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Abstract

Designing an effective loss function plays an important

role in visual analysis. Most existing loss function designs

rely on hand-crafted heuristics that require domain experts

to explore the large design space, which is usually sub-

optimal and time-consuming. In this paper, we propose Au-

toML for Loss Function Search (AM-LFS) which leverages

REINFORCE to search loss functions during the training

process. The key contribution of this work is the design of

search space which can guarantee the generalization and

transferability on different vision tasks by including a bunch

of existing prevailing loss functions in a unified formulation.

We also propose an efficient optimization framework which

can dynamically optimize the parameters of loss function’s

distribution during training. Extensive experimental results

on four benchmark datasets show that, without any tricks,

our method outperforms existing hand-crafted loss func-

tions in various computer vision tasks.

1. Introduction

Convolutional neural networks have significantly

boosted the performance of a variety of visual analysis

tasks, such as image classification [16, 33, 10], face recog-

nition [22, 37, 5], person re-identification [24, 38, 34, 6]

and object detection [8, 28] in recent years due to its high

capacity in learning discriminative features. Aside from

developing features from deeper networks to get better

performance, better loss functions have also been proven to

be effective on improving the performance of the computer

vision frameworks in most recent works [22, 20].

Conventional CNN-based vision frameworks usually ap-

ply a widely-used softmax loss to high level features. L-

softmax [23] is a variant of softmax loss which added mul-

tiplicative angular to each class to improve feature discrim-

ination in classification and verification tasks. [22] intro-

duced A-softmax by applying L-softmax [23] to face recog-
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Figure 1. The motivation of the proposed loss function search

space. The figure shows that the candidate loss functions in our

search space (dotted lines) can well approximate the according ex-

isting loss functions (solid lines). The x-axis indicates the loss

input and the y-axis indicates the output loss values in log-scale.

nition task with weights normalization. [39, 37] moved the

angular margin into cosine space to overcome the optimiza-

tion difficulty of [22] and achieved state-of-the-art perfor-

mance. [5] can obtain more discriminative deep features

for face recognition by incorporating the additive angular

margin. In addition to the above margin-based softmax

loss functions, focal loss [20] is another variant of softmax

loss which was proposed to adopt a re-weighting scheme

to address the data imbalance problems in object detection.

While these methods improve performance over the tradi-

tional softmax loss, they still come with some limitations:

(1) Most existing methods rely on hand-crafted heuristics

that require great efforts from domain experts to explore the

large design space, which is usually sub-optimal and time-

consuming. (2) These methods are usually task-specific,

which may lack transferability when applied to other vision

tasks. By utilizing AutoML methods for exploration in a

well-designed loss function search space, a generic solution

can be proposed to further improve the performance.

In this paper, we propose AutoML for Loss Function
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Search (AM-LFS) method from a hyper-parameter opti-

mization perspective. Based on the analysis of existing

modification on the loss functions, we design a novel and

effective search space, which is illustrated in Figure 1 and

formulate hyper-parameters of loss function as a parame-

terized probability distribution for sampling. The proposed

search space include a bunch of popular loss designs, whose

sampled candidate loss functions can adjust the gradients of

examples at different difficulty levels and balance the signif-

icance of intra-class distance and inter-class distance during

training. We further propose a bilevel framework which al-

lows the parameterized distribution to be optimized simulta-

neously with the network parameters. In this bilevel setting,

the inner objective is the minimization of sampled loss w.r.t

network parameters, while the outer objective is the maxi-

mization of rewards (e.g. accuracy or mAP) w.r.t loss func-

tion distribution. After the AM-LFS training finishes, the

network parameters can be directly deployed for evaluation

and then get rid of the heavily re-training steps. Further-

more, since our method is based on the loss layer without

modification on the network architecture of specific tasks, it

can be easily applied to off-the-shelf modern classification

and verification frameworks. We summarize the contribu-

tions of this work as follows:

(1) We provide an analysis based on the existing loss

function design and propose a novel and effective search

space which can guarantee the generalization and transfer-

ability on different vision tasks.

(2) We propose an efficient optimization framework

which can dynamically optimize the distribution for sam-

pling of the loss functions.

