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Abstract

Person re-identification (re-ID) aims at recognizing the

same person from images taken across different cameras.

On the other hand, cross-dataset/domain re-ID focuses on

leveraging labeled image data from source to target do-

mains, while target-domain training data are without la-

bel information. In order to introduce discriminative ability

and to generalize the re-ID model to the unsupervised target

domain, our proposed Pose Disentanglement and Adapta-

tion Network (PDA-Net) learns deep image representation

with pose and domain information properly disentangled.

Our model allows pose-guided image recovery and transla-

tion by observing images from either domain, without pre-

defined pose category nor identity supervision. Our qual-

itative and quantitative results on two benchmark datasets

confirm the effectiveness of our approach and its superiority

over state-of-the-art cross-dataset re-ID approaches.

1. Introduction

Given a query image containing a person (e.g., pedes-

trian, suspect, etc.), person re-identification (re-ID) [59]

aims at matching images with the same identity across non-

overlapping camera views. Person re-ID has been among

active research topics in computer vision due to its practi-

cal applications to smart cities and large-scale surveillance

systems. In order to tackle the challenges like visual ap-

pearance changes or occlusion in practical re-ID scenarios,

several works have been proposed [4, 23, 36, 45, 46, 62].

However, such approaches require a large amount of labeled

data for training, and this might not be applicable for real-

work applications.

Since it might be computationally expensive to collect

identity labels for the dataset of interest, one popular solu-

tion is to utilize an additional yet distinct source-domain

dataset. This dataset contains fully labeled images (but

Figure 1: Existing cross-dataset re-ID methods like [12]

perform style transfer followed by feature extraction for

re-ID, which might limit image variants to be observed.

We choose to perform pose disentanglement and adaption

with domain-invariant features jointly learned, alleviating

the above issue with improved image representation.

with different identities) captured by a different set of cam-

eras. Thus, the goal of cross-domain/dataset person re-ID is

to extract and adapt useful information from source to the

target-domain data of interest, so that re-ID at the target-

domain can be addressed accordingly. Since no label is ob-

served for the target-domain data during training, one typ-

ically views the aforementioned setting as a unsupervised

learning task.

Several methods for cross-dataset re-ID have been pro-

posed [13, 15, 42, 49, 54, 58, 61]. For example, Deng et

al. [13] employ CycleGAN to covert labeled images from

source to target domains, followed by performing re-ID at

the target domain. Similarly, Zhong et al. [61] utilize Star-

GAN [11] to learn camera invariance and domain connect-

edness simultaneously. On the other hand, Lin et al. [35]

employ Maximum Mean Discrepancy (MMD) for learning

mid-level feature alignment across data domains for cross-
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dataset re-ID. However, as shown in Fig. 1, existing cross-

domain re-ID approaches generally adapt style information

across datasets, and thus pose information cannot be easily

be described or preserved in such challenging scenarios.

To overcome the above limitations, we propose a novel

deep learning framework for cross-dataset person re-ID.

Without observing any ground truth label and pose infor-

mation in the target domain, our proposed Pose Disentan-

glement and Adaptation Network (PDA-Net) learns domain-

invariant features with the ability to disentangle pose infor-

mation. This allows one to extract, adapt, and manipulate

images across datasets without supervision in identity or la-

bel. More importantly, this allows us to learn domain and

pose-invariant image representation using our proposed net-

work (as depicted in Fig. 1). With label information ob-

served from the source-domain images for enforcing the

re-ID performance, our PDA-Net can be successfully ap-

plied to cross-dataset re-ID. Compare to prior unsupervised

cross-dataset re-ID approaches which lack the ability to de-

scribe pose and content features, our experiments confirm

that our model is able to achieve improved performances

and thus is practically preferable.

We now highlight the contributions of our work below:

• To the best of our knowledge, we are among the first to

perform pose-guided yet dataset-invariant deep learn-

ing models for cross-domain person re-ID.

• Without observing label information in the target do-

main, our proposed PDA-Net learns deep image repre-

sentation with pose and domain information properly

disentangled.

• The above disentanglement abilities are realized by

adapting and recovering source and target-domain im-

ages in a unified framework, simply based on pose in-

formation observed from either domain image data.

