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Abstract

Snapshot-based visual localization is an important prob-

lem in several computer vision and robotics applications

such as Simultaneous Localization And Mapping (SLAM).

To achieve real-time performance in very large-scale envi-

ronments with massive amounts of training and map data,

techniques such as approximate nearest neighbor search

(ANN) algorithms are used. While several state-of-the-art

variants of quantization and indexing techniques have been

demonstrated to be efficient in practice, their theoretical

memory cost still scales at least linearly with the training

data (i.e., O(n) where n is the number of observations in

the database), since each observation must be associated

with at least one code vector. To address these limitations,

we present a novel hierarchical encoding approach that en-

ables sub-linear storage for sequential data, e.g. ordered

frames in a video sequence commonly used in visual local-

ization datasets. The algorithm exploits the widespread se-

quential nature of sensor information streams in robotics

and autonomous vehicle applications and achieves, both

theoretically and experimentally, sub-linear scalability in

storage required for a given environment size. Further-

more, the associated query time of our algorithm is also of

sub-linear complexity. We benchmark the performance of

the proposed algorithm on several real-world benchmark

datasets and experimentally validate the sub-linearity of

our approach, while also showing that our approach yields

competitive absolute storage performance as well.

1. Introduction

In recent years, there has been a rapidly growing demand

for improved capabilities underlying autonomous robot and

vehicle applications, such as Simultaneous Localization

And Mapping (SLAM). This demand has inspired a large

body of work that address the visual place recognition prob-

lem, a key component of SLAM systems, with encour-

aging results [12, 22]. Among the existing approaches,

snapshot-based methods, which primarily rely on image re-

trieval [33, 31, 11], still play a significant role since they are

widely used not only for direct localization but also as an

intermediate step that bootstrap large-scale structure-based

systems. Generally, the underlying mechanism behind most

retrieval-based variants is the utilization of global image de-

scriptors [18, 1, 35, 16] to characterize locations. A query

image can then be localized by searching for representations

in a database that have similar descriptor values. It has been

shown in recent work that the use of source coding tech-

niques, represented by well-known algorithms such as vec-

tor quantization [14] and variants such as Product Quanti-

zation [17], Optimized Product Quantization [13], together

with indexing techniques such as Inverted Index [19, 2]

have enabled efficient approximate nearest neighbor search.

As a consequence, several techniques have been proposed

that can handle datasets containing billions of observations

with real-time performance [4, 6].

In parallel to the development of snapshot-based algo-

rithms, structure-based approaches have also attracted much

attention from researchers [32]. Unlike their counterparts

that provide only a rough location estimate, structured-

based algorithms yield precise localization up to six

degrees-of-freedom (6-DoF). The maps are represented by

3D point clouds, which can be obtained from register-

ing depth sensor output, or built from the training im-

ages using common Structure-from-Motion (SfM) frame-

works [34, 37]. Apart from the location information, each

point in the 3D map also stores the associated local descrip-

tors, so that a query image can be localized by conducting

2D-3D matching to identify the camera location and orien-

tation. However, in order to achieve satisfactory real-time

results, the input data must be of small or moderate size, as

searching over very large point clouds is often computation-

ally expensive.

Although many indexing algorithms in the literature

have achieved sub-linear query time, most approaches re-

quire storing one code vector per image descriptor. Theo-

retically, no matter how short this code vector, for n obser-

vations in the dataset, existing algorithms require O(n) stor-
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age cost, i.e., the required amount of storage scales linearly

with the number of observations. While recent research fo-

cuses on improving the precision-recall metrics, the scal-

ability of the memory footprint is given little attention.

Our work addresses this and introduces a theoretically sub-

linear algorithm that can be used as an alternative for exist-

ing quantization approaches. By conducting experiments

on real-world datasets, we show that our method yields

competitive results on challenging visual place recognition

problems.

Contributions Our contributions can be summarized as:

• We propose a new encoding algorithm for snapshot-

based localization that theoretically achieves sub-

linear storage scale w.r.t. the number of observations

n, where existing state-of-the-art approaches are at

best linear. The associated time complexity for a query

is also sub-linear in this proposed approach.

• This sub-linearity is achieved through a hierarchical

encoding scheme that exploits the sequential nature of

data prevalent in sensor streams across mobile robotics

and autonomous vehicles.

• Unlike some rigid existing systems, the proposed en-

coding scheme enables the user to explicitly trade pre-

diction accuracy for memory footprint, enabling it to

be tailored to the specific accuracy and memory re-

quirements of different applications.

• We show empirically that the proposed technique

achieves the desired sub-linearity in storage, while

also yielding competitive absolute storage require-

ments compared to existing state-of-the-art techniques.

