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Abstract

Most existing methods for conditional image synthesis

are only able to generate a single plausible image for any

given input, or at best a fixed number of plausible im-

ages. In this paper, we focus on the problem of generat-

ing images from semantic segmentation maps and present

a simple new method that can generate an arbitrary num-

ber of images with diverse appearance for the same seman-

tic layout. Unlike most existing approaches which adopt

the GAN [11, 12] framework, our method is based on the

recently introduced Implicit Maximum Likelihood Estima-

tion (IMLE) [22] framework. Compared to the leading

approach [3], our method is able to generate more di-

verse images while producing fewer artifacts despite using

the same architecture. The learned latent space also has

sensible structure despite the lack of supervision that en-

courages such behaviour. Videos and code are available

at https://people.eecs.berkeley.edu/˜ke.

li/projects/imle/scene_layouts/.

Figure 1: Samples generated by our model. The 9 im-

ages are samples generated by our model conditioned on the

same semantic layout as shown at the bottom-left corner.

1. Introduction

Conditional image synthesis is a problem of great im-

portance in computer vision. In recent years, the commu-

∗Equal contribution.

nity has made great progress towards generating images of

high visual fidelity on a variety of tasks. However, most

proposed methods are only able to generate a single image

given each input, even though most image synthesis prob-

lems are ill-posed, i.e.: there are multiple equally plausible

images that are consistent with the same input. Ideally, we

should aim to predict a distribution of all plausible images

rather than just a single plausible image, which is a problem

known as multimodal image synthesis [42]. This problem is

hard for two reasons:

1. Model: Most state-of-the-art approaches for image

synthesis use generative adversarial nets (GANs) [11,

12], which suffer from the well-documented issue of

mode collapse. In the context of conditional image

synthesis, this leads to a model that generates only a

single plausible image for each given input regardless

of the latent noise and fails to learn the distribution of

plausible images.

2. Data: Multiple different ground truth images for the

same input are not available in most datasets. Instead,

only one ground truth image is given, and the model

has to learn to generate other plausible images in an

unsupervised fashion.

In this paper, we focus on the problem of multimodal

image synthesis from semantic layouts, where the goal is

to generate multiple diverse images for the same semantic

layout. Existing methods are either only able to generate a

fixed number of images [3] or are difficult to train [42] due

to the need to balance the training of several different neural

nets that serve opposing roles.

To sidestep these issues, unlike most image synthesis

approaches, we step outside of the GAN framework and

propose a method based on the recently introduced method

of Implicit Maximum Likelihood Estimation (IMLE) [22].

Unlike GANs, IMLE by design avoids mode collapse and

is able to train the same types of neural net architectures as

generators in GANs, namely neural nets with random noise

drawn from an analytic distribution as input.

This approach offers two advantages:
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1. Unlike [3], we can generate an arbitrary number of im-

ages for each input by simply sampling different noise

vectors.

2. Unlike [42], which requires the simultaneous train-

ing of three neural nets that serve opposing roles, our

model is much simpler: it only consists of a single neu-

ral net. Consequently, training is much more stable.

2. Related Work

2.1. Unimodal Prediction

Most modern image synthesis methods are based on gen-

erative adversarial nets (GANs) [11, 12]. Most of these

methods are capable of producing only a single image for

each given input, due to the problem of mode collapse.

Various work has explored conditioning on different types

of information. Various methods condition on a scalar

that only contains little information, such as object cate-

gory and attribute [25, 9, 5]. Other methods condition on

richer labels, such as text description [28], surface normal

maps [35], previous frames in a video [24, 33] and im-

ages [36, 14, 41]. Some methods only condition on in-

puts images in the generator, but not in the discrimina-

tor [27, 20, 40, 21]. [16, 28, 30] explore conditioning on

attributes that can be modified manually by the user at test

time; these methods are not true multimodal methods be-

cause they require manual changes to the input (rather than

just sampling from a fixed distribution) to generate a differ-

ent image.

