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Abstract

Recent works on domain adaptation exploit adversarial

training to obtain domain-invariant feature representations

from the joint learning of feature extractor and domain dis-

criminator networks. However, domain adversarial meth-

ods render suboptimal performances since they attempt to

match the distributions among the domains without consid-

ering the task at hand. We propose Drop to Adapt (DTA),

which leverages adversarial dropout to learn strongly dis-

criminative features by enforcing the cluster assumption.

Accordingly, we design objective functions to support ro-

bust domain adaptation. We demonstrate efficacy of the

proposed method on various experiments and achieve con-

sistent improvements in both image classification and se-

mantic segmentation tasks. Our source code is available at

https://github.com/postBG/DTA.pytorch.

1. Introduction

The advent of deep neural networks (DNNs) has shown

exceptional performances on various visual recognition

tasks using large-scale datasets [8, 21, 13]. Training a

DNN model begins with curating data and its associated

label. In general, the annotation process is expensive

and time-consuming. Moreover, we are unable to collect

appropriate data in some cases, if events are rarely en-

countered or related to dangerous situations. Hence, re-

searchers [32, 34, 10, 35] are paying attention to leverage

synthetic data in a simulation environment, where annotat-

ing labels is effortless to a wide range of scenarios.

To take full advantage of synthetic datasets, domain

adaptation has become an active research area. In the do-

main adaptation setting, we leverage rich annotations on a

source domain to achieve strong performance on a target do-

main regardless of poor annotations. Nevertheless, a model

trained only on the source domain provides disappointing
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(a) Before adaptation (b) Adapted model

(c) AdD on feature extractor

(d) AdD on classifier

Figure 1. We illustrate the domain adaptation process with adver-

sarial dropout (AdD). We depict the source and target domains as

solid and dashed lines, respectively. Decision boundary of a model

only trained on the source domain easily violates the cluster as-

sumption in that it passes through target feature-dense regions (a).

We can apply AdD on both the feature extractor (c) and classi-

fier (d). When AdD is used on the feature extractor, the decision

boundary is pushed away from feature dense regions. On the con-

trary, AdD on the classifier pushes features away from the decision

boundary. Eventually, our domain adapted model draws a robust

decision boundary that avoids clusters (b).

outcomes when the target domain shows inherently differ-

ent characteristics. This issue is known as domain shift and

is one of the main reasons for performance drops on the tar-

get domain. Therefore, we propose a novel method that can

reduce the domain shift for domain adaptation.
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In this paper, we tackle unsupervised domain adapta-

tion (UDA), where the target domain is completely unla-

belled. Recent works have proposed to align source and tar-

get domain distributions through domain adversarial train-

ing [11, 44, 12]. These methods employ an auxiliary do-

main discriminator to obtain domain-invariant feature rep-

resentation. The main assumption in domain adversar-

ial training is that if the feature representation is domain-

invariant, a classifier trained on the source domain’s fea-

tures will operate on the target domain as well. However,

the weaknesses of domain adversarial methods have been

pointed out in [37, 36, 40]. Since the domain discriminator

simply aligns source and target features without considering

the class labels, it is likely that the resulting features will not

only be domain-invariant, but also non-discriminative with

respect to class labels. Consequently, it is hard to reach the

optimal performance on classification.

Our approach is based on the cluster assumption, which

states that decision boundaries should be placed in low

density regions in the feature space [5]. Without model

adaptation, the feature extractor generates indiscriminate

features for unseen data from the target domain, and the

classifier may draw decision boundaries that pass through

feature-dense regions on the target domain. Thus, we learn

a domain adapted model by pushing the decision bound-

ary away from the target domain’s features. Our method,

Drop to Adapt (DTA), employs adversarial dropout [30]

to enforce the cluster assumption on the target domain.

More precisely, to support various tasks, we introduce

element-wise and channel-wise adversarial dropout opera-

tions for fully-connected and convolutional layers, respec-

tively. Fig. 1 overviews our method, and we design the as-

sociated loss functions in Section 3.3.