2. Background

Snapshot-based approaches cast visual localization as a

nearest-neighbor search problem, where for a query image,

we wish to find the most “similar” observation in a database

of images that represents previously observed locations. In-

stead of storing the images directly, it is usually desirable to

store a lower dimensional image descriptor, especially for

this application. Specifically, we are given a dataset D con-

taining n observations D = {xi}
n
i=1

, where xi ∈ R
d is a

d-dimensional image descriptor. Furthermore, we will ex-

plicitly assume that D is sequential visual localisation data,

i.e., a sequence of frames from a video. Specifically, for i
close to j, xi is very similar to xj . We will discuss the im-

portance of this assumption in more detail in Section 3.2.

For a query vector q ∈ R
d, we wish to find x∗ ∈ D such

that the distance between q and x∗ is minimized using some

measure of similarity. Formally, we express this as

x∗ = argmin
x∈D

d(q,x), (1)

where d(·, ·) is an appropriate metric that measures the sim-

ilarity between two descriptors. In this paper, we assume

that this metric is the standard Euclidean distance and so

(1) can be rewritten as

x∗ = argmin
x∈D

‖q− x‖2, (2)

where ‖ · ‖2 denotes the Euclidean norm. Naively, we can

solve this problem easily by evaluating ‖q − x‖2 for every

x ∈ D, however this takes O(nd) operations, which is com-

putationally infeasible for large n. To alleviate this prob-

lem, the nearest neighbor search must be approximated,

thus quantization techniques are employed to map n dis-

tinct observations into k ≪ n “code vectors”, so that data

can be efficiently queried. Using these approximate search

techniques, the original problem (2) is replaced by

x∗ = argmin
x∈D

‖q− g(x)‖2, (3)

where g : D → R
d maps an observation into a quantized

version of D with k ≪ n distinct values [14, 17, 13]. A

simple example of this is quantizing the dataset by apply-

ing K-means clustering [24] for k ≪ n. Let g(·) map x

to its nearest K-means centroid. This is a specific example

of the vector quantization approach (VQ) [14], which par-

titions the training data D into k clusters, and assign g(x)
as the cluster centroid that is closest to x. With code-books

containing k code-words, a descriptor vector can be stored

using log
2
k bits, and the distance calculation can be sped

up using pre-computed lookup tables. Due to the compu-

tational hardness of K-Means clustering [24, 25], the use

of VQ is infeasible for large k (e.g., 264). Several variants

of VQ [17, 13, 20, 15, 21] have been proposed to address

such shortcomings. Leveraged from VQ, Product Quantiza-

tion [17] (and its improvements [17, 13]) splits observations

into m distinct subvectors, each with dimension d/m. Each

group of subvectors forms a subspace, which is then sepa-

rately quantized using conventional VQ methods, generat-

ing m “code-books”, each containing k “code-words”. The

total number of possible code-words (hence quantiles) is

therefore km, which is substantially larger than the amount

allowed under traditional VQ.

Despite all of this, the use of quantization alone does not

attain real-time performance on consumer hardware for ex-

tremely large n, since a query vector still needs to be com-

pared against all words in the code books which may still be

large. To further speed up the search, indexing techniques

such as IVF [19] or Multi-Index [19] are used. These tech-

niques propose partitioning data into several regions where

each region is associated with a list of indices. A query

vector therefore needs to be compared against this list of

candidates rather than the whole dataset. In addition, ad-

vanced tree indexing methods such as [3, 5, 6] can also be

used to achieve significant improvements in performance.

Disclaimer Our system is not a replacement for visual

SLAM and localization systems like [28, 29], since we ab-

stract away the choice of feature descriptors and focus on
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optimally clusters “similar” observations (e.g., class labels)

under this new distance. These methods come with a cor-

responding linear transformation, such that the transformed

data is much more easily separable. Due to the availability

of this transformation, metric learning techniques are also

applicable to our algorithm. We tested Large Margin Near-

est Neigbours (LMNN) [36] as an alternative to our method,

however we found that this performed poorer overall. We

believe this is because there is no natural dimensionality re-

duction built into LMNN, and specifying m < d involves

applying dimensionality reduction techniques such as Prin-

cipal Components Analysis (PCA) to the data as a prepro-

cessing step. PCA does not necessarily optimally reduce

dimensionality based on the clusters we desire given by the

chunk labels, since it is unsupervised.

Note that since we are restricting ourselves to linear

transformations, there is no guarantee of separating obser-

vations in general. For instance, data dispersed along a line

will be mapped to another line under a linear transforma-

tion and cannot be separated using this method. We find

that in practice, we can find reasonable transformations for

sequential data due to the “natural” clustering present in the

data. In Section 3.3.1, we outline the solutions to (7).

