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Abstract

We present a novel deep learning based algorithm for

video inpainting. Video inpainting is a process of complet-

ing corrupted or missing regions in videos. Video inpaint-

ing has additional challenges compared to image inpaint-

ing due to the extra temporal information as well as the

need for maintaining the temporal coherency. We propose

a novel DNN-based framework called the Copy-and-Paste

Networks for video inpainting that takes advantage of ad-

ditional information in other frames of the video. The net-

work is trained to copy corresponding contents in reference

frames and paste them to fill the holes in the target frame.

Our network also includes an alignment network that com-

putes affine matrices between frames for the alignment, en-

abling the network to take information from more distant

frames for robustness. Our method produces visually pleas-

ing and temporally coherent results while running faster

than the state-of-the-art optimization-based method. In ad-

dition, we extend our framework for enhancing over/under

exposed frames in videos. Using this enhancement tech-

nique, we were able to significantly improve the lane detec-

tion accuracy on road videos.

1. Introduction

Inpainting is a task of completing an image that has

empty pixels by filling the empty regions with visually plau-

sible pixels. Inpainting is very useful in image editing pro-

cess, and is usually utilized to generate more satisfying im-

ages by removing unwanted objects in images. There is

a large body of literature on image inpainting and signif-

icant progress has been made recently by employing deep

learning for image inpainting. Impressive inpainting results

are reported by applying evolving deep generative mod-

els [7], synthesizing visually pleasing images even for com-

plex scenes.

In this paper, we focus on the video inpainting problem.

Videos with additional temporal information makes the al-

ready difficult problem even more challenging. In addi-

tion to filling the holes for every frame, the algorithm has

to ensure that the completed frames are temporally con-

time
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Figure 1: (a) We propose a DNN framework for video in-

painting. Our Copy-and-Paste network learns to find cor-

responding pixels in other frames to fill in the holes in the

given frame. (b) Another application of our framework for

restoring an over-saturated image.

sistent. Due to these challenges, we have only seen one

work that tackles the problem using deep neural networks

(DNN) [13], compared to the image inpainting problem

where many deep learning based algorithms have been in-

troduced.

While video inpainting is more challenging compared to

image inpainting, it inherently includes more cues for the

problem as valid pixels for missing regions in a frame may

exist in other frames. Therefore, we propose a novel DNN

based framework called the Copy-and-Paste Networks for

video inpainting that takes advantage of additional informa-

tion in other frames in the video. As the name suggests, the

network is trained to copy the necessary pixels from other

frames and paste those pixels on the holes in the current

frame (Fig. 1).
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The key components of our DNN system are the align-

ment and the context matching. To find corresponding

pixels in other frames for the holes in the given frame,

the frames need to be registered first. We propose a self-

supervised alignment networks, which estimates affine ma-

trices between frames. While DNNs for computing the

affine matrix or homography exist [5, 11, 17], our alignment

method is able to deal with holes in images when comput-

ing the affine matrices. After the alignment, the novel con-

text matching algorithm is used to compute the similarity

between the target frame and the reference frames. The net-

work learns which pixels are valuable for copying through

the context matching, and those pixels are used to paste and

complete an image. By progressively updating the reference

frames with the inpainted results at each step, the algorithm

can produce videos with temporal consistency.

Our results are comparable to the state-of-the-art

method [9], and outperform other deep learning based ap-

proaches [13, 24]. Moreover, we can easily extend our

method for restoring saturated/under-exposed images as

shown in (Fig. 1(b)). By enhancing the saturated/under-

exposed images, we were able to significantly increase the

lane detection accuracy.

In summary, the major contribution of our paper is as

follows:

• We propose a self-supervised deep alignment networks

that can compute affine matrices between images that

contain large holes.

• We propose a novel context-matching algorithm to

combine reference frame features based on similarity

between images.

• Our method produces visually pleasing completed

videos, running much faster than the state-of-the-art

method. Additionally, we extend our framework for

enhancing over/under exposed frames in videos that

can help to improve other vision tasks such as the lane

detection.

2. Related works

2.1. Image Inpainting

In traditional image inpainting methods, an image is

filled by referencing pixels outside the hole in the image

or in the external image database. As one of the most rep-

resentative inpainting methods, PatchMatch [1] reconstructs

the missing region by searching the patches outside the hole

based on the approximate nearest neighbor algorithm. With

this type of approach, however, it is difficult to inpaint im-

ages with complicated scenes, or when the images do not

contain sufficient information for filling the holes.