We summarize our contributions as follows: 1) We pro-

pose a generalized framework in UDA, which is built upon

adversarial dropout [30]. Our implementation supports both

convolutional and fully connected layers; 2) We test on vari-

ous domain adaptation benchmarks for image classification,

and achieve competitive results compared to state-of-the-art

methods; and 3) We extend the proposed method to a se-

mantic segmentation task in UDA, where we perform adap-

tation from the simulation to real-world environments.

2. Related Work

Domain adaptation has been studied extensively. Ben-

David et al. [1, 2] examined various divergence metrics be-

tween two domains, and defined an upper bound for the tar-

get domain error. Based on these studies, image-translation

methods minimize the discrepancy between the two do-

mains at an image-level [42, 51, 3].

On the other hand, feature alignment methods have at-

tempted to match feature distributions between the source

and target domains[11, 44, 23]. In particular, Ganin et

al. [11] proposed a domain adversarial training method that

aims to generate domain-invariant features by deceiving a

domain discriminator. Many recent works use domain ad-

versarial training as a key component in their adaptation

procedure [12, 4, 15, 40, 31, 47, 46]. However, the domain

classifier cannot consider class labels; thus, the generated

features tend to be sub-optimal for classification.

To overcome the weaknesses of domain adversarial

training, more recent works directly deal with the rela-

tionship between the decision boundary and feature rep-

resentations based on the cluster assumption [5]. Several

works [25, 9, 40] exploit semi-supervised learning for do-

main adaptation. Besides, MCD [37] and ADR [36] use a

minimax training method to push target feature distributions

away from the decision boundary, where both methods are

composed of the feature extractor and the classifiers. More

precisely, in [36], two different classifiers are sampled via

stochastic dropout. Then, for the same target data sample,

the classifiers are updated to maximize the discrepancy be-

tween the two predictions. Lastly, the feature extractor is

updated multiple times to minimize this discrepancy. The

minimax training process leaves the classifier in a noise sen-

sitive state. Therefore, it must be newly trained for optimal

performance.

Though our work is partly inspired by ADR, the pro-

posed method is more efficient and simpler to train com-

pared to the prior arts [36, 37]. Instead of updating the

classifier for maximizing discrepancy, we employ adversar-

ial dropout [30] on the classifier to achieve a similar effect.

Furthermore, this adversarial dropout can be applied to the

feature extractor as well. Without the need of a minimax

training scheme, DTA has a straightforward and reliable

adaptation process.

Dropout is a simple yet effective regularization method

that randomly drops a fraction of the neurons during the

training process [41]. According to Srivastava el al. [41],

dropout has the effect of ensembling multiple subsets of

a network. Park et al. [29] spotlighted the efficacy of

the dropout on convolutional layers. Tompson el al. [43]

pointed out that activations of convolutional layers are usu-

ally surrounded by similar activations within the same fea-

ture map; thus, dropping individual neurons does not have

a strong effect in convolution layers. Instead, they proposed

spatial dropout, which drops entire feature maps instead of

individual neurons. Building on spatial dropout, Hou el

al. [16] proposed a weighted channel dropout that uses vari-

able drop rates for individual channels, where the drop rates

depend on the channel’s averaged activation value. The

weighted channel dropout is only applied to deep layers

of the network, where activations are known to have high

specificity [50, 49, 48]. Similarly, for channel-wise adver-

sarial dropout, we remove entire feature maps in an adver-

sarial way.
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3. Proposed Method

3.1. Unsupervised Domain Adaptation

We first define the unsupervised domain adaptation

(UDA) problem in general, and relevant notations to our

work. In the UDA setting, we use data from two distinc-

tive domains: the source domain S = {Xs, Ys} and the

target domain T = {Xt}. A data point from the source

domain xs ∈ Xs has an associated label ys ∈ Ys, whereas

one from the target domain xt ∈ Xt has no paired ground-

truth label. We employ a feature extractor f(x;mf ), where

mf represents a dropout mask which can be applied at

an arbitrary layer of the feature extractor. The feature ex-

tractor takes a data point from two domains x ∼ S ∪ T
and creates a latent vector, which is fed into a classifier

c(·;mc). The classifier applies a dropout mask mc at an

arbitrary layer. We denote the entire neural network as

a composition of the feature extractor and the classifier:

h(x;mf ,mc) = c(f(x;mf );mc).