3.3.1 Solve for {µk}

The optimal values of {µ∗
k}

hj

k=1
in (7) can be computed in

closed-form. This is performed by computing the gradi-

ent of the objective function in (7) w.r.t µk and setting this

to the 0 vector (see the supplementary materials for a full

derivation). This yields

µk =
1

|Lk|

∑

x∈Lk

x, ∀k = 1, · · · , hj . (9)

Note that the solution is independent of V and m.

3.3.2 Finding the optimal transformation matrix

Following [26], we can rewrite the optimization problem

w.r.t. V given a fixed {µ}
hj

k=1
and m (see supplementary

material for more details) as

min
V

trace(PmPT
mVTΣV) + trace(VTS0V), (10)

where the S0 and Σ are given by

S0 =
∑

x∈D

(x− µ0)(x− µ0)
T , (11)

and

Σ =

hj∑

k=1

∑

x∈Lk

(x− µk)(x− µk)
T − S0. (12)

Using the fact that V is orthogonal along with the in-

variance of the trace operator under cyclic permutations,

trace(VTS0V) = trace(VVTS0) = trace(S0), and hence

the second term in (10) does not depend on V.

Furthermore, observe that PmPT
m is a diagonal matrix

with the first m diagonal elements being 1, with the rest 0.

From this, trace(PmPT
mVTΣV) is the trace of the leading

principal submatrix of dimension m of VTΣV. Using the

fact that Σ is symmetric, we can use a well-known result

from constrained optimization to show that a solution for

columns of the optimal V are simply the eigenvectors of

Σ sorted by their corresponding eigenvalue from lowest to

highest (see the supplementary materials for a full deriva-

tion). Specifically, the first column of V corresponds to the

eigenvector associated with the lowest eigenvalue of Σ.

3.3.3 Finding the optimal m

We now select the optimal m. Note that our solution for

V does not depend on m, and so we can optimize m sep-

arately. Recall that the trace of a square matrix is equal to

the sum of its eigenvalues, and using the fact that V corre-

sponds to normalized eigenvectors of Σ we can easily show

that

trace(PmPT
mVTΣV) =

m∑

i=1

λi, (13)

where λi corresponds to the i-th lowest eigenvalue of Σ.

We wish to select m that minimizes (13). Note that if Σ

contains no negative eigenvalues, then m = 0, whereas if

there are k negative eigenvalues of Σ, then m = k. While

S0 and the first sum in (12) are symmetric positive semi-

definite (hence only has positive eigenvalues), there is no

guarantee that Σ is too, due to the subtraction of S0 in (12).

In practice, we find that the optimal m typically corresponds

to hj , the number of chunks.

3.3.4 Storage Analysis

Based on the discussions in the previous sections, the stor-

age requirements for our models include:

• The transformation matrices {Lj}
l−1

j=1
, where each

Lj ∈ R
d×mj is the learned transformation and mj is

the optimal value of m at the j-th level of the tree. For

each Lj , we store O(
∑l−1

j=1
mjd) parameters (see sup-

plementary material for more details).

Note that for l = 1,
∑l−1

j=1
mj = n, hence stor-

age scales linearly with n. However, if we struc-

ture the hierarchical model to be a binary tree, then∑l−1

j=1
mj = 2 log

2
(n), yielding O(d log

2
n) storage.

Setting l > 1 will guarantee sub-linear storage require-

ments.
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• The support vectors characterising the SVM classifiers

at each level {Wj}
l−1

j=1
, where Wj = {wj

k}
hj−1

k=1
is the

collection of mj-dimensional support vectors for level

j. In this case, we must store O(
∑l−1

j=1
mjhj) values.

Similar to the above, this scales linearly with n for one

level but is sub-linear for l > 1.

Overall, our method is sub-linear for l > 1, and we will

discuss how to select l in Section 4.2.2.

4. Experimental Results

In this section, we evaluate the performance of our

proposed algorithm against other approaches for retrieval-

based localization. The performance of our method under

various hyperparameter configurations are also analyzed

and discussed.

Datasets: Two large-scale visual localization datasets are

used:

• Nordland Dataset1: Nordland consists of four video

sequences captured in each season (Fall, Summer,

Spring, and Winter) by a camera mounted on a moving

train over 10 hours. The video frames are resized and

extracted to ensure an equal distance between frames,

generating around 20,000 images per season.

• Brisbane Day and Night [27]: Similar to Nordland,

this dataset contains video sequences captured from a

camera mounted in front of a car traveling in an urban

area. We selected two traversals, one captured during

the day and the other captured at night.

