D(3, 0) D(3, 3)

Position (mm) 0.42 0.81 0.46 0.44 0.27

Focal (%) 0.21 0.78 0.36 0.33 0.25

Inliers (%) 99.8 94.1 95.4 94.5 98.1

Failure (%) 0.0 2.9 0.7 0.7 0.1

Dist. inliers (%) 99.5 90.6 91.2 90.0 95.5

Table 4: Median error in position and focal length using

ground truth camera poses (except for t3). Inliers corre-

spond to points with a reprojection error of less than 10px.

Failure shows the percentage of instances where the solver

failed to return a valid solution, e.g., when there were no

real roots or not all points were in front of the camera.

U(0, 1) U(1, 0) D(2, 0) D(3, 0) D(3, 3)

Position (mm) 1.73 2.23 2.05 2.13 1.49

Focal (%) 0.82 1.55 1.21 1.31 0.80

Inliers (%) 90.5 85.4 83.4 80.8 87.4

Failure (%) 0.9 3.3 1.0 0.5 0.4

Dist. inliers (%) 88.6 81.3 77.8 74.5 83.0

Table 5: Median error in position and focal length using es-

timated camera poses. See the caption of Table 4 for details.

Figure 4: Densely sampled grid (green) used to evaluate

the quality of the distortion models. Only corner detections

(blue) are used for estimation.

extend outside of the corners used for estimation. For this

experiment, we evaluate all solvers using both ground truth

and estimated camera poses.

Figure 5 shows the cumulative histogram of over the me-

dian reprojection error in pixels, and the average number of

inliers (< 10 px) for the grid points is shown at the bottom

of Table 4 and Table 5.

5.3. Application: Joint Localization & Calibration

In some applications, e.g., visual localization in an AR

cloud providing services to smart phones [33], obtaining an
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Rig Camera 4 Rig Camera 6

[28] [20] U(1, 0) D(2, 0) D(3, 0) D(3, 3) [28] [20] U(1, 0) D(2, 0) D(3, 0) D(3, 3)

Rotation (deg.) 3.47 3.46 3.47 3.46 3.47 3.47 2.65 2.65 2.64 2.64 2.65 2.64

Position (m.) 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.05 0.05

Focal (%) 0.60 0.61 1.79 0.90 0.85 2.14 1.63 1.60 1.74 1.37 1.28 1.76

Inliers (%) 95.0 95.0 93.7 94.7 94.8 95.0 93.9 94.1 94.0 94.6 94.3 94.7

Dist. inliers (%) 90.7 91.0 86.7 87.5 88.4 88.1 79.8 81.2 80.1 81.7 81.9 81.6

Table 6: ETH3D Playground: Average errors obtained after RANSAC. Both [28] and [20] use U(0, 1).

Rig Camera 4 Rig Camera 6

[28] [20] U(1, 0) D(2, 0) D(3, 0) D(3, 3) [28] [20] U(1, 0) D(2, 0) D(3, 0) D(3, 3)

Rotation (deg.) 4.81 4.80 4.75 4.79 4.78 4.78 2.76 2.72 2.71 3.44 2.72 2.73

Position (m.) 0.18 0.17 0.23 0.12 0.12 0.12 0.32 0.26 0.27 0.25 0.23 0.23

Focal (%) 1.51 1.42 2.48 0.97 0.95 1.45 3.82 3.15 3.16 3.33 2.29 2.31

Inliers (%) 95.0 95.1 94.5 95.2 94.9 95.5 92.6 93.9 93.8 94.3 94.4 94.5

Dist. inliers (%) 70.2 71.7 64.4 79.5 78.7 77.2 52.9 50.9 50.6 54.8 53.3 54.7

Table 7: ETH3D Delivery area: Average errors obtained after RANSAC. Both [28] and [20] use U(0, 1).
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Figure 5: Cumulative histogram over the median reprojec-

tion errors (in pixels) for the densely sampled grid points

(c.f . Figure 4). Top: Using ground truth poses (except for

t3). Bottom: Using estimated camera poses (Section 3.2).

accurate intrinsic calibration in an offline stage is not pos-

sible. Rather, such approaches need to jointly estimate the

pose of the camera together with its intrinsic calibration.

In our final experiment, we consider such an applica-

tion scenario. We use two different images sequences from

the ETH3D dataset [40], playground (2x240 images) and

delivery area (2x237 images). Using the provided ground

truth poses and calibrations, we constructed a sparse 3D re-

construction using the DSLR images. We then matched fea-

tures extracted from the lower resolution multi-camera rig

images against features in the DSLR images, resulting in a

set of 2D-3D correspondences with the sparse model. The

multi-camera rig consists of two stereo pairs. Since each

pair has two identical cameras we only consider one cam-

era from each pair. To perform the experiment, we then esti-

mated the pose and distortion parameters for each model in

Table 3 using LO-RANSAC [30]. The inlier threshold was

set to 5px and we ran 100 RANSAC iterations per image.

To evaluate the accuracy of the estimated calibration, we

sample a dense grid in the image, which we undistort with

the ground truth distortion model, and then re-distort us-

ing the estimated distortion model. For the undistortion

solvers (U(1, 0) and U(0, 1)), we do the opposite, i.e., undis-

tort with the estimated model and then apply re-distort with

the ground truth model. The results can be seen in Table 6

and Table 7. We also include the results from the mini-

mal U(0, 1) solver from [28], which requires four 2D-3D

matches. On these two datasets, the proposed solvers have

comparable performance to the state-of-the-art undistortion

solvers. The comparison with [28] shows that using a two-

stage approach instead of simultaneously estimating all pa-

rameters does not degrade performance.

6. Conclusion

Following a two-stage approach inspired by [20], we

have shown that it is possible to create minimal solvers for

6DOF camera pose estimation under radial distortion that

use rational (un)distortion models of an arbitrary degree.

In particular, this paper presented the first minimal solvers

based on a distortion rather than undistortion model. We

have shown that our new solvers achieve a similar accuracy

as existing undistortion-based methods. As such, our work

has closed an important gap in the literature as applications

such as Structure-from-Motion or Augmented Reality pre-

dominantly use distortion models. In general, our work pro-

vides additional options for practitioners who might have

their own motivations for using one model over another.
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