• Experimental results on two challenging unsupervised

cross-dataset re-ID tasks quantitatively and qualita-

tively confirm that our method performs favorably

against state-of-the-art re-ID approaches.

2. Related Works

Supervised Person Re-ID. Person re-ID has been widely

studied in the literature. Existing methods typically focus

on tackling the challenges of matching images with view-

point and pose variations, or those with background clutter

or occlusion presented [2, 4, 7, 10, 27, 30, 31, 36, 37, 45,

46, 47, 50, 51]. For example, Liu et al. [37] develop a pose-

transferable deep learning framework based on GAN [19]

to handle image pose variants. Chen et al. [4] integrate

conditional random fields (CRF) and deep neural networks

with multi-scale similarity metrics. Several attention-based

methods [5, 6, 9, 30, 34, 46, 47] are further proposed to fo-

cus on learning the discriminative image features to mitigate

the effect of background clutter. While promising results

have been observed, the above approaches cannot easily be

applied for cross-dataset re-ID due to the lack of ability in

suppressing the visual differences across datasets.

Cross-dataset Person Re-ID. To handle cross-dataset

person re-ID, a range of hand-crafted features have been

considered, so that re-ID at the target domain can be per-

formed in an unsupervised manner [16, 20, 33, 38, 40, 58].

To better exploit and adapt visual information across data

domains, methods based on domain adaptation [8, 24] have

been utilized [12, 14, 29, 35, 49, 61]. However, since the

identities, viewpoints, body poses and background clutter

can be very different across datasets, plus no label super-

vision is available at the target domain, the performance

gains might be limited. For example, Fan et al. [14] pro-

pose a progressive unsupervised learning method iterating

between K-means clustering and CNN fine-tuning. Li et

al. [29] consider spatial and temporal information to learn

tracklet association for re-ID. Wang et al. [49] learn a dis-

criminative feature representation space with auxiliary at-

tribute annotations. Deng et al. [12] translate images from

source domain to target domain based on CycleGAN [63]

to generate labeled data across image domains. Zhong et

al. [61] utilize StarGAN [11] to learn camera invariance

features. And, Lin et al. [35] introduce the Maximum Mean

Discrepancy (MMD) distance to minimize the distribution

variations of two domains.

Pose-Guided Re-ID. While impressive performances are

presented in existing cross-dataset re-ID works, they typi-

cally require prior knowledge like the pose of interest, or

do not exhibit the ability in describing such information

in the resulting features. Recently, a number of models

are proposed to better represent pose features during re-

ID [28, 48, 52, 53, 55, 56, 57]. Ma et al. [39] generate

person images by disentangling the input into foreground,

background and pose with a complex multi-branch model

which is not end-to-end trainable. While Qian et al. [43] are

able to generate pose-normalized images for person re-ID,

only eight pre-defined poses can be manipulated. Although

Ge et al. [18] learn pose-invariant features with guided im-

age information, their model cannot be applied for cross-

dataset re-ID, and thus cannot be applied if the dataset of in-

terest is without any label information. Based on the above

observations, we choose to learn dataset and pose-invariant

features using a novel and unified model. By disentangling

the above representation, re-ID of cross-dataset images can

be successfully performed even if no label information is

available for target-domain training data.
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Figure 2: The overview of our Pose Disentanglement and Adaptation Network (PDA-Net). The content encoder EC learns

domain-invariant features vc for input images from either domain. The pose encoder EP transforms the pose maps (ps and

pt) into the latent features vp for pose guidance and disentanglement purposes. The generators GT and GS output domain-

specific images via single-domain recovery or cross-domain translation (xs→s
p′→p, xs→s, xt→s, xt→t and xs→t), conditioned

on the pose maps (ps and pt). The domain discriminators DS and DT preserve image perceptual quality, while the pose

discriminator DP is employed for pose disentanglement guarantees.

3. Proposed Method

3.1. Notations and Problem Formulation

For the sake of completeness, we first define the nota-

tions to be used in this paper. Assume that we have the

access to a set of NS images XS = {xs
i}

NS

i=1 with the as-

sociated label set YS = {ysi }
NS

i=1, where xs
i ∈ R

H×W×3

and ysi ∈ R represent the ith image in the source-domain

dataset and its corresponding identity label, respectively.