(3) The proposed approach advances the performance of

the state-of-the-art methods on popular classification, face

and person re-id databases including CIFAR-10, MegaFace,

Market-1501 and DukeMTMC-reID.

2. Related Work

2.1. Loss Function

Loss function plays an important role in deep feature

learning of various computer vision tasks. Softmax loss

is a widely-used loss for CNN-based vision frameworks.

A large margin Softmax (L-Softmax) [23] modified soft-

max loss by adding multiplicative angular constraints to

each identity to improve feature discrimination in classifi-

cation and verification tasks. SphereFace [22] applies L-

Softmax to deep face recognition with weights normaliza-

tion. CosineFace [39, 37] and ArcFace [5] can achieve the

state-of-the-art performance on the MegaFace with more

discriminative deep features by incorporating the cosine

margin and additive angular margin, respectively. Spher-

eReID [6] adopted the sphere softmax and trained the model

end-to-end to achieve the state-of-the-art results on the chal-

lenging person reid datasets. For object detection, focal

loss [20] and gradient harmonized detector [17] adopt a

re-weighting scheme to address the class imbalance prob-

lem. However, noisy labels can lead to misleading gradient,

which may be amplified by gradient re-weighting schemes

and cause a training failure.

2.2. AutoML

AutoML was proposed as an AI-based solution to the

challenging tasks by offering faster solutions creation and

models outperforming those designed by hand. Recent

works of automatically searching neural network architec-

tures (NAS) has greatly improve the performance of neural

networks. NAS utilizes reinforcement learning [48, 47, 46]

and genetic algorithms [27, 42, 31] to search the transfer-

able network blocks whose performance surpasses many

manually designed architectures. However, all the above

methods require massive computation during the search,

particularly thousands of GPU days. Recent efforts such

as [21, 25, 26], utilized several techniques trying to reduce

the search cost. [21] is a differential based method which

utilized a bilevel optimization procedure for the jointly

training of the real-valued architecture parameters and the

model parameters. Several methods attempt to automati-

cally search architectures with fast inference speed by ex-

plicitly taking the inference latency as a constrain [36, 1] or

implicitly encoding the topology information [9]. In addi-

tion to the network architecture search, [12] utilized Au-

toML techniques for effective model compression, where

the pruning rate was automatically decided by reinforce-

ment learning. [41] utilized a teacher model inspired by

[7] to guide the student model training with dynamic loss

function. However, how to design a generic search space

to various domains of tasks and an efficient optimization

framework remain an open problem.

3. Approach

In this section, we first revisit several loss function de-

signs from a novel perspective and then analyze their influ-

ence on the training procedure and reformulating them in a

unified expression. We hence propose a novel search space

on the basis of the unified expression to include the good

properties of existing popular loss function designs. We

also propose an optimization framework by utilizing Au-

toML methods for efficient loss function search during the

whole training process, which is illustrated in Figure 2.

3.1. Revisiting Loss Function Design

Softmax Loss: The most widely used softmax loss can

be written as

L =
1

N

∑

i

Li =
1

N

∑

i

−log

(

efyi
∑

j e
fj

)

, (1)
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Figure 2. The bilevel optimization framework of our proposed AM-LFS approach. In this bilevel setting, the inner objective is the min-

imization of sampled loss w.r.t network parameters, while the outer objective is the maximization of rewards (e.g. accuracy or mAP)

w.r.t loss function distribution. After each train epoch, we broadcast the model parameters with the highest reward to each sample for

synchronization.

where xi and yi is the i-th input feature and the label, re-

spectively. fj denotes the j-th element (j ∈ [1, C], where C
is the number of classes) of the vector of scores f , N is the

length of training set. f is usually the activation of a fully

connected layer W . We further denote fj as W T
j xi, where

Wj is the j-th column of W . Hence fj can be formulated

as:

fj = ‖Wj‖ ‖xi‖ cos (θj) , (2)

where θj(0 ≤ θj ≤ π) is the angle between the vector Wj

and xi, ‖Wj‖ and ‖xi‖ are L2 norm of Wj and xi. Note

that ‖Wj‖ = 1 or ‖xi‖ = 1 if Wj or xi is normalized.

Thus the original softmax loss can be rewritten as:

Li = −log

(

e‖Wyi‖‖xi‖cos(θyi)
∑

j e
‖Wj‖‖xi‖cos(θj)

)

(3)

We can easily obtain several variants of the original softmax

loss such as margin-based softmax loss and focal loss by

inserting transforms into Eq. 3.

Margin-based Softmax Loss: The family of margin-

based loss functions can be obtained by inserting a continu-

ously differentiable transform function t () between the the

norm ‖Wyi
‖ ‖xi‖ and cos (θyi

), which can be written as:

Lt
i = −log

(

e‖Wyi‖‖xi‖t(cos(θyi ))

e‖Wyi‖‖xi‖t(cos(θyi ))+
∑

j 6=yi
e‖Wj‖‖xi‖cos(θj)

)

,(4)

Table 1. The expressions of some existing transforms including

L-softmax, A-softmax and ArcFace.

transform expression

L-softmax [23] t(x) = cos(m · arccos(x))
A-softmax [22] t(x) = x+m

ArcFace [5] t(x) = cos(arccos(x) +m)

where t is used to distinguish margin-based softmax loss

functions with different transforms. We also list several

transforms including L-softmax, A-softmax, ArcFace and

their corresponding expressions in Table. 3.1,

Focal Loss: This is also a variant which can be derived

from softmax loss by adding transform function at another

location, which can be described as

Lt
i = −τ(log(pyi

)) (5)

τ(x) = x(1− ex)α. (6)

3.2. Analysis of Loss Function

In this section, we first discuss the impacts of margin-

based softmax loss functions on the training process from a

new perspective based on the analysis of the relative signif-

icance of intra-class distance and inter-class distance. We
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define the inter-class distance dj as the distance between

the feature xi and the class center Wj . The intra-class dis-

tance dyi
can be defined in a similar way. For simplification,

we assume that Wj and xi are normalized, which means

‖Wj‖ = ‖xi‖ = 1 and fj = cos(θj). Under this assump-

tion, the relationship between fj and dj can be described as

follows:

d2j = (xi −Wj)
2 = 2− 2fj . (7)

As a result, we can analyze the impact of margin-based soft-

max loss on fyi
and fj instead. The impact can be calcu-

lated as the norm of gradient passed to the activation layer

f . Specifically, the gradients of the loss layer with respect

to fyi
and fj are:

|| ∂L
t
i

∂fyi
|| = (1− ptyi

)t′(fyi
), (8)

||∂L
t
i

∂fj
|| = ptj , (9)

where

ptyi
=

e‖Wyi‖‖xi‖t(cos(θyi))

e‖Wyi‖‖xi‖t(cos(θyi)) +
∑

j 6=yi
e‖Wj‖‖xi‖cos(θj)

, (10)

ptj =
e‖Wj‖‖xi‖cos(θj)

e‖Wyi‖‖xi‖t(cos(θyi)) +
∑

j 6=yi
e‖Wj‖‖xi‖cos(θj)

(11)

We further define relative significance of intra-class dis-

tance to inter-class distance as the ratio of norms of the

gradients of fyi
and fj with respect to the margin-based

softmax loss, which is described as follows:

rti =
|| ∂L

t
i

∂fyi
||

||
∂Lt

i

∂fj
||

=
(1− ptyi

)

ptj
t′(fyi

), (12)

while with respect to the original softmax loss, this signifi-

cance ratio is

roi =
|| ∂L

o
i

∂fyi
||

||
∂Lo

i

∂fj
||

=
(1− poyi

)

poj
. (13)

Where o is the identity transform. The impact of margin-

based loss on the relative significance of intra-class distance

to inter-class distance can be calculated as the ratio of rti and

ri:

rti
roi

=

(1−pt
yi

)

pt
j

(1−po
yi

)

po
j

t′(fyi
) =

∑
t 6=yi

e‖Wt‖‖xi‖cos(θt)

e‖Wj‖‖xi‖cos(θj)
∑

t 6=yi
e‖Wt‖‖xi‖cos(θt)

e‖Wj‖‖xi‖cos(θj)

t′(fyi
)

= t′(fyi
) (14)

Here we conclude that margin-based softmax loss layer

mainly functions as a controller to change the relative sig-

nificance of intra-class distance to inter-class distance by its

derivative t′(fyi
) during the training process. In addition to

the margin-based softmax loss, we also analyze the impact

of the focal loss. The gradient of focal loss with respect to

the activation f equals to that of original softmax loss multi-

ply τ ′(log(pyi
). This gradient leads to a totally different yet

very effective impacts on the training process, which mono-

tonically decreases with the log-likehood and help balance

samples at different levels of difficulty.

3.3. Search Space

Based on the analysis above, we can insert two trans-

forms τ and t into the original softmax loss to generate loss

functions with a unified formulation, which have both capa-

bilities of balancing (1) intra-class distance and inter-class

distance, (2) samples at different levels of difficulty. The

unified formulation can be written as:

Lτ,t
i = −τ(log

(

ptyi

)

), (15)

where τ and t are any function with positive gradient. To en-

sure τ has a bounded definition domain [0, 1] hence reduce

the complexity of searching in this space, we exchange τ
and log,

Lτ,t
i = −log(τ

(

ptyi

)

). (16)

We prove that these two search space defined in Eq. 15 and

Eq. 16 are equivalent: for any τ1(x) in Eq. 15, we can get

the same loss function by simply setting τ2(x) = eτ1(log(x))

in Eq. 16.

Our search space is formulated by the choices of τ and

t, whose impacts on the training procedure are decided by

derivatives τ ′ and t′ according to the analysis above. As a

result, we simply set the candidate set as piecewise linear

functions that evenly divide the definition domain, which

ensures independent slopes and bias within each interval.

Take the function t as an example:

t(x) = atix+ bti, x ∈ [ζti , ζ
t
i+1], (17)

where ζt = [ζ0, ...ζM ](M is the number of intervals) are the

end points of the intervals, and ζti+1 − ζti = (ζtM − ζt0)/M
for i ∈ [0,M − 1].

We also analyze the effectiveness of the components in

our search space. Samples in different intervals are at differ-

ent levels of difficulty. For example, larger-value intervals

contain easier samples with smaller intra-class distance dyi
.

Since t′ denotes the relative significance between intra-class

and inter-class distance, we assign each interval with inde-

pendent slope t′ = ati to ensure the loss function can inde-

pendently balance the significance of intra-class and inter-

class distance at different levels of difficulty. Similarly, τ ’s

candidate set is the described by aτi , bτi and ζτi , which bal-

ances the significance of samples at different difficulty lev-

els. The biases bti and bτi guarantees the independence of
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each interval from previous intervals. We set ζt and ζτ as

constant values which evenly divide definition domains into

M intervals. We define θ = [atT , bt
T
,aτ T , bτ T ]T . Given

ζt, ζτ , the loss function Lθ = Lt,τ can decided merely by θ.

Thus, our search space can be parameterized by L = {Lθ}.

3.4. Optimization

Suppose we have a network model Mω parameterized

by ω, train set Dt = {(xi, yi)}
n
i=1 and validation set Dv ,

our target of loss function search is to maximize the model

Mω’s rewards r(Mω;Dv) (e.g. accuracy or mAP) on val-

idation set Dv with respect to θ = [atT , bt
T
,aτ T , bτ T ]T ,

and the model Mω is obtained by minimizing the search

loss:

max
θ

R(θ) = r(Mω∗(θ),Dv)

s.t. ω∗(θ) = argmin
ω

∑

(x,y)∈Dt

Lθ(Mω(x), y),
(18)

This refers to a standard bilevel optimization problem [3]

where loss function parameters θ are regarded as hyper-

parameters. We trained model parameters ω which mini-

mize the training loss Lθ at the inner level, while seeking

a good loss function hyper-parameters θ which results in a

model parameter ω∗ that maximizes the reward on the vali-

dation set Dv at the outer level.

To solve this problem, we propose an hyper-parameter

optimization method which samples B hyper-parameters

{θ1, ...θB} from a distribution at each training epoch and

use them to train the current model. In our AM-LFS, we

model these hyper-parameters θ as independent Gaussian

distributions, described by

θ ∼ N (µ, σI). (19)

After training for one epoch, B models are generated and

the rewards of these models are used to update the distribu-

tion of hyper-parameters by REINFORCE [40] as follows,

µt+1 = µt + η
1

B

B
∑

i=1

R(θi)∇θlog(g(θi;µt,σ)) (20)

, where g(θ;µ, σ) is PDF of Gaussian distribution. The

model with the highest score is used in next epoch. At last,

when the training converges, we direct take the model with

the highest score r(Mw∗(θ),Dv) as the final model without

any retraining. To simplify the problem, we fix σ as con-

stant and optimize over µ. The training procedure of our

AM-LFS is summarized in Algorithm 1.

4. Experiments

We conducted experiments on four benchmarking

datasets including CIFAR-10 [15], MegaFace [14], Market-

Algorithm 1 :AM-LFS

Input: Initialized model Mω0
, initialized distribution

µ0, total training epochs T , distribution learning rate η

Output: Final model MωT

for t = 1 to T do

Sample B hyper-parameters θ1, ...θB via distribution

N (µt, σI);
Train the model Mωt

for one epoch separately with the

sampled hyper-parameters and get Mω1
t
, ...MωB

t
;

Calculate the score R(θ1), ...R(θB)
Decide the index of model with highest score i =
argmax

j
R(θj);

Update µt+1 using Eq. (20)

Update Mωt+1
= Mωi

t

end for

return MωT

1501 [44] and DukeMTMC-reID [29, 45] to show the ef-

fectiveness of our method on classification, face recognition

and person re-identification tasks.

4.1. Implementation Details

Since our AM-LFS utilizes a bilevel optimization frame-

work, our implementation settings can be divided into in-

ner level and outer level. In the inner level, for fair com-

parison, we kept all experimental settings such as warmup

stage, learning rate, mini-batch size and learning rate decay

consistent with the corresponding original baseline meth-

ods on the specific tasks. Note that for the baseline methods

with multi-branch loss, we only replace the softmax loss

branch with AL-LFS while ignoring others. For example,

in MGN [38], we only apply AL-LFS to 8 softmax loss

branches while keeping triplet loss unchanged. In the outer

level, we optimized the distribution of loss functions in the

search space, the gradients of distribution parameters were

computed by REINFORCE algorithm with rewards from a

fixed number of samples. The rewards are top-1 accuracy,

rank 1 value and mAP for classification, face recognition

and person re-identification, perspectively. We normalized

the rewards returned by each sample to zero mean and unit

variance, which is set as the reward of each sample. For

all the datasets, the numbers of samples B and intervals M
are set to 32 and 6, respectively. Note that we also con-

ducted the investigation on these numbers in Section 4.6.

For the distribution parameters, we used Adam optimizer

with a learning rate of 0.05 and set σ = 0.2. Having finished

the update of the distribution parameters, we broadcast the

model parameters with the highest mAP to each sample for

synchronization. For all the datasets, each sampled model is

trained with 2 Nvidia 1080TI GPUs, so a total of 64 GPUs

are required.
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4.2. Datasets

Classification: The CIFAR-10 dataset consist of natu-

ral images with resolution 32 × 32. CIFAR-10 consists

of 60,000 images in 10 classes, with 6,000 images per

class. The train and test sets contain 50,000 and 10,000 im-

ages respectively. On CIFAR datasets, we adopted a stan-

dard data augmentation scheme (shifting/mirroring) follow-

ing [19, 13], and normalized the input data with channel

means and standard deviations.

Face Recognition: For face recognition, we set the

CASIA-Webface [43] as the training dataset and MegaFace

as the testing dataset. CASIA-Webface contains 494,414

training images from 10,575 identities. MegaFace datasets

are released as the largest public available testing bench-

mark, which aims at evaluating the performance of face

recognition algorithms at the million scale of distractors.

To perform open-set evaluations, we carefully remove the

overlapped identities between training dataset and the test-

ing dataset.

Person ReID: For person re-identification, we used

Market-1501 and DukeMTMC-reID to evaluate our pro-

posed AM-LFS method. Market-1501 includes images of

1,501 persons captured from 6 different cameras. The

pedestrians are cropped with bounding-boxes predicted by

DPM detector. The whole dataset is divided into train-

ing set with 12,936 images of 751 persons and testing set

with 3,368 query images and 19,732 gallery images of 750

persons. In our experiments, we choose the single-query

mode, where features are extracted from only 1 query im-

age. DukeMTMC-reID is a subset of Duke-MTMC for

person re-identification which contains 36,411 annotated

bounding box images of 1,812 different identities captured

by eight high-resolution cameras. A total of 1,404 identi-

ties are observed by at least two cameras, and the remain-

ing 408 identities are distractors. The training set contains

16,522 images of 702 identities and the testing set contains

the other 702 identities.

4.3. Results on CIFAR10

We demonstrate our method with ResNet-20 [11] on the

CIFAR-10 dataset [15]. We trained the model using the

standard cross-entropy to obtain the original top-1 test er-

ror 8.75%. Table 2 shows the classification results com-

pared with standard cross-entropy (CE) [4] and the dynamic

loss by learning to teach (L2T-DLF) [41] methods. As can

be observed, among all three loss function methods, our

AM-LFS helps ResNet-20 achieve the best performance of

6.92% top-1 error rate. We also see that the recently pro-

posed L2T-DLF reduces the error rate of softmax loss by

1.12% because L2T-DLF introduced the dynamic loss func-

tions outputted via teacher model which can help to culti-

vate better student model. Note that AM-LFS can further

reduce the top-1 error rate of L2T-DLF by 0.71%, which

Table 2. Results on the dataset CIFAR-10 using ResNet-20, show-

ing the ratio of noise label, the top-1 test error rate (%) with stan-

dard cross entropy, L2T-DLF and AM-LFS.

Noise ratio(%) CE [4] L2T-DLF [41] AM-LFS

0 8.75 7.63 6.92

10 12.05 — 10.05

20 15.05 — 12.73

attributes to more effective loss function search space and

optimization strategy design in our method.

In addition to the conventional experiments, we also con-

ducted the CIFAR-10 noisy label experiments, where la-

beled classes can randomly flip to any other label by a given

noise ratio, to demonstrate AM-LFS has the property of data

re-weighting during training. As shown in Table 2, AM-

LFS consistently outperforms the baseline softmax loss by

2.00% and 2.32% under the noise ratio of 10% and 20%
respectively.

4.4. Results on MegaFace

We compare the proposed AM-LFS with three state-

of-the-art loss function methods, including SphereFace,

CosineFace and ArcFace. We used a modified ResNet with

20 layers that is adapted to face recognition and followed

the same experimental settings with [37] when training the

model parameters at the inner level. Table 3 shows the

MegaFace rank1@1e6 performance with various loss func-

tions. For SphereFace and CosineFace, we directly reported

the results from the original paper. For ArcFace, we report

their results by running the source codes provided by the au-

thors to train the models by ourselves. We can observe that

our proposed AM-LFS outperforms all compared methods

by 6.1%, 1.0% and 1.1%, respectively. The main reason

is that the candidates sampled from our proposed search

space can well approximate all these compared loss func-

tions, which means their good properties can be sufficiently

explored and utilized during the training phase. Meanwhile,

our optimization strategy enables that the dynamic loss can

guide the model training of different epochs, which helps

further boost the discrimination power.

4.5. Results on Market1501 and DukeMTMCreID

We demonstrate the effectiveness of our AM-LFS by

applying it to some existing competitors including Spher-

eReID, SFT and MGN. We compare with current state-

of-the-art methods on both datasets to show our perfor-

mance advantage over the existing baseline. We report the

mean average precision (mAP) and the cumulative match-

ing characteristics (CMC) at rank-1 and rank-5 on all the

candidate datasets. On Market-1501 dataset, we only con-

duct experiments both in single-query mode. The results

on Market-1501 dataset and DukeMTMC-reID dataset are
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Table 3. Comparison with state-of-the-art loss functions on the

MegaFace dataset using ResNet-20. For SphereFace and Cosine-

Face, we directly reported the results from the original paper. For

ArcFace, we report their results by running the source codes pro-

vided by their respective authors to train the models by ourselves

following the same setting with CosineFace.

Method MegaFace rank1@1e6

SphereFace [22] 67.4

CosineFace [37] 72.5

ArcFace [5] 72.4

AM-LFS 73.5

Table 4. Comparison with state-of-the-art methods on the Market-

1501 dataset using ResNet 50 showing mAP, rank 1 and rank 5.

RK refers to implementing re-ranking operation.

Methods mAP rank1 rank5

MLFN [2] 74.3 90.0 —

HA-CNN [18] 75.7 91.2 —

DuATM [32] 76.6 91.4 97.1

Part-aligned [34] 79.6 91.7 96.9

PCB [35] 77.4 92.3 97.2

SphereReID [6] 83.6 94.4 98.0

SFT [24] 82.7 93.4 —

MGN [38] 86.9 95.7 —

MGN(RK) [38] 94.2 96.6 —

SphereReID+ours 84.4 95.0 98.1

SFT+ours 83.2 93.6 97.9

MGN+ours 88.1 95.8 98.4

MGN(RK)+ours 94.6 96.1 98.4

shown in Table 4 and Table 5, respectively. We divide

the results into two groups according to whether our AL-

LFS is applied or not. For Market-1501, MGN(RK)+AM-

LFS outperforms best competitor MGN(RK) by 0.4% in

mAP. We observe that MGN rank 1 exhibits a degradation

(0.5%) after adopting AM-LFS. The mainly reason is that

AM-LFS utilized mAP-related reward for guidance, which

may not always be consistent with the rank 1 value. For

DukeMTMC-reID, MGN(RK)+AM-LFS surpass all com-

pared methods in terms of mAP and rank 1. We conclude

that although the baseline models SphereReID, SFT and

MGN already achieved very high results on both Market-

1501 and DukeMTMC-ReID, applying AM-LFS to them

can still help cultivate better model hence boost the perfor-

mance consistently.

4.6. Ablation Study

Effectiveness of the components: We showed the im-

portance of both components search space and search

strategy by demonstrating (1) the proposed design of the

Table 5. Comparison with state-of-the-art methods on the

DukeMTMC-ReID dataset using ResNet 50 showing mAP, rank

1 and rank 5. RK refers to implementing re-ranking operation.

Methods mAP rank1 rank5

PSE [30] 62.0 79.8 89.7

MLFN [2] 62.8 81.0 —

HA-CNN [18] 63.8 80.5 —

DuATM [32] 64.6 81.8 90.2

Part-aligned [34] 69.3 84.4 92.2

PCB+RPP [35] 69.2 83.3 —

ShpereReID [6] 68.5 83.9 90.6

SFT [24] 73.2 86.9 93.9

MGN [38] 78.4 88.7 —

MGN(RK) [38] 88.6 90.9 —

ShpereReID+ours 69.8 84.3 92.0

SFT+ours 73.8 87.0 95.1

MGN+ours 80.0 89.9 95.2

MGN(RK)+ours 90.1 92.4 95.7

Table 6. Effects of the number of samples by setting B as 4, 8, 16,

32 in terms of mAP on the Market-1501 dataset and DukeMTMC-

reID dataset using our AM-LFS based on the SphereReID baseline

model.

Method B=4 B=8 B=16 B=32

Market-1501 83.6 83.8 84.2 84.4

DukeMTMC-reID 68.4 68.9 69.7 69.8

loss function search space itself can lead to AM-LFS’s

strong empirical performance and (2) the AM-LFS’s ca-

pability of dynamically learning the distributions of better

loss functions hence boost the performance during the train-

ing process. We trained the SphereReID model on Market-

1501 by sampling candidates from the initial distribution

while not updating this distribution. At the convergence,

the model has the mAP of 84.0%, which outperforms the

original baseline by 0.4%. We conducted this study for the

proposed search space, which can guarantee a performance

gain over the baseline model even under a guided random

search setting. We further enabled the optimization of the

distribution and obtained an additional performance gain of

0.4%. We therefore conclude that both the design of the

loss function search space and the appropriate optimization

procedures are crucial for good performance.

Investigation on samples: We study the effects of the

number of samples in the optimization procedure by chang-

ing the parameter B in AM-LFS. Note that it costs more

computation resources (GPUs) to train a minibatch of data

as B increases. We report the performance results of differ-

ent B values selected from {4, 8, 16, 32} in Table. 6 in terms

of mAP on the Market-1501 and DukeMTMC-reID based
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Table 7. Effects of the number of intervals by setting M as 3, 6,

10 in terms of mAP on the Market-1501 dataset and DukeMTMC-

reID dataset using our AM-LFS based on the SphereReID baseline

model.

Dataset M=3 M=6 M=10

Market-1501 83.8 84.4 84.2

DukeMTMC-reID 68.6 69.8 69.5

on SphereReID. The results show that when B is small, the

performance degrades because efficient gradients cannot be

obtained without enough samples. We also observe that the

performance exhibits saturation when we keep enlarging B.

For a tradeoff of the performance and the training efficiency,

we choose to fix B as 32 during training.

Investigation on intervals: We study the effects of the

the number of intervals in the search space by changing the

interval parameter M in AM-LFS. According to our design

of the search space, samples at different levels of difficulty

are assigned to specific intervals, which enables a dynamic

tradeoff between the intra-class distance and inter-class dis-

tance. Table. 7 shows mAP performance results with re-

spect to M on the Market-1501 dataset and DukeMTMC-

reID dataset. When we set the interval number as a small

number (M = 3), the mAP exhibits a low value because the

intervals are not enough to handle all levels of hard exam-

ples during training. The network is hard to train and suffers

from an accuracy degradation when we set a large interval

number (M = 10) because the excessive distribution pa-

rameters are hard to optimize. We also observe that the best

performance is achieved at a moderate value of M = 6.

Investigation on convergency: To evaluate the training

process of the our AM-LFS, we need to conduct investi-

gation on the training convergency especially at the outer

level. However, it’s hard to simply track the loss conver-

gency since our AM-LFS learns dynamic loss function dis-

tributions during the training process. Tracking the average

reward is also not a good idea because this signal is very

noisy which would create the illusion of instability of the

training progress. The main reason is that small updates to

loss function distributions at outer level may lead to large

changes to the network parameters at the inner level. As a

result, we choose to track a more intuitive metric, the distri-

bution parameters to study the convergency of our method.

From the Figure 3, we see that the distribution parameters

tends to converge to specific values as the epochs increase,

which indicates AM-LFS can be trained in a stable manner.

Visualization of gradient distribution: We visualize

the gradient distribution of intra-class distance term fyi
in

Figure 4 to demonstrate AM-LFS that has more discrimi-

nation power than the baseline Sphere softmax loss func-

tion in SphereReID on Market-1501 dataset. When the ac-
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Figure 3. Convergency analysis of AM-LFS.
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Figure 4. Visualization of gradient distribution of Sphere Soft-

maxLoss and our AM-LFS.

tivation value (x-axis) increases, the intra distance will de-

crease, where data samples are at a relatively easy level. On

the contrary, when the activation value (x-axis) decreases,

data samples are at a hard level. As can be observed from

Figure 4, the gradients of AM-LFS with regard to hard ex-

amples are lower than those of baseline sphere softmax,

which leads to a focus on the inter-class distance. We con-

clude that AM-LFS can dynamic tradeoff the significance

of intra-class distance and inter-class distance hence boost

the model’s discrimination power.

5. Conclusion

In this paper, we have proposed AutoML for Loss Func-

tion Search (AM-LFS) which leverages REINFORCE to

search loss functions during the training process. We care-

fully design an effective and task independent search space

and bilevel optimization framework, which guarantees the

generalization and transferability on different vision tasks.

While this paper only demonstrates the effectiveness of

AM-LFS applying to classification, face recognition and

person re-id datasets, it can also be easily applied to other

off-the-shelf modern computer vision frameworks for vari-

ous tasks, which is an interesting future work.
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