3.2. Adversarial Dropout

We leverage a non-stochastic dropout mechanism, Ad-

versarial Dropout (AdD) [30], for unsupervised domain

adaptation. Adversarial dropout was originally proposed

as an effective regularization method for supervised and

semi-supervised learning. More specifically, Park et al. [30]

define two types of Adversarial Dropout: Supervised Ad-

versarial Dropout (SAdD), and Virtual Adversarial Dropout

(VAdD). With access to ground truth labels, SAdD is used

to maximize the divergence between a model’s prediction

and ground truth label. Without labels, on the other hand,

VAdD is used to maximize the divergence between two in-

dependent predictions to an input. Due to the lack of target

domain labels, SAdD cannot be employed for our purpose.

Thus, we exclusively work with VAdD, which is referred to

as AdD for the sake of convenience.

AdD provides a simple and efficient mechanism of gen-

erating two divergent predictions for an input. Ultimately,

our goal is to enforce the cluster assumption on target data

by minimizing the divergence between predictions. To this

end, we introduce element-wise AdD (EAdD) and propose

its variant, channel-wise AdD (CAdD).

We first define a dropout mask m applied to an interme-

diate layer of a network h. For simplicity, we decompose a

network h into the subsequent sub-networks hl and hu by

the layer applied dropout m, such as:

h(x;m) = hu(m⊙ hl(x)), (1)

where ⊙ represents the element-wise multiplication. Note

that m has the same dimensions to the output of hl(x).

Let D[p, p′] ≥ 0 measure the divergence between two

distributions p and p′. Then, the divergence between the

(a) Element-wise AdD (EAdD) (b) Channel-wise AdD (CAdD)

Figure 2. Comparison of EAdD and CAdD. EAdD drops units

individually, regardless of spatial correlation. CAdD, on the other

hand, drops entire feature maps, making it more suitable for con-

volutional layers.

predictions of x with different dropout masks, m and ms,

is defined as:

D [h(x;ms), h(x;m)] (2)

= D [hu(m
s ⊙ hl(x)), hu(m⊙ hl(x))] .

3.2.1 Element-wise Adversarial Dropout

The element-wise adversarial dropout (EAdD) mask madv

is defined with respect to a stochastic dropout mask ms as:

madv = argmax
m

D [h(x;ms), h(x;m)]

where ‖ms −m‖ ≤ δeL, (3)

where L denotes the dimension of m ∈ R
L, and δe is a

hyper parameter to control the perturbation magnitude with

respect to ms. The objective is to find a minimally mod-

ified adversarial mask madv that maximizes the output di-

vergence D between two independent forward passes of x.

To find madv , Park et al. [30] optimize a 0/1 knapsack

problem with appropriate relaxations in the process. Their

optimization process can be simplified into the following

steps. First, an impact value is approximated for each el-

ement in hl(x), which is directly proportional to the ele-

ment’s contribution for increasing the divergence. When

negative, the element has a decreasing effect on the diver-

gence. Then, without breaching the boundary condition, the

elements of ms are adjusted to maximize divergence.

3.2.2 Channel-wise Adversarial Dropout

To use DTA in a wider range of tasks, we extend EAdD

to convolutional layers. In these layers, however, stan-

dard dropout is relatively ineffective due to the strong spa-

tial correlation between individual activations of a feature

map [43]. EAdD dropout suffers from the same issues when

naively applied to convolutional layers.

Hence, we formulate CAdD, which adversarially drops

entire feature maps rather than individual activations. While

the general procedure is similar to that of EAdD, we im-

pose certain constraints on the mask to represent spatial

dropout [43]. Fig. 2 highlights the difference between

EAdD and CAdD.
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Consider the activation of a convolutional layer, hl(x) ∈
R

C×H×W , where C, H , and W denote the channel, height,

and width dimensions of the activation, respectively. We

define a channel-wise dropout mask m(i) ∈ R
H×W , with

the following constraints:

m(i) = 0 or 1, ∀i ∈ {1, · · · , C}. (4)

Here, m(i) corresponds to the i-th activation map of hl(x),
0 ∈ R

H×W denotes a matrix of zeros, and 1 ∈ R
H×W

denotes a matrix of ones, respectively. Then, the channel-

wise adversarial dropout mask is defined as:

madv = argmax
m

D [h(x;ms), h(x;m)] ,

where
1

HW

C
∑

i=1

‖ms(i)−m(i)‖ ≤ δcC. (5)

As before, δc is the hyper parameter that controls degree of

the perturbation.

