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Abstract

In image captioning, the typical attention mechanisms

are arduous to identify the equivalent visual signals espe-

cially when predicting highly abstract words. This phe-

nomenon is known as the semantic gap between vision and

language. This problem can be overcome by providing se-

mantic attributes that are homologous to language. Thanks

to the inherent recurrent nature and gated operating mech-

anism, Recurrent Neural Network (RNN) and its variants

are the dominating architectures in image captioning. How-

ever, when designing elaborate attention mechanisms to

integrate visual inputs and semantic attributes, RNN-like

variants become unflexible due to their complexities. In this

paper, we investigate a Transformer-based sequence mod-

eling framework, built only with attention layers and feed-

forward layers. To bridge the semantic gap, we introduce

EnTangled Attention (ETA) that enables the Transformer

to exploit semantic and visual information simultaneously.

Furthermore, Gated Bilateral Controller (GBC) is proposed

to guide the interactions between the multimodal informa-

tion. We name our model as ETA-Transformer. Remarkably,

ETA-Transformer achieves state-of-the-art performance on

the MSCOCO image captioning dataset. The ablation stud-

ies validate the improvements of our proposed modules.

1. Introduction

Image captioning [39, 18] is one of the essential tasks [4,

39, 47] that attempts to break the semantic gap between vi-

sion and language. To generate good captions for images, it

involves not only the understanding of many concepts, such

as objects, actions, scenes, human-objects interactions but

also expressing these factors and their relations in a natural

language. Recently, the attention mechanism [41, 44, 12]

was introduced to dynamically recap the salient information

of the input image for every word.

In previous image captioning works [41, 44, 12], the at-

tention mechanism mainly lies in two fields based on the

(a). A person is standing in 

the snow.

(b). Two children are 

standing in the snow.

(c). A woman and a child

are skiing in the snow.

in, ski, 

snow,

child, 

woman,

…

Figure 1: The image captioning results when given differ-

ent modality information. (a) provides an unsatisfactory

caption result only using low-level visual features. When

provided with high-level visual information guided from re-

gion proposals, (b) can make some improvement, e.g., pre-

dict “two children” in the picture. However, it still fails to

grab abstract concepts in the image, e.g., “skiing”. (c) is

the result when utilizing information from complementary

modalities: visual and semantic. It is the most accurate re-

sult among the three descriptions.

modality of the information they employed: Visual Atten-

tion and Semantic Attention. On the one hand, visual atten-

tion exploits the low-level feature maps [41] or high-level

object ROI-pooled features [29, 2] to identify the most rel-

evant regions for the words. However, due to the semantic

gap, not every word in the caption has corresponding visual

signals [25], especially for the tokens associated with ab-

stract concepts and complex relationships. Figure 1 shows

an example of this obstacle. On the other hand, researchers

develop the semantic attentions [44, 12] which can lever-

age the high-level semantic information directly. Never-

theless, because of the recurrent nature, RNNs [11, 27, 34]

have difficulties in memorizing the inputs many steps ago,

especially the initial visual input. Consequently, such ap-

proaches tend to collapse into high-frequency phrase frag-

ments without regard to the visual cues.

As shown in Figure 1(c), the combination of the two
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complementary attention paradigms can alleviate the harm-

ful impacts of the semantic gap. Therefore, Li et al. [22]

propose a two-layered LSTM [17] that the visual and se-

mantic attentions are separately conducted at each layer.

Yao et al. [42] employ graph convolutional neural networks

to explore the spatial and semantic relationships. They use

late fusion to combine two LSTM language models that

are independently trained on different modalities. However,

due to the inherent recurrent nature and the complex operat-

ing mechanism, RNNs fail to explore the two complemen-

tary modalities concurrently.

To solve these problems above, we extend the efficient

and straightforward Transformer [37] framework with our

proposed Entangled Attention (ETA) and Gated Bilateral

Controller (GBC) to explore visual and semantic informa-

tion simultaneously. The design of ETA is inspired by the

studies [7, 35] about the human visual system, showing the

selection of attentive regions in human visual attention can

be influenced by a prior linguistic input. To mimic this phe-

nomenon, we use an information injection operation to in-

fuse the input query with the information from the prelim-

inary modality. Then the attention over the target modal-

ity can be conducted under the guidance of the preliminary

modality. Subsequently, the representations of the target vi-

sual and semantic modalities propagate to the next layers

under the channel-wise control of GBC.

The advantages of our method are as follows. First, the

simplicity of the Transformer [37] framework relieves us

from the limitations of recurrent neural networks. Second,

the application of self-attention in the encoder encourages

our model to explore the relationships between the detected

entities. Our method can efficiently leverage the informa-

tion in the target modality under the guidance of preliminary

modality. Third, the proposed bilateral gating, GBC, can

jointly facilitate our module to provide sophisticated control

for the propagation of multimodal information. Because of

the cohesiveness, our attention module can be readily ap-

plied to the Transformer without violating its parallel nature

and modularity.

Our contributions can be summarized as follows:

(1) We devise the EnTangled Attention – a unique atten-

tion mechanism which enables the Transformer framework

to exploit the visual and semantic information simultane-

ously.

(2) We propose the Gated Bilateral Controller – a novel

bilateral gating mechanism which can provide sophisticated

control for the forward propagation of multimodal informa-

tion as well as their backpropagating gradients.