Another common approach to image synthesis is to treat

it as a simple regression problem. To ensure high perceptual

quality, the loss is usually defined on some transformation

of the raw pixels. This paradigm has been applied to super-

resolution [1, 15], style transfer [15] and video frame pre-

diction [32, 26, 8]. These methods are by design unimodal

methods because neural nets are functions, and so can only

produce point estimates.

Various methods have been developed for the problem of

image synthesis from semantic layouts. For example, Kara-

can et al. [17] developed a conditional GAN-based model

for generating images from semantic layouts and labelled

image attributes. It is important to note that the method re-

quires supervision on the image attributes and is therefore

a unimodal method. Isola et al. [14] developed a condi-

tional GAN that can generate images solely from semantic

layout. However, it is only able to generate a single plausi-

ble image for each semantic layout, due to the problem of

mode collapse in GANs. Wang et al. [34] further refined

the approach of [14], focusing on the high-resolution set-

ting. While these methods are able to generate images of

high visual fidelity, they are all unimodal methods.

2.2. Fixed Number of Modes

A simple approach to generate a fixed number of differ-

ent outputs for the same input is to use different branches or

models for each desired output. For example, [13] proposed

a model that outputs a fixed number of different predictions

simultaneously, which was an approach adopted by Chen

and Koltun [3] to generate different images for the same se-

mantic layout. Unlike most approaches, [3] did not use the

GAN framework; instead it uses a simple feedforward con-

volutional network. On the other hand, Ghosh et al. [10]

uses a GAN framework, where multiple generators are in-

troduced, each of which generates a different mode. The

above methods all have two limitations: (1) they are only

able to generate a fixed number of images for the same in-

put, and (2) they cannot generate continuous changes.

2.3. Arbitrary Number of Modes

A number of GAN-based approaches propose adding

learned regularizers that discourage mode collapse. Bi-

GAN/ALI [6, 7] trains a model to reconstruct the latent

code from the image; however, when applied to the con-

ditional setting, significant mode collapse still occurs be-

cause the encoder is not trained until optimality and so can-

not perfectly invert the generator. VAE-GAN [18] com-

bines a GAN with a VAE, which does not suffer from

mode collapse. However, image quality suffers because the

generator is trained on latent code sampled from the en-

coder/approximate posterior, and is never trained on latent

code sampled from the prior. At test time, only the prior is

available, resulting in a mismatch between training and test

conditions. Zhu et al. [42] proposed Bicycle-GAN, which

combines both of the above approaches. While this allevi-

ates the above issues, it is difficult to train, because it re-

quires training three different neural nets simultaneously,

namely the generator, the discriminator and the encoder.

Because they serve opposing roles and effectively regularize

one another, it is important to strike just the right balance,

which makes it hard to train successfully in practice.

A number of methods for colourization [2, 38, 19] pre-

dict a discretized marginal distribution over colours of each

individual pixel. While this approach is able to capture mul-

timodality in the marginal distribution, ensuring global con-

sistency between different parts of the image is not easy,

since there are correlations between the colours of differ-

ent pixels. This approach is not able to learn such correla-

tions because it does not learn the joint distribution over the

colours of all pixels.

3. Method

Most state-of-the-art approaches for conditional synthe-

sis rely on the conditional GAN framework. Unfortunately,

GANs suffer from the well-known problem of mode col-

4221



Fake 

Real 

(a) GAN

(Step 1)

Dropped 

Modes 

(b) GAN

(Step 2)

Generated 

Sample 

Real Data 

Example 

(c) IMLE

Figure 2: (a-b) How a (unconditional) GAN collapses modes (here we show a GAN with 1-nearest neighbour discriminator

for simplicity). The blue circles represent generated images and the red squares represent real images. The yellow regions

represent those classified as real by the discriminator, whereas the white regions represent those classified as fake. As shown,

when training the generator, each generated image is essentially pushed towards the nearest real image. Some real images

may not be selected by any generated image during training and therefore could be ignored by the trained generator – this is a

manifestation of mode collapse. (c) An illustration of how Implicit Maximum Likelihood Estimation (IMLE) works. IMLE

avoids mode collapse by reversing the direction in which generated images are matched to real images. Instead of pushing

each generated image towards the nearest real image, for every real image, it pulls the nearest generated image towards it –

this ensures that all real images are matched to some generated image, and no real images are ignored.

lapse, and in the context of conditional image synthesis, this

causes the generator to ignore the latent input noise vector

and always generate the same output image for the same

input label, regardless of what the value of the latent noise

vector. So, to generate different output images for the same

input label, we must solve the underlying problem of mode

collapse.