The process of finding the channel-wise adversarial

dropout mask madv is similar to those of element-wise ad-

versarial dropout. For CAdD, however, the impact value is

approximated for each activation map of hl(x) due to the

constraints in Eq. (4). We provide the further details about

the approximation in Appendix A of our supplementary ma-

terial.

3.3. Drop to Adapt

Unlike the prior arts [37, 36], the proposed algorithm

leverages a unified objective function to optimize all net-

work parameters. The overall loss function is defined as a

weighted sum of four objective functions:

L(S, T ) = LT (S) + λ1LDTA(T ) + λ2LE(T ) + λ3LV (T ),
(6)

where LT , LDTA, LE , and LV represent the objectives for

task-specific, domain adaptation, entropy minimization and

Virtual Adversarial Training (VAT) [27], respectively. Also,

the associated hyper-parameters, λ1, λ2, and λ3, control the

relative importance of the terms.

Task-specific objective. We define the task-specific ob-

jective function LT regarding the source domain S . In prac-

tice, this objective function can be replaced according to the

given task. As an example, we present the cross entropy

which is widely used for classification:

LT (S) = −Exs,ys∼S [y
T
s log h(xs)], (7)

where ys is one-hot encoded vector of ys.

Domain adaptation objective. As the main component,

we present the objective function for the domain adaptation

first. The objective consists of two parts to affect on the

feature extractor LfDTA and the classifier LcDTA:

LDTA(T ) = LfDTA(T ) + LcDTA(T ). (8)

We aim to minimize the divergence between two pre-

dicted distribution regarding to an input x: one with a ran-

dom dropout mask ms
f and another with an adversarial

dropout mask madv
f . Among the various divergence mea-

sures, we choose the Kullback-Leibler (KL) divergence in

this work. Assuming that the feature extractor consists of

convolutional layers, we employ channel-wise adversarial

dropout for madv
f :

LfDTA(T ) = Ext∼T

[

D
[

h(xt;m
s
f ), h(xt;m

adv
f )

]

]

= Ext∼T

[

DKL

[

h(xt;m
s
f )‖h(xt;m

adv
f ))

]

]

.

(9)

We illustrate the effects of LfDTA in Fig. 1(c). Initially,

the decision boundary crosses high density regions in the

feature space (Fig. 1(a)), which is in violation of the cluster

assumption. By applying adversarial dropout on the fea-

ture extractor, we cause certain features to cross the deci-

sion boundary (Fig. 1(c), left). Then, to enforce consistent

predictions, the model parameter are updated to push the de-

cision boundary away from these features (Fig. 1(c), right).

Similarly, we apply AdD to the classifier, where the clas-

sifier is defined as a series of fully connected layers. Thus,

we perform the element-wise adversarial dropout madv
c and

compute the divergence:

LcDTA(T ) = Ext∼T

[

DKL

[

h(xt;m
s
c)‖h(xt;m

adv
c ))

]

]

.

(10)

When adversarial dropout is applied on the classifier, we

determine the most volatile areas in the feature space. These

volatile regions are in the vicinity of the decision boundary,

and predictions in these regions can be changed even by a

small perturbation. (Fig. 1(d), left). Therefore, minimiz-

ing LcDTA lets the features avoid falling into such volatile

regions (Fig. 1(d), right).

Entropy minimization objective. We introduce the en-

tropy minimization objective to enforce the cluster assump-

tion further. This loss penalizes target samples for being

close to the decision boundary, and thus, causes the model

to learn more discriminative features:

LE(T ) = −Ext∼T [h(xt)
T log h(xt)]. (11)
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VAT objective. Lastly, we exploit VAT, which adversar-

ially perturbs the target data at the input level. The VAT

minimization objective is defined as:

LV (T ) = Ext∼T

[

max
‖r‖≤ǫ

DKL [h(xt)‖h(xt + r)]
]

, (12)

where r represents the virtual adversarial perturbation on

input xt. While DTA and VAT are similarly motivated,

they regularize the network with different forms of pertur-

bations: network parameter perturbations (DTA) and input

perturbations (VAT). Thus, VAT provides an orthogonal reg-

ularization to DTA, leading to complementary effects.

Interpretation of DTA. Fig. 3 visualizes the effects of

adversarial dropout using Grad-GAM [39], which accentu-

ates the most discriminative regions for a prediction. As a

baseline, we present Grad-CAM visualizations of a model

trained only on the source domain (SO, see Fig. 3(b)). We

apply AdD on the source only model (SO + AdD), and see

that semantically meaningful areas are deactivated. In con-

trast, our domain adapted model (DTA, see Fig. 3(d)) stays

relatively unaffected by AdD, as it keeps seeing the same

discriminative regions (see Fig. 3(e)) regardless of AdD.

The visualizations imply that AdD promotes activations on

more hidden units, and lends to robust decision boundary

across the domains.

(a) Input (b) SO (c) SO+AdD (d) DTA (e) DTA+AdD

Figure 3. Effect of adversarial dropout. We visualize class acti-

vation maps on target domain images using GradCAM [39]. Ad-

versarial dropout (c) effectively deactivates semantically meaning-

ful regions for a prediction compared to its baseline model only

trained on source domain (b). Our domain adapted model (DTA)

produces reasonable predictions (d), even though 10% of units are

eliminated by AdD (e).

4. Experimental Results

In this section, we evaluate the proposed method on

small and large DA benchmarks. To demonstrate the gen-

erality of our model, we conduct the experiments in two

major recognition tasks: classification and segmentation. In

Table 1. Results of experiment on small image datasets. *We

compare with the MT+CT+TF for SE.

Source SVHN MNIST USPS STL CIFAR

Target MNIST USPS MNIST CIFAR STL

Source only (Ours) 76.5 96.3 76.9 60.1 78.2

SE* [9] 98.6 98.1 97.3 74.2 79.7

VADA [40] 94.5 - - 73.5 80.0

DIRT-T [40] 99.4 - - 75.5 -

Co-DA [19] 98.3 - - 76.4 81.1

Co-DA+DIRT-T [19] 99.4 - - 76.3 -

Ours 99.4 99.5 99.1 72.8 82.6

Target only (Ours) 99.6 97.8 99.6 90.4 70.0

each experiment, we select one domain as the source do-

main, and another as the target domain. We denote ”Source

only” as the target domain performance of a model trained

on the source domain, and ”Target only” as that of a model

trained on the target domain. These two serve as baselines

for the lower and upper bound performance in domain adap-

tation. We do not tune a set of data augmentation schemes

nor do we report performance with ensemble predictions, as

in French el al. [9]. Rather, all evaluation results are based

on the same data augmentation strategy with a single model

prediction.

4.1. DA on Small Datasets

To evaluate the influence of DTA model, we first per-

form experiments on small datasets. We use MNIST [20],

USPS [17], and Street View House Numbers (SVHN) [28]

for adaptation on digits recognition. For object recognition,

we use CIFAR10 (CIFAR) [18] and STL10 (STL) [6]. For

fair comparison against recent state-of-the-art methods such

as Self-Ensembling (SE) [9], VADA [40], and DIRT-T [40],

we conduct experiments on the same network architecture

as in SE. Not that while VADA/DIRT-T use a slightly differ-

ernet architecture, the total number of parameters are com-

parable. The results can be found in Table 1, and a full list

of hyperparameter settings can be found in Appendix B.

SVHN → MNIST. SVHN and MNIST are two digit clas-

sification datasets with a drastic distributional shift between

the two. While MNIST consists of binary handwritten

digit images, SVHN consists of colored images of street

house numbers. Since MNIST has a significantly lower im-

age dimensionality than SVHN, we adopt the dimension of

MNIST to 32 × 32 of SVHN, with three channels. When

the proposed DTA is applied, our approach demonstrates a

significant improvement over previous works, and achieves

a performance similar to the ”Target only” performance on

MNIST.

MNIST ↔ USPS. MNIST and USPS contain grayscale

images, so the domain shift between these two datasets is

relatively smaller compared to that of the SVHN → MNIST
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Table 2. Results on VisDA-2017 classification using ResNet-101.

aero. bike bus car horse knife moto. person plant sktb. train truck avg.

Source Only 46.2 27.6 31.4 78.1 71.8 1.3 71.7 14.3 63.5 31.0 93.7 3.2 50.8

DAN [23] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [11] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MCD [37] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

ADR [36] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

Ours 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5

setting. In both adaptation directions, we achieve an accu-

racy close to the performance of fully supervised learning

on the target domain. In fact, we obtain higher accuracy

on USPS when adapting from MNIST, than when trained

directly on USPS. This is because the USPS training is rel-

atively small, allowing us to achieve improved performance

by adapting from MNIST, using DTA.

CIFAR ↔ STL. CIFAR and STL are 10-class object

recognition datasets with colored images. We remove the

non-overlapping classes and redefine the task as a 9-class

classification task. Furthermore, we downscale the 96 × 96

image dimesion of STL to match the 32 × 32 dimension

of CIFAR. In the CIFAR → STL setting, our method’s per-

formance surpasses others by a comfortable margin. For the

same reasons presented in the MNIST → USPS setting, our

adapted model outperforms the target only model on this

dataset pair. In STL → CIFAR, however, our method is

slightly weak. This is because STL contains a very small

dataset, with only 50 images per class. Since DTA regu-

larizes the decision boundary of the model, the inherent as-

sumption is that the model can achieve low generalization

error on the source domain. This assumption holds in most

cases, but breaks down when STL is the source domain.

To summarize, we achieve a substantial margin of im-

provement over the source only model across all do-

main configurations. In four of the five configurations,

our method outperforms the recent state-of-the-art results.

Next, we evaluate our method on more practical settings

that embody real-life domain adaptation scenarios.

4.2. DA on Large Datasets

We apply our method to adaptation on large-scale, large-

image datasets. In particular, we evaluate on VisDA-

2017 [32] image classification and VisDA-2017 image seg-

mentation tasks.

Classification. The VisDA-2017 image classification is a

12-class domain adaptation problem. The source domain

consists of 152,397 synthetic images, where 3D CAD mod-

els are rendered from various conditions. The target domain

consists of 55,388 real images taken from the MS-COCO

dataset [21]. Since the objective is to learn from labeled

(a) Source Only (b) DTA

Figure 4. t-SNE. t-SNE visualization of VisDA-2017 classification

dataset using ResNet-101, before and after adaptation with DTA.

t-SNE hyperparameters are consistent in both visualizations.

synthetic images and correctly predict the class of real im-

ages, this dataset has been frequently used in many domain

adaptation works [23, 12, 37, 36, 9]. For fair comparison

with recent works, we follow the protocol of ADR [36]

in our experiments. Specifically, we apply the EAdD af-

ter the second fully connected layer, and CAdD within the

last convolution layer of ResNet-50 [14] and ResNet-101

models. Both models are initialized with weights from an

ImageNet [8] pre-trained model. For more details on imple-

mentation, we refer our readers to Appendix B.

The per-class adaptation performance with a ResNet-101

backbone can be found in Table 2. The table clearly shows

that our proposed method surpasses previous methods by

a large margin. Note that all methods in this table use the

same ResNet-101 backbone. Compared to the performance

of a source only model, we achieve a 30.7% improvement

(or 60.4% relative improvement) on the average accuracy.

Furthermore, DTA shows a significant improvement across

all categories; in fact, it achieves the best per-class perfor-

mance in all classes, except the “truck” class, where it falls

behind ADR by a mere 0.2%. Although our source only

model is slightly lower than that of both MCD [37] and

ADR, our proposed method effectively generalizes a model

from the source to target domain, with stronger adaptation

performance over MCD and ADR by margins of 9.6% and

6.7%, respectively.

In Table 4, we show that it is feasible to apply DTA on

a different backbone network with success. Similarly to
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Table 3. Results on GTA → Cityscapes, using a modified FCN with ResNet-50 as the base network.
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ADR 87.8 15.6 77.4 20.6 9.7 19.0 19.9 7.7 82.0 31.5 74.3 43.5 9.0 77.8 17.5 27.7 1.8 9.7 0.0 33.3

Ours 88.8 36.9 76.9 20.9 15.4 19.6 21.8 7.9 82.9 26.7 76.1 51.7 9.4 76.1 22.4 28.9 1.7 15.2 0.0 35.8

Table 4. Results on VisDA-2017 classification using ResNet-50.

*SE report ensemble of multiple predictions. All other methods,

including ours, report the average achieved by a single prediction.

Method avg.

Source Only (Ours) 45.6

DAN [23] 53.0

RTN [25] 53.6

DANN [11] 55.0

JAN-A [26] 61.6

GTA [38] 69.5

SimNet [33] 69.6

CDAN-E [24] 70.0

Ours 76.2

SE* [9] 82.8

DTA on ResNet-101, our model outperforms recent previ-

ous methods, and demonstrates a significance improvement

over the source only model. While SE reports the best over-

all performance, we do not consider it to be comparable to

other methods - including ours - because the reported accu-

racy is a result of 16 ensembled predictions.

For qualitative analysis, Figure 4 visualizes the fea-

ture representations of VisDA-2017 classification with t-

SNE [45]. The source only model shows strong cluster-

ing of the source domain’s synthetic image samples (blue),

but fails to have similar influence on the target domain’s

real image samples (red). During training, DTA constantly

enforces the clustering of target samples by stimulating the

feature representations and decision boundary of the model.

Therefore, we can clearly see an improved separation of tar-

get features with DTA, resulting in the best performance in

VisDA-2017.

Segmentation. To further demonstrate our method’s ap-

plicability to real-world adaptation settings, we evaluate

DTA in the challenging VisDA-2017 semantic segmenta-

tion task. For the source domain, we use the synthetic

GTA5 [34] dataset which consists of 24966 labeled images.

As the target domain, we use the real-world Cityscapes [7],

consisting of 5000 images. Both datasets are evaluated on

the same category of 19 classes, with the mean Intersection-

over-Union (mIoU) metric. For fair comparison with recent

methods [12, 36], we follow the procedure of ADR and

use a modified version of Fully Convolutional Networks

(FCN) [22] on a ResNet-50 backbone. We apply CAdD

within the last convolutional layer of ResNet-50.

We report our results in Table 3, alongside results of

existing methods. Our method clearly improves upon the

mIoU of not only the source only model, but also compet-

ing methods. Even with the same training procedure and

settings as in the classification experiments, DTA is ex-

tremely effective at adapting the most common classes in

the dataset. This conclusion is supported in Figure 5, where

we display examples of input images, ground truths, and

the corresponding outputs of source only and DTA model.

While the source only predictions are erroneous in most

classes, DTA’s predictions are relatively clean and accurate.

5. Discussion

Although the proposed DTA shows significant improve-

ments on multiple visual tasks, we would like to understand

the role of each component in DTA and how their combi-

nation operates in practice. We perform a series of ablation

experiments and present the results in Table 5. All ablations

are conducted on VisDA-2017 image classification dataset.

To verify the effectiveness and generality, we use ResNet-

50 and ResNet-101 models for all experiments in this ab-

lation. The modified ResNet-based models consist of the

original convolutional layers with FAdD after the second

fully connected layer, and CAdD within the last convolu-

tional layer. The entropy loss term in Eq. (11) is applied on

all ablations except the “Source Only” setting.

To assess whether each module of DTA (VAT, fDTA,

cDTA) plays an important role in the performance, we

first experiment with individual modules. Overall, all

three modules improve the performance over a source only

model. We observe that the three components contribute

to the accuracy of each category differently. In ResNet-101,

while fDTA has a great impact on the “knife” category, VAT

significantly boosts the performance of the “skakteboard”

class. Theoretically, VAT [27] can be seen as the regular-

ization by perturbing the input image, while the proposed

methods can be seen as perturbations on the feature space

of the model. Therefore, we can see that two combina-

tions (fDTA + VAT), (cDTA + VAT) shows increased per-

formance compared to the individually regularized model

(i.e. 73.2% (VAT) / 77.0% (cDTA) → 81.2% in ResNet-
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(a) Input (b) Ground Truth (c) Source Only (d) DTA

Figure 5. Semantic segmentation. Qualitative results of the semantic segmentation task on GTA → Cityscapes, before and after adaptation

with DTA. We use a modified FCN architecture with ResNet-50 as the base model.