Since deep image inpainting has been introduced in

[10, 18], many deep generative models for image inpainting

have been proposed recently, showing impressive restora-

tion results on complex scenes. Yu et al. [24] proposed the

contextual attention module between the completed struc-

ture of the hole area and the patches outside the hole. Liu et

al. [15] and Yu et al. [23] applied the partial convolution

and the gated convolution to compensate the weakness of

the vanilla convolution for image inpainting. In particular,

Liu et al. [15] corrected the blurred results based on the per-

ceptual and the style loss without the adversarial loss.

2.2. Video Inpainting

Video inpainting has additional challenges of restoring

the holes in every frame and maintaining the temporal con-

sistency between reconstructed frames. Meanwhile, unlike

in image inpainting, one can utilize redundant information

between frames of video in video inpainting. However, di-

rectly exploiting the redundant information in videos is dif-

ficult due to image variation from the movements of the

camera and the objects. To compensate for the movements,

Granados et al. [8] proposed to align the frames based on

the homographies. They also applied the optical flow be-

tween completed frames to maintain the temporal consis-

tency.

In [16], Newson et al. proposed 3D PatchMatch to main-

tain the temporal consistency in addition to using the affine

transformation to compensate the motion. While the spatio-

temporal patches improve the short-term temporal consis-

tency, the long-term consistency of complicated scenes re-

mained as a limitation. To solve this limitation, Huang et al.

[9] proposed the optical flow optimization in spatial patches

to complete images while preserving the temporal consis-

tency. This method shows the state-of-the-art performance

up until now. All the methods explained above are based on

a heavy optimization, and therefore suffers in the computa-

tional time, limiting their practical use.

Wang et al. [22] proposed the first deep learning based

video inpainting by using 3D encoder-decoder networks.

However, this work does not cover the object removal task

in general videos, and was only applied to a few spe-

cific domains. Kim et al. [13] proposed 3D-2D encoder-

decoder networks to complete the missing contents effi-

ciently. The temporal consistency is maintained through a

recurrent feedback and a memory layer with the flow and

the warping loss. The temporal window for the referenc-

ing is small in their method, and therefore it is difficult to

use valid pixels in distant frames, resulting in a limited per-

formance for scenes with large objects or slowly moving

objects.

Our copy-and-paste network overcome the issues in [13]

by aligning the frames with affine matrices computed by our

alignment network instead of using the optical flow. With

the novel context matching algorithm, our method can ex-

tract valid pixels in distant frames, resulting in more ac-
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Figure 2: Network Overview. Our framework consists of 3 sub-networks: alignment network, copy network, and paste

network.

curate reconstruction for general scenes. The performance

of our method is comparable to the state-of-the-art method

in [9] while being more practical with faster runtime due to

the feed forward nature of DNNs.

3. Copy-and-Paste Network Algorithm

The overview of our framework is shown in Fig. 2. The

system takes a video (X) annotated with the missing pixels

(M ) in each frame and outputs (Ŷ ) the completed video.

The video is processed frame-by-frame in the temporal or-

der. We call the frame to be filled as the target frame and the

other frames as the reference frames. For each target frame,

our network completes the missing region by copying-and-

pasting contents from the reference frames.

To complete a target frame, each reference frame is

first aligned to the target frame through the alignment net-

work. Then in the copy network, pixels to be copied from

the aligned reference frames are determined by the context

matching module. Finally, the outputs from the copy net-

works are decoded to produce inpainted target frame in the

paste network. The input video in the memory is updated

with the completed frame, which will subsequently be used

as a reference frame, providing more information for the

following frames.

Overlap of 𝑋𝑡 and aligned  𝑋𝑡+2

Target 
frame 𝑋𝑡 Reference 

frame 𝑋𝑡+2

Overlap of 𝑋𝑡 and aligned  𝑋𝑡+8

Reference
frame 𝑋𝑡+8

Figure 3: Using affine transformation for the alignment

yields larger temporal search compared to the optical flow

based alignment. More distant reference frame provides

more valuable information as the overlap of the hole regions

is smaller.
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Figure 4: Detailed illustration of the context matching mod-

ule.

3.1. Alignment Network

In video inpainting, a large temporal window is essen-

tial as valuable information is more likely to be in distant

frames. With an optical flow based alignment as used in

[13], the temporal range of information is too small to ex-

tract useful information. As illustrated in Fig. 3, a reference

frame temporally close to the target frame lacks information

to fill the hole as there are too much overlap between the

holes in the images. Moreover, computing optical flows be-

tween images with holes is more difficult as the holes them-

selves become occlusion factors. Therefore, our alignment

network estimates the affine matrices to align the reference

frames with the target frame.

The alignment network consists of shared alignment en-

coders and alignment regressors. Details on the network

architectures are provided in the supplementary materials.

To train the alignment network, we minimize the self-

supervised loss, which is the L1 distance between the target

frame (Xt) and the aligned reference frame (Xr→t). To ex-

clude the hole regions, this pixel-wise loss is only measured

with pixels that are valid in both images as follows:

Lalign =
∑

r

||V ⊙ (Xt −X
r→t)||1, (1)

where V = V
t ⊙ V

r→t is the visibility map, ⊙ is the

element-wise product, t is the target frame index, and r is

the reference frame index1. The visibility map is computed

1The symbol r → t indicates aligning a reference frame r to a target

frame t. V r→t indicates the visibility map of the reference aligned to the

target
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15 19 18 16

Visiblity maps 𝑪match

1 1 1 1

1 1 0 1

0 0 0 0

1 1 0 0

0 0 0 1

𝑪mask

0

0

1

0

0𝑪match1 𝑪match2 𝑪match3 𝑪match4

𝜃1,𝑡 𝜃2,𝑡 𝜃3,𝑡 𝜃4,𝑡

Figure 5: An 1-D example of masked softmax.

from the given masks, where 0 indicates hole pixels and 1

represents non-hole pixels. Note that the alignment network

is jointly trained with other networks in an end-to-end man-

ner, not independently.

3.2. Copy­and­Paste Network

After the frame alignment, the aligned frames are

mapped into the feature space through the shared encoders.

The context matching module computes the importance of

each pixel in the reference frames in completing the holes

as well as a mask (Cmask) indicating the visibility of each

pixel throughout the video. Finally, the decoder takes the

output of the context matching module in addition to the

target frame feature to restore values for the missing pixels.

Encoder Encoder networks extract the features from the

target and the aligned reference frames. The input to the

encoder is a concatenation of an RGB image and the corre-

sponding binary mask. The details on the architecture will

be described in the supplementary materials.

Context matching module Together with the encoder, the

context matching module constitutes the copy network. The

context matching module is illustrated in Fig. 4. First,

global similarities (θr,t) between the aligned reference

frames and the target frame in the feature space is computed

as follows:

θr,t =
1

∑

(x,y) V (x, y)
·
∑

(x,y)

V (x, y)·F t(x, y)·F r→t(x, y).

(2)

The above equation is basically computing the cosine simi-

larity between the two feature maps, excluding the hole pix-

els.

Then, a saliency map C
r
match for each reference frame is

computed as follows:

S
r,t = θr,t · V r→t, (3)
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C
r
match(x, y) =







exp(Sr,t(x,y))
∑

r
exp(Sr,t(x,y))

ifV r→t(x, y) = 1

0 otherwise.

(4)

Fig. 5 simplifies the steps for computing the saliency

map in 1-D. Each pixel value in the saliency map C
r
match

holds the weight that specific pixels have on filling the hole

in the target. The reference features are aggregated through

a weighted sum with the C
r
match, producing the features to

be used for the decoder (Cout).

Cout(x, y) =
∑

r

F
r→t(x, y) ·Cr

match(x, y). (5)

The hole masks for the reference frames are also aggre-

gated in a similar fashion, resulting in Cmask. Cmask indi-

cates pixels that is never visible throughout the reference

frame.

The process of the aggregation is expressed as:

Cmask(x, y) = 1− (
∑

r

C
r
match(x, y)). (6)

Decoder The decoder network completes the target frame

given target features, aggregated reference features, and

mask Cmask. The inputs are concatenated before being fed

into the decoder. Decoder is basically our paste network

that learns to fill the missing region by using the aggregated

reference features and the visibility of those features. The

pixels marked on Cmask are pixels that are never visible in all

reference frame because those pixels always fall into holes.

Therefore, the decoder has to be able to synthesize contents

for those pixels as well. We add dilated convolution blocks

to grow the receptive field and design the decoder network

deeper than the other networks, in order to enhance the com-

pletion results for the unseen area by looking at other pixels

within the image itself.

3.3. Temporal Consistency

Each frame in the video is sequentially completed by the

network, one by one. The completed frame at each iteration

replaces its reference, providing more information for the

following frames as the holes are now filled with contents.

This iterative reference update procedure not only improves

the quality of the restored images, but also enhances the

temporal consistency. This is analyzed later in the ablation

study. To further ensure the temporal consistency, we ac-

tually run the feed-forward network twice – completing the

video from the first to the last frame, and also in the reverse

order. Then the final results are computed as follows:

Ŷ
t

final = Ŷ
t

forward ·
t

N
+ Ŷ

t

reverse ·
(N − t)

N
. (7)

4. Training

4.1. Loss functions

All the networks are trained jointly in an end-to-end

manner. First, we compute the loss between the completed

target frame and the ground truth. The losses for the hole re-

gion and the non-hole region are separately calculated. Fur-

thermore, the hole region can be divided into areas depend-

ing on whether the pixel value can be copied from reference

frames or not. Therefore, we also apply the losses in the

hole region separately.

Lhole(visible) =
N
∑

t

M
t ⊙Cmask ⊙ ||Ŷ

t
− Y

t||1,

Lhole(invisible) =
N
∑

t

M
t ⊙ (1.−Cmask)⊙ ||Ŷ

t
− Y

t||1,

Lnon-hole =
N
∑

t

(1−M
t)⊙ ||Ŷ

t
− Y

t||1.

(8)

Cmask is properly resized to fit the size of the target frame.

To further improve the visual quality of the results, we

also apply perceptual, style, and total variation loss.

Lperceptual =
1

P
·

P
∑

p

||φp(Ŷ comp)− φp(Y )||1,

Lstyle =
1

P
·

P
∑

p

||Gφ
p (Ŷ comp)−Gφ

p (Y )||1,
(9)

where Ŷ comp is combination of the decoder output Ŷ
t

in

the hole region and the input Xt outside the hole, φ is the

output of the pooling layer in pretrained VGG-16 [21] on

ImageNet [4], p is the pooling index, G is the gram matrix

multiplication [12].

The total-loss function is as follows:

L = 2 · Lalign + 10 · Lhole(visible) + 20 · Lhole(invisible)

+ 6 · Lnon-hole + 0.01 · Lperceptual + 24 · Lstyle + 0.1 · Ltv,

(10)

where Ltv is the total variation loss for smoothing the

checkerboard effect [12]. The weight for each loss is em-

pirically determined.

4.2. Datasets

Our goal is to complete holes in video sequences. Inputs

are image sequences with holes and binary masks indicat-

ing the hole regions. However, no public video dataset for

video inpainting exist. Therefore, we synthesized a dataset

for video inpainting using background images and segmen-

tation masks.
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Figure 6: Synthesized training dataset example.

We synthesize videos by compositing background im-

age sequences with object masks (Fig. 6). To build back-

ground image sequences, we use the Places (amount of

1.8M images) [25] single image datasets. To synthesize a

sequence of images from a single image, we applied ran-

dom crops and successive random transformations (shear,

scale, translation, rotation) on the image. Additionally, we

crawled the Youtube video clips and divided them according

to the scene (7.3K scenes). Frames are randomly sampled

from video clips to form a image sequence. The source of

the background image sequence is randomly selected in an

equal chance.

To simulate masks for holes, we use object masks from

MIT Saliency Benchmark(amount of 11K masks) [2] and

Pascal VOC 2012(amount of 14.3K masks) [6]. A mask is

randomly resized to be smaller than the size of the back-

ground frames. And the mask is randomly transformed to

be a mask sequence by simulating the moving objects. A

training sample is made by compositing a background im-

age sequence and a mask sequence made above.

4.3. Training Details

Our model runs on hardware with the Intel(R) Core(TM)

i7-7800X CPU(3.50GHz) CPU and NVIDIA TITAN XP

GPUs. We train with the randomly selected five 256× 256
frames from the synthesized video sequences as inputs. To

train the network, we set the batch size as 40. We use the

Adam Optimizer [14] with learning rates 10−4 and reduce

the running rate factor of 10 every 1 million iterations. The

training process takes about 7 days using three NVIDIA TI-

TAN XP GPUs.

5. Experiments

To evaluate our algorithm, we provide both quantita-

tive and qualitative analysis, as well as a user study. We

conducted the experiments using the videos, which were

scaled in half (424 × 240). Our code will be available on-

line. We also show an application of our work in restoring

under/over-exposed images.