Another set of NT target-domain dataset images XT =
{xt

j}
NT

j=1 without any label information are also available

during training, where xt
j ∈ R

H×W×3 represent the jth

image in the target-domain dataset. To extract the pose in-

formation from source and target-domain data, we apply the

pose estimation model [1] on the above images to gener-

ate source/target-domain pose outputs PS = {psi}
NS

i=1 and

PT = {ptj}
NT

j=1, respectively. Note that psi ∈ R
H×W×NL

and ptj ∈ R
H×W×NL represent the ith and jth pose maps

in the corresponding domains, respectively. Following [1],

we set the number of pose landmarks NL = 18 in our work.

To achieve cross-dataset person re-ID, we present an

end-to-end trainable network, Pose Disentanglement and

Adaptation Network (PDA-Net). As illustrated in Figure 2,

our PDA-Net aims at learning domain-invariant deep rep-

resentation vc ∈ R
d (d denotes the dimension of the fea-

ture), while pose information is jointly disentangled from

this feature space. To achieve this goal, a pair of encoders

EC and EP for encoding the input images and pose maps

into vc and vp ∈ R
h (h denotes the dimension of the fea-

ture), respectively. Guided by the encoded pose features

(from either domain), our domain specific generators (GS

and GT for source and target-domain datasets, respectively)

would recover/synthesize the desirable outputs in the asso-

ciated data domain. We will detail the properties of each

component in the following subsections.

To perform person re-ID of the target-domain dataset in

the testing phase, our network encodes the query image by

EC for deriving the domain and pose-invariant representa-

tion vc, which is applied for matching the gallery ones via

nearest neighbor search (in Euclidean distances).

3.2. Pose Disentanglement and Adaptation Network
(PDANet)

As depicted in Figure 2, our proposed Pose Disentan-

glement and Adaptation Network consists of a number of

network components. The content encoder EC encodes in-

put images across different domains/datasets and produces

content feature vc for person re-ID. The pose encoder EP

encodes the pose maps and produce pose feature vp for pose

disentanglement. The two domain-specific generators, GS

and GT , output images in source and target domains respec-

tively (by feeding both vc and vp). The two domain specific

discriminators, DS and DT , are designed to enforce the two

domain-specific generators GS and GT produce perceptu-

ally realistic and domain-specific images. Finally, the pose

discriminator DP aims at enforcing the generators to output

realistic images conditioned on the given pose.
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3.2.1 Domain-invariant representation for re-ID

We encourage the content encoder EC to generate similar

feature distributions when observing both XS and XT . To

accomplish this, we apply the Maximum Mean Discrep-

ancy (MMD) measure [22] to calculate the difference be-

tween the associated feature distributions for the content

feature vc between the source and target domains. Given

an source image xs ∈ XS and an target image xt ∈ XT
1,

we first forward xs and xt to the content encoder EC to ob-

tain their content feature vs
c and v

t
c. Then we can formulate

our MMD loss LMMD as:

LMMD = ‖
1

ns

ns∑

g=1

φ(vs
c,g)−

1

nt

nt∑

l=1

φ(vt
c,l)‖

2
H, (1)

where φ is a map operation which project the distribution

into a reproducing kernel Hilbert space H [21]. ns and

nt are the batch sizes of the images in the associated do-

mains. The arbitrary distribution of the features can be

represented by using the kernel embedding technique. It

has been proven that if the kernel is characteristic, then the

mapping to the space H is injective while the injectivity in-

dicates that the arbitrary probability distribution is uniquely

represented by and element in the space H.

It is also worth noting that, we do not consider the adver-

sarial learning strategy for deriving domain-invariant fea-

tures (e.g., [17]) in our work. This is because that this

technique might produce pose-invariant features instead of

domain-invariant ones for re-ID datasets, and thus the re-

sulting features cannot perform well in cross-dataset re-ID.

Next, to utilize label information observed from source-

domain training data, we impose a triplet loss Ltri on the

derived feature vector vc. This would maximize the inter-

class discrepancy while minimizing intra-class distinctness.

To be more specific, for each input source image xs, we

sample a positive image xs
pos with the same identity label

and a negative image xs
neg with different identity labels to

form a triplet tuple. Then, the distance between xs and xs
pos

(or xs
neg) can be calculated as:

dpos = ‖vs
c − v

s
c,pos‖2, (2)

dneg = ‖vs
c − v

s
c,neg‖2, (3)

where vs
c , vs

c,pos, and v
s
c,neg represent the feature vectors of

images xs, xs
pos, and xs

neg, respectively.

With the above definitions, the triplet loss Ltri is

Ltri = E(xs,ys)∼(XS ,YS) max(0,m+ dpos − dneg),
(4)

where m > 0 is the margin enforcing the separation be-

tween positive and negative image pairs.

1For simplicity, we would omit the subscript i and j, denote source

and target images as xs and xt, and represent the corresponding labels for

source images as ys in this paper.

3.2.2 Pose-guided cross-domain image translation

To ensure our derived content feature is domain-invariant

in cross-domain re-ID tasks, we need to perform additional

image translation during the learning of our PDA-Net. That

is, we have the pose encoder EP in Fig. 2 encodes the inputs

from source pose set inputs PS and the target pose set PT

into pose features vs
p and v

t
p. As a result, both content and

pose features would be produced in the latent space.

We enforce the two generators GS and GT for gener-

ating the person images conditioned on the encoded pose

feature. For the source domain, we have the source gener-

ator GS take the concatenated source-domain content and

pose feature pair (vs
p,v

s
c) and output the corresponding im-

age xs→s. Similarly, we have GT take (vt
p,v

t
c) for pro-

ducing xt→t. Note that xs→s = GS((v
s
p,v

s
c)), x

t→t =
GT (v

t
p,v

t
c) denote the reconstructed images in source and

target domains, respectively. Since this can be viewed as

image recovery in each domain, reconstruction loss can be

applied as the objective during learning.

Since we have ground truth labels (i.e., image pair corre-

spondences) for the source-domain data, we can further per-

form a unique image recovery task for the source-domain

images. To be more precise, given two source-domain im-

ages xs and x′s of the same person but with different poses

ps and p′
s
, we expect that they share the same content fea-

ture v
s
c but with pose features as v

s
p and v

s
p′ . Given the

desirable pose v
s
p, we then enforce GS to output the source

domain image xs using the content feature vs
c which is orig-

inally associated with v
s
p′ . This is referred to as pose-guided

image recovery.

With the above discussion, image reconstruction loss for

the source-domain data LS
rec can be calculated as:

LS
rec = Exs∼XS ,ps∼PS

[‖xs→s − xs‖1]

+ E{xs,x′s}∼XS ,ps∼PS
[‖xs→s

p′→p − xs‖1],
(5)

where xs→s
p′→p = GS(v

s
p,v

s
c |v

s
p′) denotes the generated im-

age from the input x′s and vsc describe the content feature

of the same identity (i.e., x′s, and xs of the same person by

with different poses p′ and p).

As for the target-domain reconstruction loss, we have

LT
rec = Ext∼XT ,pt∼PT

[‖xt→t − xt‖1]. (6)

Note that we adopt the L1 norm in the above reconstruction

loss terms as it preserves image sharpness [25].

In addition to image recovery in either domain, our

model also perform pose-guided image translation. That is,

our decoders GS and GT allow input feature pairs whose

content and pose representation are extracted from different

domains. Thus, we would observe xt→s = GS(v
t
p,v

t
c) and

xs→t = GT (v
s
p,v

s
c) as the outputs, with the goal of having

these translated images as realistic as possible.
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To ensure GS and GT produce perceptually realistic out-

puts in the associated domains, we have the image dis-

criminator DS discriminate between the real source-domain

images xs and the synthesized/translated ones (i.e., xs→s,

xt→s). Thus, the source-domain discriminator loss LS
domain

as

LS
domain = Exs∼XS

[log(DS(x
s))]

+ Exs∼XS ,ps∼PS
[log(1−DS(x

s→s))]

+ Ext∼XT ,pt∼PT
[log(1−DS(x

t→s))].

(7)

Similarly, the target domain discriminator loss LT
domain is

defined as

LT
domain = Ext∼XT

[log(DT (x
t))]

+ Ext∼XT ,pt∼PT
[log(1−DT (x

t→t))]

+ Exs∼XS ,ps∼PS
[log(1−DT (x

s→t))].

(8)

3.2.3 Unsupervised pose disentanglement across data

domains

With the above pose-guided image translation mechanism,

we have our PDA-Net learn domain-invariant content fea-

tures across data domains. However, to further ensure the

pose encoder describes and disentangles the pose informa-

tion observed from the input images, we need additional

network modules for completing this goal.

To achieve this object, we introduce a pose discrimi-

nator DP in Fig. 2, which focuses on distinguishing be-

tween real and recovered images, conditioned on the given

pose inputs. Following previous FD-GAN [18], we adopt

the PatchGAN [26] structure as our DP . That is, the in-

put to DP is concatenation of the real/recovered image and

the given pose map, which is processed by Gaussian-like

heat-map transformation. Then, DP produces a image-pose

matching confidence map, each location of this output con-

fidence map represents the matching degree between the in-

put image and the associated pose map.

It can be seen that, the two generators GS and GT in

PDA-Net tend to fool the pose discriminator DP to obtain

high matching confidences for the generated images. Intu-

itively, since only source-domain data are with ground truth

labels, our DP is designed to authenticate the recovered im-

ages in each corresponding domain but not the translated

ones across domains. In other words, the adversarial loss of

DP is formulated as:

Lpose = LS
pose + LT

pose, (9)

where

LS
pose = Exs∼XS ,ps∼PS

[log(DP (p
s, xs))]

+ Exs∼XS ,ps∼PS
[log(1−DP (p

s, xs→s))]

+ Exs∼XS ,p′s∼PS
[log(1−DP (p

′s, xs))]

+ E{xs,x′s}∼XS ,ps∼PS
[log(1−DP (p

s, xs→s
p′→p))]

(10)

Algorithm 1: Learning of PDA-Net

Data: Source domain: XS , PS , and YS ; Target domain: XT

and PT

Result: Configurations of PDA-Net

1 θEC
, θEP

, θGS
, θGT

, θDS
, θDT

, θDP
← initialize

2 for Num. of training Iters. do

3 xs, ps, ys, xt, pt, x′s, p′s← sample from XS , PS , YS ,

XT , PT

4 vsc , vtc← obtain by EC(x
s/x′s), EC(x

t)
5 vsp, vtp← obtain by EP (p

s), EP (p
t)

6 LMMD, Ltri ← calculate by (1), (4)

7 θEC

+
←− −∇θEC

(LMMD + λtriLtri)

8 xs→s, xt→s← obtain by GS(v
s
p,v

s
c), GS(v

t
p,v

t
c)

9 xs→t, xt→t← obtain by GT (v
s
p,v

s
c), GT (v

t
p,v

t
c)

10 xs→s
p′→p← obtain by GS(v

s
p,v

s
c |v

s
p′)

11 LS
rec, LT

rec, LS
domain, LT

domain, Lpose← calculate by

(5), (6), (7), (8), (9)

12 for Iters. of updating generator do

13 θEC ,EP ,GS

+
←− −∇θEC,EP ,GS

(λrecL
S
rec −

LS
domain − λposeLpose)

14 θEC ,EP ,GT

+
←− −∇θEC,EP ,GT

(λrecL
T
rec −

LT
domain − λposeLpose)

15 for Iters. of updating discriminator do

16 θDS

+
←− −∇θDS

LS
domain

17 θDT

+
←− −∇θDT

LT
domain

18 θDP

+
←− −∇θDP

Lpose

and

LT
pose = Ext∼XT ,pt∼PT

[log(DP (p
t, xt))]

+ Ext∼XT ,pt∼PT
[log(1−DP (p

t, xt→t))].
(11)

Note that xs→s
p′→p = GS(v

s
p,v

s
c |v

s
p′) represents the synthe-

sized image from the input x′s (with the same content fea-

ture vsc with xs but with a different pose feature v′sp ).

From (9), we see that while our pose disentanglement

loss enforces the matching between the output image and

its conditioned pose in each domain, additional guidance

is available in the source domain to update our DP . That

is, as shown in (7), we are able to verify the authenticity

of the source-domain output image which is given by the

input image of the same person but with a different pose

(i.e., p′ instead of p). While our decoder is able to output

such a image with its ground truth source-domain image

observed (as noted in (5), the introduced DP would further

improve our capability of pose disentanglement and pose-

guided image recovery.

It is worth repeating that the goal of PDA-Net is to per-

form cross-dataset re-ID without observing label informa-

tion in the target domain. By introducing the aforemen-

tioned network module, our PDA-Net would be capable
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Table 1: Performance comparisons on Market-1501 with

cross-dataset/unsupervised Re-ID methods. The number in

bold indicates the best result.

Method
Source: DukeMTMC, Target: Market

Rank-1 Rank-5 Rank-10 mAP

BOW [58] 35.8 52.4 60.3 14.8

UMDL [42] 34.5 52.6 59.6 12.4

PTGAN [51] 38.6 - 66.1 -

PUL [15] 45.5 60.7 66.7 20.5

CAMEL [54] 54.5 - - 26.3

SPGAN [13] 57.7 75.8 82.4 26.7

TJ-AIDL [49] 58.2 74.8 81.1 26.5

MMFA [35] 56.7 75.0 81.8 27.4

HHL [61] 62.2 78.8 84.0 31.4

CFSM [3] 61.2 - - 28.3

ARN [32] 70.3 80.4 86.3 39.4

TAUDL [29] 63.7 - - 41.2

PDA-Net (Ours) 75.2 86.3 90.2 47.6

of performing cross-dataset re-ID via pose-guided cross-

domain image translation. More precisely, with the joint

training of cross-domain encoders/decoders and the pose

disentanglement discriminators, our model allows learning

of domain-invariant and pose-disentangled feature repre-

sentation. The pseudo code for training our PDA-Net is

summarized in Algorithm 1.

4. Experiments

4.1. Datasets and Experimental Settings

To evaluate our proposed method, we conduct experi-

ments on Market-1501 [58] and DukeMTMC-reID [44, 60],

both are commonly considerd in recent re-ID tasks.

Market-1501. The Market-1501 [58] is composed of

32,668 labeled images of 1,501 identities collected from

6 camera views. The dataset is split into two non-over-

lapping fixed parts: 12,936 images from 751 identities for

training and 19,732 images from 750 identities for testing.

In testing, 3368 query images from 750 identities are used

to retrieve the matching persons in the gallery.

DukeMTMC-reID. The DukeMTMC-reID [44, 60] is

also a large-scale Re-ID dataset. It is collected from 8 cam-

eras and contains 36,411 labeled images belonging to 1,404

identities. It also consists of 16,522 training images from

702 identities, 2,228 query images from the other 702 iden-

tities, and 17,661 gallery images.

Evaluation Protocol. We employ the standard metrics

as in most person Re-ID literature, namely the cumula-

tive matching curve (CMC) used for generating ranking

accuracy, and the mean Average Precision (mAP). We re-

port rank-1 accuracy and mean average precision (mAP) for

evaluation on both datasets.

Table 2: Performance comparisons on DukeMTMC-reID

with cross-dataset/unsupervised Re-ID methods. The num-

ber in bold indicates the best result.

Method
Source: Market, Target: DukeMTMC

Rank-1 Rank-5 Rank-10 mAP

BOW [58] 17.1 28.8 34.9 8.3

UMDL [42] 18.5 31.4 37.6 7.3

PTGAN [51] 27.4 - 50.7 -

PUL [15] 30.0 43.4 48.5 16.4

SPGAN [13] 46.4 62.3 68.0 26.2

TJ-AIDL [49] 44.3 59.6 65.0 23.0

MMFA [35] 45.3 59.8 66.3 24.7

HHL [61] 46.9 61.0 66.7 27.2

CFSM [3] 49.8 - - 27.3

ARN [32] 60.2 73.9 79.5 33.4

TAUDL [29] 61.7 - - 43.5

PDA-Net (Ours) 63.2 77.0 82.5 45.1

4.2. Implementation Details

Configuration of PDA-Net. We implement our model

using PyTorch. Following Section 3, we use ResNet-50 pre-

trained on ImageNet as our backbone of cross-domain en-

coder EC . Given an input image x (all images are resized

to size 256× 128× 3, denoting width, height, and channel

respectively.), EC encodes the input into 2048-dimension

content feature vc. As mentioned in the Section. 3.1, the

pose-map is represented by an 18-channel map, where each

channel represents the location of one pose landmark. Such

landmark location is converted to a Gaussian heat map. The

pose encoder EP then employs 4 convolution blocks to pro-

duce the 256-dimension pose feature vector vp from these

pose-maps. The structure of the both the domain generators

(GS , GT ) are 6 convolution-residual blocks similar to that

proposed by Miyato et al. [41]. The structure of the both the

domain discriminator (DS , DT ) employ the ResNet-18 as

backbone while the architecture of shared pose disciminator

DP adopts PatchGAN structure following FD-GAN [18]

and is composed of 5 convolution blocks in our PDA-Net.

Domain generators (GS , GT ), domain discriminator (DS ,

DT ), shared pose discriminator DP are all randomly ini-

tialized. The margin for the Ltri is set as 0.5, and we fix

λtri, λrec, and λpose as 1.0, 10.0, 0.1, respectively.

4.3. Quantitative Comparisons

Market-1501. In Table 1, we compare our proposed

model with the use of Bag-of-Words (BoW) [58] for

matching (i.e., no transfer), four unsupervised re-ID ap-

proaches, including UMDL [42], PUL [15], CAMEL [54]

and TAUDL [29], and seven cross-dataset re-ID meth-

ods, including PTGAN [51], SPGAN [12], TJ-AIDL [49],

MMFA [35], HHL [61], CFSM [3] and ARN [32]. From

this table, we see that our model achieved very promising
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Table 3: Ablation studies of the proposed PDA-Net under two experimental settings. “Share DP ” incidates whether to build

separate pose discriminators, i.e. DS
P and DT

P , instead of one shared DP .

Experimental setting
Loss functions and component

Source: DukeMTMC-reID

Target: Market-1501

Source: Market-1501

Target: DukeMTMC-reID

Ltri LMMD L
S/T
rec L

S/T
domain Lpose Share DP Rank-1 mAP Rank-1 mAP

Baseline (ResNet-50) X ✗ ✗ ✗ ✗ ✗ 44.2 18.1 33.5 16.3

Baseline (ResNet-50 w/ MMD ) X X ✗ ✗ ✗ ✗ 50.4 22.6 39.5 23.1

PDA-Net (w/o LS
rec,LT

rec) X X ✗ X X X 52.3 24.7 42.5 24.0

PDA-Net (w/o Lpose) X X X X ✗ X 55.1 25.2 45.5 26.1

PDA-Net (w/o share DP ) X X X X X ✗ 59.4 27.8 50.9 29.7

PDA-Net (w/o LS
domain,L

T
domain) X X X ✗ X X 65.3 30.7 56.5 31.2

PDA-Net (w/o MMD) X ✗ X X X X 71.2 39.8 60.1 35.8

PDA-Net (Ours) X X X X X X 75.2 47.6 63.2 45.1

results in Rank-1, Rank-5, Rank-10, and mAP, and observed

performance margins over recent approaches. For exam-

ple, in the single query setting, we achieved Rank-1 accu-

racy=75.2% and mAP=52.6%.

Compared to SPGAN [12] and HHL [61], we note that

our model is able to generate cross-domain images condi-

tioned on various poses rather than few camera styles. Com-

pared to MMFA [35], our model further disentangles the

pose information and learns a pose invariant cross-domain

latent space. Compared to the second best method, i.e.,

TAUDL [29], our results were higher by 11.5% in Rank-1

accuracy and by 11.4% in mAP, while no additional spatial

and temporal information is utilized (but TAUDL did).

DukeMTMC-reID. We now consider the DukeMTMC-

reID as the target-domain dataset of interest, and list the

comparisons in Table 2. From this table, we also see that

our model performed favorably against baseline and state-

of-art unsupervised/cross-domain re-ID methods. Take the

single query setting for example, we achieved Rank-1 ac-

curacy=63.2% and mAP=45.1%. Compared to the second

best method, our results were higher by 1.5% in Rank-1 ac-

curacy and by 1.6% in mAP. From the experiments on the

above two datasets, the effectiveness of our model for cross-

domain re-ID can be successfully verified.

4.4. Ablation Studies and Visualization

Analyzing the network modules in PDA-Net. As shown

in Table 3, we start from two baseline methods, i.e.,

naive Resnet-50 (w/o LMMD) and advanced Resnet-50 (w/

LMMD), showing the standard re-ID performances. We then

utilize ResNet-50 as the backbone CNN model to derive

representations for re-ID with only triplet loss Ltri, while

the advanced one includes the MMD loss LMMD. We ob-

serve that our full model (the last row) improved the perfor-

mance by a large margin (roughly 20 ∼ 25%) at Rank-1 on

both two benchmark datasets. The performance gain can be

ascribed to the unique design of our model for deriving both

domain-invariant and pose-invariant representation.

Loss functions To further analyze the importance of each

introduced loss function, we conduct an ablation study from

third row to seventh rows shown in Table 3. Firstly, the

reconstruction loss Lrec is shown to be vital to our PDA-

Net, since we observe 23% and 20% drops on Market-1501

and DukeMTMC-reID, respectively when the loss was ex-

cluded. This is caused by no explicit supervision to guide

our PDA-Net to generate human-perceivable images, and

thus the resulting model would suffer from image-level in-

formation loss.

Secondly, without the pose loss Lpose on both domains,

our model would not be able to perform pose matching

based on each generated image, causing failure on the pose

disentanglement process and resulting in the re-ID perfor-

mance drop (about 20% on both settings). Thirdly, when

L
S/T
domain is turned off, our model is not able to preserve the

domain information, indicating that only pose information

would be observed. We credited such a 10% performance

drop to the negative effect in learning pose-invariant fea-

ture, which resulted in unsatisfactory pose disentanglement.

Lastly, the MMD loss LMMD is introduced to our PDA-

NET to mitigate the domain shift due to dataset differences.

Its effectiveness is also confirmed by our studies.

Shared pose discriminator DP . To demonstrate the ef-

fectiveness and necessity of the pose discriminator DP in-

troduced to our PDA-Net, we first consider replacing DP

by two separate pose discriminators DS
P and DT

P , and re-

port the re-ID performance in the fifth row of Table 3. With

a clear performance drop observed, we see that the result-

ing PDA-Net would not be able to transfer the substantiated

pose-matching knowledge from source to target domains.

In other words, a shared pose discriminator would be prefer-

able since pose guidance can be provided by both domains.
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Figure 3: Visualization examples of our PDA-Net for pose-guided image translation across datasets. Given six pose con-

ditions (the first row) and the input image (xs or xt), we present the six generated images for each dataset pair: xs→s (the

second row), xt→s (the third row), xt→t (the fourth row) and xs→t (the fifth row).

Figure 4: Visualization of cross-dataset or pose-guided re-

ID. Note that SPGAN [13] performs style-transfer for con-

verting images across datasets but lacks the ability to exhibit

pose variants, while FD-GAN [18] disentangles pose infor-

mation but cannot take cross-domain data.

Visualization comparisons of cross-dataset and pose-

guided re-ID models. In Figure 3, we visualize the gen-

erated images: xs→s, xs→t, xt→s, and xt→t in two cross-

domain settings. Given an input from either domain with

pose conditions, our model was able to produce satisfactory

pose-guided image synthesis within or across data domains.

In Figure 4, we additionally consider the cross-

dataset re-ID appoach of SPGAN [13] and the pose-

disentanglement re-ID method of FD-GAN [18]. We see

that, since SPGAN performed style transfer for synthesiz-

ing cross-domain images, pose variants cannot be exploited

in the target domain. While FD-GAN was able to generate

pose-guided image outputs with supervision on target target

domain, their model is not designed to handle cross-domain

data so that cannot produce images across datasets with sat-

isfactory quality. From the above qualitative evaluation and

comparison, we confirm that our PDA-Net is able to per-

form pose-guided single-domain image recovery and cross-

domain image translation with satisfactory image quality,

which would be beneficial to cross-domain re-ID tasks.

5. Conclusions

In this paper, we presented a novel Pose Disentangle-

ment and Adaptation Network (PDA-Net) for cross-dataset

re-ID. The main novelty lies in the unique design of our

PDA-Net, which jointly learns domain-invariant and pose-

disentangled visual representation with re-ID guarantees.

By observing only image input (from either domain) and

any desirable pose information, our model allows pose-

guided singe-domain image recovery and cross-domain im-

age translation. Note that only label information (image

correspondence pairs) is available for the source-domain

data, any no pre-defined pose category is utilized dur-

ing training. Experimental results on the two benchmark

datasets showed remarkable improvements over existing

works, which support the use of our proposed approach for

cross-dataset re-ID. Qualitative results also confirmed that

our model is capable of performing cross-domain image

translation with pose properly disentangled/manipulated.
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