Table 5. Ablation Studies on VisDA-2017 Classification Dataset

Methods aero. bike bus car horse knife moto. person plant sktb. train truck avg.

ResNet-50

Source Only 54.2 27.7 17.6 57.1 48.4 4.0 86.4 11.0 69.1 15.6 95.7 7.3 46.0

VAT 83.1 62.5 70.5 53.0 81.8 13.2 89.9 74.4 88.5 41.1 89.0 38.2 67.1

fDTA 88.8 58.2 82.8 82.3 90.4 0.1 92.8 77.3 94.2 78.5 86.9 0.2 72.5

fDTA + VAT 91.3 66.3 77.7 77.5 91.0 13.1 92.6 83.0 94.2 58.0 85.9 12.0 73.1

cDTA 92.4 72.9 75.1 72.6 92.8 7.4 90.8 82.1 95.0 66.6 87.8 31.6 74.7

cDTA + VAT 90.0 72.7 83.7 79.3 92.0 6.8 91.4 82.6 92.2 70.4 86.3 22.9 75.4

cDTA + fDTA 88.2 68.8 87.2 82.8 92.3 5.8 89.4 78.4 95.5 74.8 82.4 16.1 75.0

Ours 93.1 70.5 83.8 87.0 92.3 3.3 91.9 86.4 93.1 71.0 82.0 15.3 76.2

ResNet-101

Source Only 46.2 27.6 31.4 78.1 71.8 1.4 71.6 14.3 63.5 31.0 93.7 3.2 50.8

VAT 90.1 43.9 83.9 85.6 90.9 1.4 95.0 78.6 93.8 57.9 86.2 13.4 73.2

fDTA 89.1 75.5 84.6 87.2 92.3 72.9 89.7 78.5 91.8 39.5 84.1 10.8 76.4

fDTA + VAT 93.0 84.8 81.8 78.1 93.2 70.1 88.8 82.0 94.0 81.5 87.4 39.6 80.5

cDTA 91.8 81.5 78.7 67.0 91.3 71.6 85.3 76.9 93.5 72.5 86.7 44.1 77.0

cDTA + VAT 93.8 86.1 82.9 78.3 92.2 83.9 88.2 80.6 94.1 82.2 88.0 40.0 81.2

cDTA + fDTA 91.7 77.7 78.8 75.2 91.0 73.2 88.4 78.8 93.2 56.6 88.7 35.6 77.4

Ours 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.0 95.1 78.1 86.4 32.1 81.5

101, 67.1% (VAT) / 72.5% (fDTA) → 73.1% in ResNet-50).

These results suggest that it is beneficial to use VAT [27]

with the proposed method. More specifically, both methods

exhibit complementary effects for adaptation on a large do-

main shift. This advantage can also be observed in the com-

parison of fDTA + cDTA to a final version of the proposed

method (VAT + fDTA + cDTA). One interesting point is

that all these trends are mostly maintained in both backbone

models; the only difference is the amount of margin be-

tween the performance of source only and individual mod-

els. From this fact, we conclude that the proposed method

can act as a general regularization technique for adaptation,

regardless of the model’s capacity.

6. Conclusion

We presented a simple yet effective method for unsuper-

vised domain adaptation despite large domain shifts. With

two types of proposed adversarial dropout modules, EAdD

and CAdD, we enforced the cluster assumption on the tar-

get domain. The proposed methods are easily integrated

into existing deep learning architectures. Through extensive

experiments on various small and large datasets, we demon-

strated the effectiveness of the proposed method on two do-

main adaptation tasks, and in all cases we achieved signif-

icant improvement as compared to the source-only model

and the state-of-the-art results.
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