3.1. Why Mode Collapse Happens

We first consider the unconditional setting, where there

is no input label. As shown in Figure 2(a-b), in a GAN,

each generated image is made similar to some real image.

Some images may not be selected by any real image. So

after training, the generator will not be able to generate any

image that is similar to the unselected real images, so it ef-

fectively ignores these images. In the language of proba-

bilistic modelling, real images can be viewed as samples

from some underlying true distribution of natural images,

and the generator ignoring some of the real images means

that the generative model assigns low probability density to

these images. So, the modes (i.e.: the local maxima in the

probability density) of the true distribution of natural im-

ages that represent the ignored images are not modelled by

the generator; hence the name “mode collapse”. In the con-

ditional setting, typically only one ground truth output im-

age is available for every input label. As a result, mode col-

lapse becomes more problematic, because the conditional

distribution modelled by the generator will collapse to a sin-

gle mode around the sole ground truth output image. This

means that the generator will not be able to output any other

equally plausible output image.

3.2. IMLE

The method of Implicit Maximum Likelihood Estima-

tion (IMLE) [22] solves mode collapse by reversing the

direction in which generated images are matched to real

images. In a GAN, each generated image is effectively

matched to a real image. In IMLE, each real image is

matched to a generated image. This ensures that all real im-

ages are matched, and no real images are left out. As shown

in Figure 2(c), IMLE then tries to make each matched gen-

erated image similar to the real images they are matched

to. Mathematically, it solves the optimization problem be-

low. Here, zj’s denote randomly sampled latent input noise

vectors, yi’s denote ground truth images, and Tθ denotes a

neural net whose architecture is the same as the generator

in GANs.

min
θ

Ez1,...,zm

[
1

n

n∑

i=1

min
j=1,...,m

||Tθ(zj)− yi||
2
2

]

3.3. Conditional IMLE

In the conditional setting, the goal is to model a family

of conditional distributions, each of is conditioned on a dif-

ferent input label, i.e.: {p(y|x = xi)}i=1,...,n, where xi’s

denote ground truth input images, and y denotes the gener-

ated output image. So, conditional IMLE [23] differs from

standard IMLE in two ways: first, the input label is passed
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into the neural net Tθ in addition to the latent input noise

vector, and second, a ground truth output image can only

be matched to an output image generated from its corre-

sponding ground truth input label (i.e.: output images gen-

erated from an input label that is different from the current

ground truth input label cannot be matched to the current

ground truth output image). Concretely, conditional IMLE

solves the following optimization problem, where zi,j’s de-

note randomly sampled latent input noise vectors and yi’s

denote ground truth images:

min
θ

Ez1,1,...,zn,m

[
1

n

n∑

i=1

min
j=1,...,m

||Tθ(xi, zi,j)− yi||
2
2

]

3.4. Probabilistic Interpretation

Image synthesis can be viewed as a probabilistic mod-

elling problem. In unconditional image synthesis, the goal

is the model the marginal distribution over images, i.e.:

p(y), whereas in conditional image synthesis, the goal is

to model the conditional distribution p(y|x). In a condi-

tional GAN, the probabilistic model is chosen to be an im-

plicit probabilistic model. Unlike classical (also known as

prescribed) probabilistic models like CRFs, implicit prob-

abilistic models are not defined by a formula for the prob-

ability density, but rather a procedure for drawing samples

from them. The probability distributions they define are the

distributions over the samples, so even though the formula

for the probability density of these distributions may not be

in closed form, the distributions themselves are valid and

well-defined. The generator in GANs is an example of an

implicit probabilistic model. It is defined by the following

sampling procedure, where Tθ is a neural net:

1. Draw z ∼ N (0, I)

2. Return y := Tθ(x, z) as a sample

In classical probabilistic models, learning, or in other

words, parameter estimation, is performed by maximizing

the log-likelihood of the ground truth images, either ex-

actly or approximately. This is known as maximum likeli-

hood estimation (MLE). However, in implicit probabilistic

models, this is in general not feasible: because the formula

for the probability density may not be in closed form, the

log-likelihood function, which the sum of the log-densities

of the model evaluated at each ground truth image, can-

not be in general written down in closed form. The GAN

can be viewed as an alternative way to estimate the param-

eters of the probabilistic model, but it has one critical is-

sue of mode collapse. As a result, the learned model dis-

tribution could capture much less variation than what the

data exhibits. On the other hand, MLE never suffers from

this issue: because mode collapse entails assigning very

low probability density to some ground truth images, this

would make the likelihood very low, because likelihood is

the product of the densities evaluated at each ground truth

image. So, maximizing likelihood will never lead to mode

collapse. This implies that GANs cannot approximate max-

imum likelihood, and so the question is: is there some other

algorithm that can? IMLE was designed with goal in mind,

and can be shown to maximize a lower bound on the log-

likelihood under mild conditions. Like GANs, IMLE does

not need the formula for the probability density of the model

to be known; unlike GANs, IMLE approximately maxi-

mizes likelihood, and so cannot collapse modes. Another

added advantage comes from the fact that IMLE does not

need a discriminator nor adversarial training. As a result,

training is much more stable – there is no need to balance

the capacity of the generator with that of the discriminator,

and so much less hyperparameter tuning is required.

3.5. Formulation

For the task of image synthesis from semantic layouts,

we take x to be the input semantic segmentation map and

y to be the generated output image. (Details on the repre-

sentation of x are in the supplementary material.) The con-

ditional probability distribution that would like to learn is

p(y|x). A plausible image that is consistent with the input

segmentation x is a mode of this distribution; because there

could be many plausible images that are consistent with the

same segmentation, p(y|x) usually has multiple modes (and

is therefore multimodal). A method that performs unimodal

prediction can be seen as producing a point estimate of this

distribution. To generate multiple plausible images, a point

estimate is not enough; instead, we need to estimate the full

distribution.

We generalize conditional IMLE by using a different

distance metric L(·, ·), namely a perceptual loss based on

VGG-19 features [31], the details of which are in the sup-

plementary material. The modified algorithm is presented

in Algorithm 1.

3.6. Architecture

To allow for direct comparability to Cascaded Refine-

ment Networks (CRN) [3], which is the leading method for

multimodal image synthesis from semantic layouts, we use

the same architecture as CRN, with minor modifications to

convert CRN into an implicit probabilistic model.

The vanilla CRN synthesizes only one image for the

same semantic layout input. To model an arbitrary number

of modes, we add additional input channels to the architec-

ture and feed random noise z via these channels. Because

the noise is random, the neural net can now be viewed as a

(implicit) probabilistic model.

Noise Encoder Because the input segmentation maps are

provided at high resolutions, the noise vector z, which is
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Algorithm 1 Conditional IMLE

Input Training semantic segmentation maps {xi}
n
i=1 and

the corresponding ground truth images {yi}
n
i=1

Initialize parameters θ for neural net Tθ

for epoch = 1 to E do

Pick a random batch S ⊆ {1, . . . , n}
for i ∈ S do

Generate m i.i.d random vectors {zi,1, . . . , zi,m}
for j = 1 to m do

ỹi,j ← Tθ(xi, zi,j)
end for

σ(i)← argminj∈{1,...,m} L(yi, ỹi,j)
end for

for k = 1 to K do

Pick a random batch S̃ ⊆ S
θ ← θ − η∇θ

(∑
i∈S̃
L(yi, ỹi,σ(i))

)
/|S̃|

end for

end for

concatenated to the input channel-wise, could be very high-

dimensional, which could hurt sample efficiency and there-

fore training speed. To solve this, we propose forcing the

noise to lie on a low-dimensional manifold. To this end,

we add a noise encoder module, which is a 3-layer con-

volutional net that takes the segmentation x and a lower-

dimensional noise vector z̃ as input and outputs a noise vec-

tor z′ of the same size as z. We replace z with z′ and leave

the rest of the architecture unchanged.

3.7. Dataset and Loss Rebalancing

In practice, we found datasets can be strongly biased to-

wards objects with relatively common appearance. As a re-

sult, naı̈ve training can result in limited diversity among the

images generated by the trained model. To address this, we

propose two strategies to rebalance the dataset and loss, the

details of which are in the supplementary material.

4. Experiment

4.1. Dataset

The choice of dataset is very important for multimodal

conditional image synthesis. The most common dataset in

the unimodal setting is the Cityscapes dataset [4]. However,

it is not suitable for the multimodal setting because most

images in the dataset are taken under similar weather con-

ditions and time of day and the amount of variation in ob-

ject colours is limited. This lack of diversity limits what any

multimodal method can do. On the other hand, the GTA-5

dataset [29], has much greater variation in terms of weather

conditions and object appearance. To demonstrate this, we

compare the colour distribution of both datasets and present

the distributiion of hues of both datasets in Figure 3. As

0 50 100 150 200 250
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Figure 3: Comparison of histogram of hues between two

datasets. Red is Cityscapes and blue is GTA-5.

shown, Cityscapes is concentrated around a single mode in

terms of hue, whereas GTA-5 has much greater variation in

hue. Additionally, the GTA-5 dataset includes more 20000

images and so is much larger than Cityscapes.

Furthermore, to show the generalizability of our ap-

proach and its applicability to real-world datasets, we train

on the BDD100K [37] dataset and show results in Fig. 10.

4.2. Experimental Setting

We train our model on 12403 training images and eval-

uate on the validation set (6383 images). Due to computa-

tional resource limitations, we conduct experiments at the

256 × 512 resolution. We add 10 noise channels and set

the hyperparameters shown in Algorithm 1 to the following

values: |S| = 400, m = 10, K = 10000, |Ŝ| = 1 and

η = 1e− 5.

The leading method for image synthesis from semantic

layouts in the multimodal setting is the CRN [3] with di-

versity loss that generates nine different images for each se-

mantic segmentation map and is the baseline that we com-

pare to.

4.3. Quantitative Comparison

Quantitative comparison aims to quantitatively compare

the diversity as well as quality of the images generated by

our model and CRN.

Diversity Evaluation We measure the diversity of each

method by generating 40 pairs of output images for each

of 100 input semantic layouts from the test set. We then

compute the average distance between each pair of output

images for each given input semantic layout, which is then

averaged over all input semantic layouts. The distance met-

ric we use is LPIPS [39], which is designed to measure per-

ceptual dissimilarity. The results are shown in Table 1. As
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(a) Pix2pix-HD+noise (b) BicycleGAN

(c) CRN (d) Our model

Figure 4: Comparison of generated images for the same semantic layout. The bottom-left image in (a) is the input semantic

layout and we generate 9 samples for each model. See our website for more samples.

(a) Our model w/o the noise encoder and rebalancing scheme (b) Our model w/o the noise encoder

(c) Our model w/o the rebalancing scheme (d) Our model

Figure 5: Ablation study using the same semantic layout as Fig. 4.
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Figure 6: Images generated by interpolating between latent noise vectors. See our website for videos showing the effect of

interpolations.

(a) (b) (c) (d) (e)

Figure 7: Style consistency with the same random vector. (a) is the original input-output pair. We use the same random

vector used in (a) and apply it to (b),(c),(d) and (e). See our website for more examples.

Model LPIPS score

CRN 0.11

CRN+noise 0.12

Ours w/o noise encoder 0.10

Ours w/o rebalancing scheme 0.17

Ours 0.19

Table 1: LPIPS score. We show the average perceptual dis-

tance of different models (including ablation study) and our

proposed model gained the highest diversity.

shown, the proposed method outperforms the baselines by

a large margin. We also perform an ablation study and find

that the proposed method performs better than variants that

remove the noise encoder or the rebalancing scheme, which

demonstrates the value of each component of our method.

Image Quality Evaluation We now evaluate the gener-

ated image quality by human evaluation. Since it is diffi-

cult for humans to compare images with different styles, we

selected the images that are closest to the ground truth im-

age in ℓ1 distance among the images generated by CRN and

our method. We then asked 62 human subjects to evalu-

ate the images generated for 20 semantic layouts. For each

semantic layout, they were asked to compare the image gen-

erated by CRN to the image generated by our method and

judge which image exhibited more obvious synthetic pat-

terns. The result is shown in Table 2.

(a) CRN (b) Our model

Figure 8: Comparison of artifacts in generated images.

% of Images Containing More Artifacts

CRN 0.636± 0.242

Our method 0.364 ± 0.242

Table 2: Average percentage of images that are judged by

humans to exhibit more obvious synthetic patterns. Lower

is better.

4.4. Qualitative Evaluation

A qualitative comparison is shown in Fig. 4. We com-

pare to three baselines, BicycleGAN [42], Pix2pix-HD with

input noise [34] and CRN. As shown, Pix2pix-HD gener-

ates almost identical images, BicycleGAN generates im-

ages with heavy distortions and CRN generates images with
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little diversity. In comparison, the images generated by our

method are diverse and do not suffer from distortions. We

also perform an ablation study in Fig. 5, which shows that

each component of our method is important. In the supple-

mentary material, we include results of the baselines with

the proposed rebalancing scheme and demonstrate that, un-

like our method, they cannot take advantage of it.

In addition, our method also generates fewer artifacts

compared to CRN, which is especially interesting because

the architecture and the distance metric are the same as

CRN. As shown in Fig. 8, the images generated by CRN

has grid-like artifacts which are not present in the images

generated by our method. More examples generated by our

model are shown in the supplementary material.

Interpolation We also perform linear interpolation of la-

tent vectors to evaluate the semantic structure of the learned

latent space. As shown in 6, by interpolating between

the noise vectors corresponding to generated images dur-

ing daytime and nighttime respectively, we obtain a smooth

transition from daytime to nighttime. This suggests that the

learned latent space is sensibly ordered and captures the full

range of variations along the time-of-day axis. More exam-

ples are available in the supplementary material.

Scene Editing A successful method for image synthesis

from semantic layouts enables users to manually edit the

semantic map to synthesize desired imagery. One can do

this simply by adding/deleting objects or changing the class

label of a certain object. In Figure 9 we show several such

changes. Note that all four inputs use the same random vec-

tor; as shown, the images are highly consistent in terms of

style, which is quite useful because the style should remain

the same after editing the layout. We further demonstrate

this in Fig. 7 where we apply the random vector used in

(a) to different segmentation maps in (b),(c),(d),(e) and the

style is preserved across the different segmentation maps.

5. Conclusion

We presented a new method based on IMLE for multi-

modal image synthesis from semantic layout. Unlike prior

approaches, our method can generate arbitrarily many im-

ages for the same semantic layout and is easy to train. We

demonstrated that our method can generate more diverse

images with fewer artifacts compared to the leading ap-

proach [3], despite using the same architecture. In addition,

our model is able to learn a sensible latent space of noise

vectors without supervision. We showed that by taking the

interpolations between noise vectors, our model can gener-

ate continuous changes. At the same time, using the same

noise vector across different semantic layouts result in im-

ages of consistent style.

(a) (b)

(c) (d)

Figure 9: Scene editing. (a) is the original input seman-

tic map and the generated output. (b) adds a car on the

road. (c) changes the grass on the left to road and change

the side walk on the right to grass. (d) deletes our own car,

changes the building on the right to tree and changes all

road to grass.

(a)

(b)

Figure 10: Images generated using our method on the

BDD100K [37] dataset.
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