(3) We comprehensively evaluate our approach on the

MSCOCO dataset [24], and our method achieves the state-

of-the-art performance.

2. Related Work

Attention in Visual Captioning. Desipite the efforts

[41, 29, 44, 12, 25, 2, 40] investigate the attention over

monomodal information, many works also try to combine

visual and semantic information semoutanouly. Yao et

al. [43] prove multimodal information can contribute to the

image captioning problem and investigate how to employ

semantic attributes under LSTM framework. Li et al. [22]

propose a two-layer visual-semantic LSTM which conducts

visual attention and semantic attention at different layers.

To explore the relationship between objects and semantic

attributes, Yao et al. [42] apply graph convolution neural

networks in the encoding stage. Tang et al. [36] leverage

scene graph to align the relations between vision and lan-

guage. Conducted only in each modality separately, these

methods fail to explore the complementary nature of the vi-

sual and semantic information.

Co-attention in VQA. The widely used co-attention mech-

anism [26, 45, 13, 21] in visual question answering (VQA)

can explore the visual and semantic information jointly. But

the major concern of VQA is to identify the most relevant

visual regions based on the question. Hence, the attention

mechanism in VQA mainly queries the visual regions with

the semantic feature. However, in image captioning, the

most salient semantic attributes should also be identified.

Model Structures. The recurrent nature of RNN dilutes the

long-term information at every time step [33]. To get rid

of the catastrophic forgetting in long-term memory, Gu et

al. [15] introduce temporal CNN to impose the experienced

semantic information at every step of the generation pro-

cedure. Additionally, to overcome the inherently recurrent

nature of the RNNs, Gehring et al. [14] propose to use Con-

volutional Neural Networks (CNN) to model the sequence-

to-sequence problem. Afterward, Aneja et al. [3] adapt this

model to image captioning. Different from the local convo-

lution operation, whose receptive field is determined by the

kernel size and layer depth, the self-attention can access the

information globally. Besides, there are only a few attempts

[5, 46, 31] to employ the Transformer in visual captioning.

3. Preliminary

To overcome the inherent recurrence in RNN model, the

Transformer reformulate the calculation of the hidden state

in Eq. 1. Thus, the hidden state of current time step ht only

depends on the feature embeddings of the input image and

history words, rather than the previous hidden state ht−1.

This formulation enables the Transformer model to execute

in parallel.

ht = TransformerDecoder(I;w1, . . . ,wt−1) (1)

To handle the variable-length inputs, such as image re-

gions and word sequence, Transformer employs attention
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Figure 2: The overall architecture of ETA-Transformer. Our model consists of three components: the visual sub-encoder, the

semantic sub-encoder, and the multimodal decoder. The generation procedure has three steps: (1) detecting region proposals

and semantic attributes; (2) encoding the visual and semantic features separately; (3) decoding word by word to obtain the

final caption. Notice that the Residual Connections, Layer Normalizations, and Embedding Layers are omitted.

to convert the unfixed number of inputs to a unified repre-

sentation. Moreover, positional encoding [37] is employed

both in the encoder and decoder to inject sequential infor-

mation.

There are two particular attention mechanisms in the

Transformer model. Here we start with the scaled dot-

product attention [37], in which the inner product is applied

to calculate the attention weights. Given a query qi from

all m queries, a set of keys kt ∈ R
d and values vt ∈ R

d

where t = 1, . . . , n, the scaled dot-product attention outputs

a weighted sum of values vt, where the weights are deter-

mined by the dot-products of query qi and keys kt. In order

to implement the dot product operation by highly optimized

matrix multiplication code, the queries, keys, and values are

packed together into matrices Q = (q1, . . . ,qm), K =
(k1, . . . ,kn), and V = (v1, . . . ,vn). In practice,

Attention(Q,K,V) = Softmax(
QKT

√
d

)V, (2)

where d is the width of the input feature vectors.

To extend the capacity of exploring subspaces, Trans-

former employs the multi-head attention [37] which con-

sists of h parallel scaled dot-product attentions named head.

The inputs including queries, keys, and values are projected

into h subspaces, and the attention performs in the sub-

spaces seperately:

MultiHead(Q,K,V) = Concat(H1, . . . ,Hh)W
O,

Hi = Attention(QW
Q
i ,KWK

i ,VWV
i )

(3)

where W
Q
i ,W

K
i ,WV

i ∈ R
d

h
×d are the independent head

projection matrices, i = 1, 2, . . . , h and WO
i ∈ R

d×d de-

notes the linear transformation. Note that the bias terms in

linear layers are omitted for the sake of concise expression,

and the subsequent descriptions follow the same principle.

4. Methodology

In this section, we devise our ETA-Transformer model.

As shown in Figure 2, the overall architecture follows the

encoder-decoder paradigm. First, a dual-way encoder maps

the original inputs into highly abstract representations and

then the decoder incorporates the multimodal information

simultaneously to generate the caption word by word.

4.1. Dual­Way Encoder

In most cases, CNNs like VGG [32] or ResNet [16] are

first considered for encoding the visual information, while

the transformer encoder is originally designed for sequence

modeling. However, we argue that a transformer encoder

with sophisticated design can better explore the inter- and

intra- relationships between the visual entities and seman-

tic attributes. Specifically, we devise a dual-way encoder
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that consists of two sub-encoders. