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Abstract

Following the advance of style transfer with Convolu-

tional Neural Networks (CNNs), the role of styles in CNNs

has drawn growing attention from a broader perspective. In

this paper, we aim to fully leverage the potential of styles to

improve the performance of CNNs in general vision tasks.

We propose a Style-based Recalibration Module (SRM),

a simple yet effective architectural unit, which adaptively

recalibrates intermediate feature maps by exploiting their

styles. SRM first extracts the style information from each

channel of the feature maps by style pooling, then estimates

per-channel recalibration weight via channel-independent

style integration. By incorporating the relative importance

of individual styles into feature maps, SRM effectively en-

hances the representational ability of a CNN. The proposed

module is directly fed into existing CNN architectures with

negligible overhead. We conduct comprehensive experi-

ments on general image recognition as well as tasks related

to styles, which verify the benefit of SRM over recent ap-

proaches such as Squeeze-and-Excitation (SE). To explain

the inherent difference between SRM and SE, we provide an

in-depth comparison of their representational properties.

1. Introduction

The evolution of convolutional neural networks (CNNs)

has constantly pushed the boundaries of complex vision

tasks [20, 23, 2]. Besides their superior performance, a

wide investigation has revealed that CNNs are capable of

handling not only the content (i.e. shape) but also the style

(i.e. texture) of an image. Gatys et al. [6] discovered that the

feature statistics of a CNN effectively encode the style in-

formation of an image, which laid the foundation of neural

style transfer [7, 17, 13]. Recent approaches also pointed

out that the styles play an unexpectedly significant role in

the decision making process by standard CNNs [1, 8]. Fur-

thermore, Karras et al. [18] demonstrated that a genera-

tive CNN architecture solely based on style manipulation

achieves dramatic improvement in terms of realistic image

generation.

Inspired by the tight link between the style and CNN

representation, we aim to enhance the utilization of styles

in a CNN to boost its representational power. We pro-

pose a novel architectural unit, Style-based Recalibration

Module (SRM), which explicitly incorporates the styles into

CNN representations through a form of feature recalibra-

tion. Note that a CNN involves styles with varying levels

of significance. While certain styles play an essential role,

some are rather a nuisance factor to the task [25]. SRM

dynamically estimates the relative importance of individual

styles then reweights the feature maps based on the style im-

portance, which allows the network to focus on meaningful

styles while ignoring unnecessary ones.

The overall structure of SRM is illustrated in Figure 1. It

consists of two main components: style pooling and style in-

tegration. The style pooling operator extracts style features

from each channel by summarizing feature responses across

spatial dimensions. It is followed by the style integration

operator, which produces example-specific style weights by

utilizing the style features via channel-wise operation. The

style weights finally recalibrate the feature maps to either

emphasize or suppress their information. Our proposed

module is seamlessly integrated into modern CNN archi-

tecture and trained in an end-to-end manner. While SRM

only imposes negligible additional parameters and compu-

tations, it remarkably improves the performance of the net-

work. Beyond the practical improvements, SRM provides

an intuitive interpretation about the effect of channel-wise

recalibration: it controls the contribution of styles by ad-

justing the global statistics of feature responses while main-

taining their spatial configuration.

Our experiments on image recognition [28, 19] verify the

effectiveness of SRM in general vision tasks. Throughout

the experiment, SRM outperforms recent approaches [12,

11] though it requires orders of magnitude less additional

parameters. Furthermore, we demonstrate the capability of

SRM in arranging the contribution of styles. To this end, we

conduct extensive experiments on style-related tasks such

as classification with a texture-shape cue conflict [8], multi-

domain classification [32], texture recognition [4], and style

transfer [17], where SRM brings exceptional performance
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Figure 1: A Style-based Recalibration Module (SRM). SRM adaptively recalibrates input feature maps based on the style of

an image via channel-independent style pooling and integration operators.

improvements. We also provide comprehensive analysis

and ablation studies to further investigate the behavior of

SRM.

The main contributions of this paper are as follows:

• We present a style-based feature recalibration mod-

ule which enhances the representational capability of a

CNN by incorporating the styles into the feature maps.

• Despite its minimal overhead, the proposed module

noticeably improves the performance of a network in

general vision tasks as well as style-related tasks.

• Through in-depth analysis along with ablation study,

we examine the internal behavior and validity of our

method.

2. Related Work

Style Manipulation. Manipulating the style information

of CNNs has been widely studied in generative frameworks.

The pioneering work by Gatys et al. [7] presented impres-

sive style transfer results by exploiting the second-order

statistics (i.e. the Gram matrix) of convolutional features

as style representations. Li et al. [21] also addressed style

transfer by matching a variety of CNN feature statistics

such as linear, polynomial and Gaussian kernels. Adap-

tive instance normalization (AdaIN) [13] further showed

that transferring channel-wise mean and standard deviation

can efficiently change image styles. Recent work by Karras

et al. [18] combined AdaIN into generative adversarial net-

works (GANs) to improve the generator by adjusting styles

in intermediate layers.

The potential of styles in a CNN has been also inves-

tigated in discriminative settings. BagNets [1] demon-

strated that a CNN constrained to rely on style informa-

tion without considering spatial context performs surpris-

ingly well on image classification. Geirhos et al. [8] dis-

covered that CNNs (e.g. ImageNet-trained ResNet) are

highly biased towards styles in their decision making pro-

cess. Batch-instance normalization [25] achieved practi-

cal performance improvement by controlling styles, which

learns static weights for individual styles and selectively

normalizes unimportant ones. In this work, we further facil-

itate the utilization of styles in designing a CNN architec-

ture. Our approach dynamically enriches feature represen-

tations by either highlighting or suppressing style regarding

its relevance to the task.

Attention and Feature Recalibration. It is known that

human pays attention to important parts of the visual input

to better grasp the core information, rather than processing

the whole visual signal at once [15, 27, 5]. This mechanism

has been extended to CNNs in a way of refining feature ac-

tivations and showed effectiveness across a wide range of

applications including object classification [16, 33], multi-

modal tasks [36, 24], video classification [34], etc.

More related to our work, Squeeze-and-Excitation (SE)

[12] proposed a channel-wise recalibration operator that in-

corporates the interaction between channels. It first aggre-

gates the spatial information with global average pooling

and captures the channel dependencies using a fully con-

nected subnetwork. Gather-Excite (GE) [11] further ex-

plored this pipeline for better exploiting the global context

with a convolutional aggregator. Convolutional block atten-

tion module (CBAM) [35] also showed that the SE block

can be improved by additionally utilizing max-pooled fea-

tures and combining with a spatial attention module. In con-

trast to the prior efforts, we reformulate channel-wise recali-

bration in terms of leveraging style information, without the

aid of channel relationship nor spatial attention. We present

a style pooling approach which is superior to the standard

global average or max pooling in our setting, as well as a

channel-independent style integration method which is sub-

stantially more lightweight than fully connected counter-

parts yet more effective in various scenarios.

3. Style-based Recalibration Module

Given an input tensor X ∈ R
N×C×H×W , SRM gener-

ates channel-wise recalibration weights G ∈ R
N×C based

on the styles of X, where N indicates the number of exam-

ples in the mini-batch, C is the number of channels; H and
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W indicate spatial dimensions. It is divided into two se-

quential submodules: style pooling for extracting an inter-

mediate style representation T ∈ R
N×C×d from X, where

d is the number of style features, and style integtration for

estimating the style weights G from T. The final output X̂

is then computed by channel-wise multiplication between

G and X. SRM is easily integrated into modern CNN ar-

chitectures such as ResNets [9] and trained end-to-end. Fig-

ure 2 illustrates the detailed structure of SRM and our con-

figuration of the SRM integrated into a residual block.

3.1. Style Pooling

Extracting style information from intermediate convolu-

tional feature maps has been widely studied in style transfer

literature. Motivated by [13], we adopt the channel-wise

statistics—average and standard deviation—of each feature

map as style features (i.e. d = 2). Specifically, given

input feature maps X ∈ R
N×C×H×W , the style features

T ∈ R
N×C×2 are calculated by:

µnc =
1

HW

H
∑

h=1

W
∑

w=1

xnchw, (1)

σnc =

√

√

√

√

1

HW

H
∑

h=1

W
∑

w=1

(xnchw − µnc)2, (2)

tnc = [µnc, σnc]. (3)

The style vector tnc ∈ R
2 serves as a summary descrip-

tion of the style information for each example n and chan-

nel c. Other types of style features such as the correlations

between different channels [7] can be also included in the

style vector, but we focus on the channel-wise statistics for

efficiency and conceptual clarity. In section 5, we verify the

practical benefits of the proposed style pooling compared to

other approaches for gathering global information, e.g. us-

ing average pooling as in SE [12] and additionally utilizing

max pooling as in CBAM [35].

3.2. Style Integration

The style features are converted into channel-wise style

weights by a style integration operator. The style weights

are supposed to model the importance of the styles associ-

ated with individual channels so as to emphasize or suppress

them accordingly. To achieve this, we adopt a simple com-

bination of a channel-wise fully connected (CFC) layer, a

batch normalization (BN) layer, and a sigmoid activation

function. Given the style representation T ∈ R
N×C×2 as

an input, the style integration operator performs channel-

wise encoding using learnable parameters W ∈ R
C×2:

znc = wc · tnc (4)

where Z ∈ R
N×C represents the encoded style features.

This operation can be viewed as a channel-independent

StdPoolAvgPool

CFC

BN

Sigmoid

Style Pooling

Style Integration

Residual

SRM

(a) SRM (b) Residual SRM

Figure 2: The schema of (a) SRM and (b) SRM integrated

with a residual block. AvgPool : global average pooling,

StdPool : global standard deviation pooling, CFC : channel-

wise fully connected layer, BN : batch normalization.

fully connected layer with two input nodes and a single out-

put, where the bias term is absorbed into the subsequent BN

layer. We then apply BN to facilitate training and a sigmoid

function as a gating mechanism:

µ(z)
c =

1

N

N
∑

n=1

znc, (5)

σ(z)
c =

√

√

√

√

1

N

N
∑

n=1

(znc − µ
(z)
c )2, (6)

ẑnc = γc(
znc − µ

(z)
c

σ
(z)
c

) + βc, (7)

gnc =
1

1 + e−ẑnc

, (8)

where γ, β ∈ R
C are affine transformation parameters, and

G ∈ R
N×C represents the channel-wise style weights.

Note that BN makes use of fixed approximations of mean

and variance at inference time, which allows the BN layer

to be merged into the preceding CFC layer. Consequently,

the style integration for each channel boils down to a sin-

gle CFC layer fCFC : R
2
→ R followed by an activa-

tion function fACT : R → [0, 1]. Finally, the original

input X is recalibrated by the weights G, so the output

X̂ ∈ R
N×C×H×W is obtained by:

x̂nc = gnc · xnc. (9)

3.3. Parameter and Computational Complexity

SRM is designed to be lightweight in both terms of mem-

ory and computational complexity. We first consider the
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Figure 3: Training (left) and validation (right) curves on ImageNet-1K with ResNet-50 (baseline) and varying recalibration

methods.

additional parameters of SRM which come from the CFC

and BN layers. The number of parameters for each term is
∑S

s=1 Ns ·Cs · 2 and
∑S

s=1 Ns ·Cs · 4, respectively, where

S denotes the number of stages, Ns is the the number of re-

peated blocks in s-th stage, and Cs is the dimension of the

output channels for s-th stage. We follow the definition of

stage in [12] which refers to a group of convolutions with

an identical spatial dimension. In total, the number of extra

parameters for SRM is:

6

S
∑

s=1

Ns · Cs, (10)

which is typically negligible compared to SE’s 2
r

∑S

s=1 Ns ·

C2
s where r is its reduction ratio. For instance, given

ResNet-50 as a baseline architecture, SRM-ResNet-50 re-

quires only 0.06M additional parameters whereas SE-

ResNet-50 requires 2.53M.

In terms of computational complexity, SRM also intro-

duces negligible extra computations to the original architec-

ture. For example, a single forward pass of a 224 × 224

pixel image for SRM-ResNet-50 requires additional 0.02

GFLOPs to ResNet-50 which requires 3.86 GFLOPs. By

adding only 0.52% relative computational burden, SRM in-

creases the top-1 validation accuracy of ResNet-50 from

75.89% to 77.13%, which indicates that SRM offers a good

trade-off between accuracy and efficiency.

4. Experiment

In this section, we conduct a comprehensive evaluation

across a wide range of problems and datasets to verify the

effectiveness of SRM. We re-implemented all competitors

to compare under consistent settings for fair comparison

and provide source code1 to facilitate further research.

1https://github.com/hyunjaelee410/

style-based-recalibration-module

4.1. Object Classification

We first evaluate SRM on general object classification

with ImageNet-1K [28] and CIFAR-10/100 [19], in com-

parison with state-of-the-art methods such as Squeeze-and-

Excitation (SE) [12] and Gather-Excite (GE)2 [11]. On

the extension of [1, 8], which suggest the crucial role of

styles in the decision making by standard CNNs, we fur-

ther demonstrate the potential of styles for improving the

general performance of CNNs.

ImageNet-1K. The ImageNet-1K dataset [28] consists of

1,000 classes with 1.3 million training and 50,000 valida-

tion images. We follow the standard practice for data aug-

mentation and optimization [9]. The input images are ran-

domly cropped to 224×224 patches and random horizontal

flipping is applied. The networks are trained by SGD with

a batch size of 256 on 8 GPUs, a momentum of 0.9, and

a weight decay of 0.0001. We train the networks for 90

epochs from the scratch with an initial learning rate of 0.1

which is divided by 10 every 30 epochs. Single center crop

evaluation is performed on 224×224 patches where each

image is first resized so that the shorter side is 256.

Figure 3 illustrates the training and validation curves of

ResNet-50 with SRM and other feature recalibration meth-

ods. Throughout the whole training process, SRM exhibits

considerably higher accuracy than SE and GE on both train-

ing and validation curves. This implies that utilizing styles

with SRM is more effective than modeling channel interde-

pendencies with SE or gathering global context with GE,

in both terms of facilitating training and improving gen-

eralization. Table 1 also demonstrates that SRM signifi-

cantly boosts the performance of the baseline architecture

(ResNet-50/101) with almost the same number of parame-

ters and computations. On the other hand, due to its ten-

dency of slow convergence as mentioned in [11], GE does

2Among the several variants of GE, we compared with GE-θ which is

mainly explored in their paper.
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Table 1: Top-1 and top-5 accuracy (%) on the ImageNet-1K

validation set and complexity comparison.

Model Params GFLOPs top-1 top-5

ResNet-50 25.56M 3.86 75.89 92.85

SE-ResNet-50 28.09M 3.87 76.80 93.39

GE-ResNet-50 31.12M 3.87 76.75 93.41

SRM-ResNet-50 25.62M 3.88 77.13 93.51

ResNet-101 44.55M 7.58 77.40 93.59

SE-ResNet-101 49.33M 7.60 78.08 93.95

GE-ResNet-101 53.58M 7.60 77.36 93.64

SRM-ResNet-101 44.68M 7.62 78.47 94.20

Table 2: Accuracy (%) on the CIFAR-10/100 test sets with

a ResNet-56 baseline and complexity comparison.

CIFAR-10 CIFAR-100

Model Params top-1 Params top-1

Baseline 0.87M 93.77 0.89M 74.76

SE 0.97M 94.60 0.99M 76.10

GE 1.91M 94.32 1.94M 76.02

SRM 0.89M 95.05 0.91M 76.93

not exhibit improved performance in a deeper network un-

der a fixed-length training schedule. It is worth noting

that SRM outperforms SE and GE with orders of magni-

tude less additional parameters. For example, SE-ResNet-

50 and GE-ResNet-50 require 2.53M and 5.56M additional

parameters to ResNet-50, respectively, but SRM-ResNet-50

only requires 0.06M (2.37% of SE and 1.08% of GE) which

shows the exceptional parameter efficiency of SRM.

CIFAR-10/100. We also evaluate the performance of

SRM on the CIFAR-10/100 dataset [19] which consists of

50,000 training and 10,000 test images of 32×32 pixels. On

the training phase, each image is zero-padded with 4 pix-

els then randomly cropped to the original size, and evalua-

tion is performed on the original images. The networks are

trained with SGD for 64,000 iterations with a mini-batch

size of 128 on a single GPU, a momentum of 0.9, and a

weight decay of 0.0001. The initial learning rate is set to

0.2 which is divided by 10 at 32,000 and 48,000 iterations.

As presented in Table 2, SRM considerably improves the

accuracy on both CIFAR-10 and 100 with minimal parame-

ter increases, which suggests that the effectiveness of SRM

is not constrained to ImageNet.

4.2. StyleRelated Classification

The proposed idea views channel-wise recalibration as

an adjustment of intermediate styles, which is achieved by

exploiting the global statistics of respective feature maps.

This interpretation motivates us to explore the effect of

Table 3: Top-1 and top-5 accuracy (%) on the validation

sets of Stylized-ImageNet and ImageNet with a ResNet-50

baseline, when trained on Stylized-ImageNet.

Stylized-ImageNet ImageNet

top-1 top-5 top-1 top-5

Baseline 53.93 76.75 56.11 79.17

SE 58.31 80.80 60.15 82.54

SRM 60.69 82.56 62.12 84.06

Table 4: Accuracy (%) on the Office-Home dataset with a

ResNet-18 baseline, averaged over 5-fold cross validation.

Ar Cl Pr Rw Avg.

Baseline 37.49 60.73 72.81 52.12 55.47

SE 39.55 62.75 75.60 55.52 58.36

SRM 40.50 64.97 76.12 56.30 59.47

SRM on style-related tasks where explicitly manipulating

style information could bring prominent benefits.

Stylized-ImageNet. We first investigate how SRM han-

dles synthetically increased diversity of styles. We employ

Stylized-ImageNet introduced by [8], which is constructed

by transferring each image in ImageNet to the style of a

random painting in the Painter by Numbers dataset3 (total

79,434 paintings). Since the randomly transferred style is

irrelevant to the object category, it is a much harder dataset

than ImageNet to train on. We train ResNet-50 based net-

works on Stylized-ImageNet from scratch4 following the

same training policy as the ImageNet experiment, and re-

port the validation accuracy on Stylized-ImageNet and the

original ImageNet in Table 3. SRM not only brings impres-

sive improvements over the baseline and SE on Stylized-

ImageNet, but also generalizes better to the original Ima-

geNet. This supports our claim that SRM learns to suppress

the contribution of nuisance styles, which helps the network

to concentrate more on meaningful features.

Multi-Domain Classification. We also verify the effec-

tiveness of SRM in tackling natural style variations inher-

ent in different input domains. We adopt the Office-Home

dataset [32] which consists of 15,588 images from 65 cat-

egories across 4 heterogeneous domains: Art (Ar), Clip-art

(Cl), Product (Pr) and Real-world (Rw). We combine all

training sets of the 4 domains and train domain-agnostic

networks based on ResNet-18, following the same setting

as the ImageNet experiment except that the networks are

trained with a batch size of 64 on 1 GPU. Table 4 shows the

3https://www.kaggle.com/c/painter-by-numbers/
4Although [8] uses ImageNet pretrained networks, we train networks

from scratch to focus on the characteristics on Stylized-ImageNet.
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Style Content BN BN+SE BN+SRM IN

Figure 4: Example style transfer results. While both BN+SRM and BN+SE improve the stylization quality compared to BN,

BN+SRM yields much higher quality which is comparable to IN. More examples are provided in the supplementary material.

Table 5: Top-1 and top-5 accuracy (%) on the Describable

Texture Dataset averaged over 5-fold cross validation.

ResNet-32 ResNet-56

top-1 top-5 top-1 top-5

Baseline 44.96 73.85 45.46 75.54

SE 45.20 75.60 48.63 77.40

SRM 46.50 76.63 50.44 79.37

top-1 accuracy averaged over 5-fold cross validation. SRM

consistently improves the accuracy with significant margins

across all domains, which indicates the capability of SRM

for alleviating the style discrepancy over different domains.

It also implies the potential of SRM to be utilized in domain

adaptation problems [29, 10] which entail style disparity be-

tween the source and target domains.

Texture Classification. We further evaluate SRM on

texture classification using Describable Texture Dataset

(DTD) [3] which comprises 5,640 images across 47 tex-

ture categories such as cracked, bubbly, marbled, etc. This

task offers to assess a different perspective of the network:

the ability to extract most textural patterns that elicit vi-

sual impressions prior to recognizing objects in images [4].

We follow the data processing setting of [26], and the

same training policy as our CIFAR experiment. The results

from 5-fold cross validation with ResNet-32 and ResNet-56

baselines are reported in table 5, in which SRM achieves

outstanding performance improvements. It demonstrates

that SRM successfully models the importance of individ-

ual styles and emphasizes the target textures, enhancing the
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Figure 5: Quantitative comparison of style loss (left) and

content loss (right) with a style image of Rain Princess (the

first row in Figure 4).

representational power regarding style attributes.

4.3. Style Transfer

We finally examine the benefit of SRM in a generative

problem of style transfer. We utilize a single style feed-

forward algorithm [17] implemented in the official PyTorch

repository5. The networks are trained with content images

from the MS-COCO dataset [22], following the default con-

figurations in the original code.

Figure 5 depicts the training curves of style and content

loss with different recalibration methods. As reported in

the literature [31, 25], removing the style from the con-

tent image with instance normalization (IN) [30] brings a

huge improvement over using the standard batch normal-

ization (BN) [14]. Surprisingly, the BN-based network

equipped with SRM (BN+SRM) reaches almost the same

level of style/content loss with IN, while the network with

5https://github.com/pytorch/examples/tree/

master/fast_neural_style
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Figure 6: Top-1 validation accuracy of ResNet-50 on ImageNet after pruning channels of each stage according to estimated

channel weights. Stage 1 is omitted because it consists of a single convolutional layer where a recalibration module is not

applied.

SE (BN+SE) exhibits much inferior style/content loss. This

demonstrates the distinct effect of SRM, which mimics the

behavior of IN by dynamically suppressing unnecessary

styles from input images. We also show qualitative exam-

ples in Figure 4. Although BN+SE somewhat improves the

stylization quality compared to BN, it is still far behind the

performance of IN. In contrast, BN+SRM not only success-

fully transfers to target style but also better represents the

important styles of the content images (e.g. green glass and

blue sky), generating competitive results to IN. Overall, the

advantage of SRM is not restricted to discriminative tasks

but can be extended to generative frameworks, which re-

mains as future work.

5. Ablation Study and Analysis

In this section, we perform ablation experiments to ver-

ify the effectiveness of each component in SRM and in-

depth analysis on the behavior of SRM. As pointed out by

Hu et al. [12], it remains challenging to perform precise

theoretical analysis on the feature representation of CNNs.

Instead, we perform an empirical study to gain an insight

into the distinguishing role of SRM.

5.1. Ablation Study

Style Pooling. We verify the benefit of the proposed style

pooling compared to different pooling options. Throughout

the ablation study, we utilize ResNet-50 as a base archi-

tecture and address ImageNet classification, following the

same procedure as in Section 4.1. Table 6 lists the results of

various pooling method fused with style integration opera-

tor in our algorithm (except for the baseline). While each

pooling component of SRM (i.e. AvgPool and StdPool)

brings meaningful performance improvement, the combi-

nation of them further boosts the performance. We addi-

tionally compare our method with MaxPool and the combi-

nation of AvgPool and MaxPool proposed in CBAM [35],

which are also outperformed by our style pooling approach.

Table 6: Comparison of different pooling methods on Ima-

geNet validation.

Pooling top-1 acc.

ResNet-50 (baseline) 75.89

ResNet-50 + AvgPool 76.58

ResNet-50 + StdPool 76.61

ResNet-50 + MaxPool 75.87

ResNet-50 + AvgPool + MaxPool 76.35

ResNet-50 + AvgPool + StdPool (SRM) 77.13

Table 7: Comparison of different integration methods on

ImageNet validation. SP: style pooling, MLP: multi-layer

perceptron, CFC: channel-wise fully connected layer, BN:

batch normalization.

Design top-1 acc.

ResNet-50 + SP + MLP 76.75

ResNet-50 + SP + MLP + BN 76.68

ResNet-50 + SP + CFC 76.91

ResNet-50 + SP + CFC + BN (SRM) 77.13

Style Integration. We next examine the style integration

module which consists of a channel-wise fully connected

layer (CFC) followed by a batch normalization layer (BN).

On top of our style pooling operator, we compare CFC with

a multi-layer perceptron (MLP) of two fully connected lay-

ers (employed in SE) and verify the effect of BN in style

integration. To build MLP on style pooling, we concatenate

the style features along the channel axis then apply MLP

following the default configuration of SE. As shown in Ta-

ble 7, CFC shows better performance than MLP in spite of

its simplicity, which highlights the advantage of utilizing

channel-wise styles over modeling channel interdependen-

cies.
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(a) SE (b) SRM

Figure 7: The top-activated images for individual channels

in conv2-6 (64 channels) of ResNet-56 on DTD. More ex-

amples are provided in the supplementary material.
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Figure 8: Visualization of the correlation matrix between

the channel weights in conv2-6 (64×64) of ResNet-56 on

DTD. More examples are provided in the supplementary

material.

5.2. Channel Pruning

SRM learns to adaptively predict the channel-wise im-

portance of feature maps. In this regard, we evaluate the

validity of the feature importance learned by SRM through

channel pruning of ResNet-50 on ImageNet classification.

Given an input image in the validation set, we sort the chan-

nel weights of each residual block at certain stage in as-

cending order. Then, we select the channels to be pruned

in order according to a prune ratio. Since each pruned

channel is filled with zero, the amount of information to be

passed decreases as the prune ratio increases. In an extreme

case where the prune ratio is equal to one, the input feature

maps directly pass through an identity mapping ignoring the

residual block.

We compare the validation accuracy when channel prun-

ing is applied to SE, GE, and SRM at different stages and

report the results in Figure 6. The accuracy is mostly pre-

served during the early phase of the pruning process but it

quickly drops after a certain prune ratio. Throughout all

stages, the accuracy drops noticeably slower in SRM com-

pared to SE and GE, which implies that SRM learns better

relative importance of channels than other methods. Note

that SRM predicts channel importance solely based on style

context, which may provide an insight into how the network

utilizes the style of an image in its decision making process.

5.3. Difference between SRM and SE Block

Although the proposed SRM shares similar aspects of

feature recalibration with the SE block, we observe the char-

acteristics of SRM is far distinct from SE throughout the ex-

periments. To further understand their representational dif-

ference, we visualize the features learned by each method

through seeking the images that leads to the highest chan-

nel weights. We record the channel weights for each vali-

dation image obtained by SE-ResNet-56 and SRM-ResNet-

56 trained on DTD. Figure 7 shows the top-activated im-

ages for individual channels in conv2-6 among the entire

validation set. While SE results in highly overlapped im-

ages across channels, SRM yields a greater diversity of top-

activated images. This implies SRM allows lower correla-

tion between channel weights compared to the SE block,

which leads us to the following exploration.

Figure 8 depicts the correlation matrix between channel

weights produced by SE and SRM. As expected, there ex-

ists high correlation between the channel weights in the SE

block, but SRM exhibits lower correlation between chan-

nels (in terms of the total sum of squared correlation co-

efficients throughout the whole network, SRM shows al-

most three times smaller numerical value of 143,909 than

SE’s 420,509). In addition, the conspicuous grid pattern

in SE’s correlation matrix implies that groups of channels

are turned on or off synchronously, whereas SRM tends to

encourage decorrelation between channels. Our compari-

son between SE and SRM suggests that they target quite

different perspectives of feature representations to enhance

performance, which is worth future investigation.

6. Conclusion

In this work, we present Style-based Recalibration Mod-

ule (SRM), a lightweight architectural unit that dynamically

recalibrates feature responses based on style importance.

By incorporating the styles into feature maps, it effectively

enhances the representational power of a CNN. Our experi-

ments on general object classification demonstrate that sim-

ply inserting SRM into standard CNN architectures such as

ResNet boosts the performance of network. Furthermore,

we verify the significance of SRM in controlling the contri-

bution of styles through various style-related tasks. While

most previous works utilized styles in image generation

frameworks, SRM is designed to harness the latent ability of

style information in more general vision tasks. We hope our

work sheds light on better exploiting styles into designing a

CNN architecture in a wide range of applications.
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