For each dataset, we extract DenseVLAD [35] d = 4096
dimensional descriptors from the training and test data and

use these as our image descriptors. We chose DenseVLAD

as it is considered state-of-the-art for image retrieval. Other

types of descriptors [1, 18, 30] can also be used with our

proposed approach with similar performance characteris-

tics. Note that our proposed methodology is purely a means

to retrieve the approximate nearest neighbor of a query un-

der the Euclidean metric. For challenging visual localisa-

tion datasets where standard image descriptors can result in

substantial perceptual aliasing, it is possible to have distant

locations with very similar descriptors. The performance of

our methodology is bottlenecked by the choice of image de-

scriptor used and how effective that descriptor is in finding

unique representations for different locations.

Metric evaluation: Unlike other methods that returns a list

of nearest neighbors, our algorithm predicts a single index

for a particular query vector. Therefore, in order to eval-

uate the localization accuracy, we measure and report the

percentage of correctly localized query images. A query

1https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-

season-by-season/

is regarded as correctly localized if its predicted location

is less than t frames away from the ground-truth location.

Throughout the experiments, we test the methods with for

t ∈ {1, 5, 10, 20, 40, 80, 160}. Note that for existing ANN

approaches, we use the best nearest neighbor match to mea-

sure accuracy. As we focus on a storage-efficient encoding

algorithm, we also report the amount of memory required

(in MB) for the storage of the methods’ parameters.

We compare our proposed technique against commonly

used state-of-the-art quantization approaches, including

PQ [17], ITQ [15], OPQ [13], and LO-PQ [20]. In addition,

the method proposed in [39] (RYTH), which also achieves

sub-linear storage scale, is also evaluated. Our implementa-

tion is in Python2 and was tested on a 4.2GHz machine run-

ning Ubuntu with 32GB of RAM. LIBSVM was run with

the recommended parameter settings.

4.1. Localization Accuracy

In this section, we conduct experiments to benchmark

the accuracy of our proposed algorithm against existing ap-

proaches. The experiments are conducted with n = 20, 000
training and test frames (we extract n frames for training

and n corresponding frames for testing), where for Nord-

land, the systems are trained on the Fall sequence and tested

on the three remaining sequences. To simulate limited stor-

age settings, all methods are tuned such that their storage

footprint cannot exceed 10MB.

Fig. 3 (top) shows the results produced by the bench-

marks, where we plot the localization accuracy with vary-

ing error tolerance t as per above. The same experiment is

repeated where the system is trained on Summer and tested

on the other three sequences, and the results are plotted in

Fig. 3 (bottom). The average accuracy across all datasets is

summarized in Fig. 4.

As shown in Fig. 3, for a given amount of storage,

HESSL produces competitive results compared to state-

of-the-art algorithms such as PQ, OPQ and LOPQ. When

tested on the Spring and Winter sequences (which are con-

sidered challenging, even for state-of-the-art algorithms),

our results are comparable to PQ and OPQ for small t. If

high error tolerance is allowed, as demonstrated in Fig. 3,

we outperform other approaches by a large margin. More-

over, compared to [39], we achieve significantly better re-

sults, while attaining the sub-linear storage growth w.r.t. n.

The above experiment is repeated for the Brisbane Day and

Night dataset and the results are plotted in Fig. 5, where the

same conclusions apply.

4.2. Ablation Studies

4.2.1 On the System’s Scalability

In this experiment, we investigate the performance of our al-

gorithm when n grows given a fixed amount of storage. For

2Our source code is available at https://github.com/intellhave/HESSL
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Juan Manuel Rendón-Mancha. Visual simultaneous

localization and mapping: a survey. Artificial Intelligence

Review, 43(1):55–81, 2015. 1

[13] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Opti-

mized product quantization for approximate nearest neigh-

bor search. In Computer Vision and Pattern Recogni-

tion (CVPR), 2013 IEEE Conference on, pages 2946–2953.

IEEE, 2013. 1, 2, 6

[14] Allen Gersho and Robert M Gray. Vector quantization and

signal compression, volume 159. Springer Science & Busi-

ness Media, 2012. 1, 2

[15] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Flo-

rent Perronnin. Iterative quantization: A procrustean ap-

proach to learning binary codes for large-scale image re-

trieval. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(12):2916–2929, 2013. 2, 6

[16] Tuan Hoang, Thanh-Toan Do, Dang-Khoa Le Tan, and Ngai-

Man Cheung. Selective deep convolutional features for im-

age retrieval. In Proceedings of the 2017 ACM on Multime-

dia Conference, pages 1600–1608. ACM, 2017. 1
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