Method PSNR SSIM

Huang et al. [9] 28.14 0.859

Ours 28.37 0.851

Table 1: Quantitative Results (video restoration) for DAVIS

2017

5.1. Quantitative Results

We first conducted quantitative evaluation by measuring

the quality of video restoration. For this experiment, we

randomly selected 25 video sequences in DAVIS dataset

[19, 20], which consists of pairs of video and object seg-

mentation mask sequences. To simulate image restoration,

we synthesized videos by putting imaginary object masks

from DAVIS [19, 20] on the videos. The video without the

object masks are used as the ground truth. Table 1 compares

the PSNR and the SSIM measures between our method

and [9]. Both methods show good performance with sim-

ilar measures. Note that VINet [13] is excluded in this ex-

periment because the official code has not been published

yet.

5.2. User Study and Qualitative Analysis

We further conducted experiments on dynamic object re-

moval in videos with 30 videos from DAVIS dataset [19,

20]. We compared our methods with the state-of-the-art

video inpainting models [9, 13]. Results of the previous

methods were gathered by using the official code released

by the authors [9] and by requesting the results from the

authors [13].

The user study result performed the Amazon Mechanical

Turk (AMT) is shown in Fig. 8 and Table 2 . The workers

were asked to rank the video completion results and we also

allowed them to give ties. All tests were evaluated by 40

participants.

Method Average ranking

Huang et al. [9] 1.74

VINet [13] 2.08

Ours 1.77

Table 2: User study average rank (lower value is better)

The user study shows that our method is highly competi-

tive to the optimization based method [9], while VINet [13]

is not on par with the other two methods. While the method

in [9] was slightly more favored, it requires average com-

pletion time of 952 seconds per video, whereas our method

only takes 27.14 seconds.

Qualitative comparisons of the object removal results are

shown in Fig. 7. These comparisons show similar results

as the user study. Our results are comparable to the state-
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sequences.
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Figure 8: User study for video object removal results (lower value is better)

of-the-art method in [9], while showing much better results

compared to the other deep learning based approach in [13].

5.3. Applications

We extend our method for restoring under/over-exposed

image sequences. The restoration process is similar to video

inpainting problem in that it fills areas with missing infor-

mation. This problem often happens to image sequences

taken by a camera attached to a vehicle due to rapid expo-

sure changes (e.g. tunnel entry and exit).

As shown in Fig. 9, both the texture and the color are

improved. To validate the effectiveness of our restoration

process, we ran a lane detection algorithm on road images

before and after the enhancement. We collected 469 frames

videos 2 that contains rapid exposure changes due to tun-

nels and the internal color histogram-based lane detection

2The dataset were taken by using Mobile Mapping System Camera of

Hyundai MnSOFT, Inc.

Lane detection input Lane detection accuracy

Over/under-exposed image 46.69%

Restored input by our model 83.00%

Table 3: The lane detection accuracy results.

method was used. As shown in Fig. 9 and Table 3, lane

detection results are significantly improved.

6. Ablation Study

Masked softmax We conducted an ablation study to ver-

ify that masked softmax contributes to the performance im-

provements. We train our model using normal softmax un-

der the same conditions. As shown in the Fig. 10, using

masked softmax results are sharper than using the normal

one.
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Figure 9: Application of our method for the restoration of under/over-exposed images.

Input frames

Time

(a) Result using softmax (b) Result using masked softmax

Figure 10: Ablation study for masked softmax.

Reference update To produce temporally coherent outputs,

we update the past reference frames with the inpainted ver-

sion. To visualize the effect of this updating protocol,

we compare the temporal profile [3] of resulting videos in

Fig. 11. As shown in Fig. 11, the update procedure con-

tributes in enhancing the temporal consistency.

7. Conclusion

In this paper, we presented a novel DNN framework

for video inpainting. The proposed method inpaints the

missing information by copy-and-pasting contents from

the reference frames. The reference information is dy-

namically updated by the previous completion results to

ensure the temporal consistency. Our experiments sup-

(c) Without update (d) With update

(a) sample frame (b) Input + Mask

Figure 11: Ablation study for reference update. (b), (c) and

(d) show the temporal profile of the red line shown in input

(a).

port that the proposed framework is comparable to the

optimization-based methods and outperform other deep

learning based approaches. We extended our framework to

restore over/under-exposed in videos and were able to sig-

nificantly increase the lane detection accuracy.
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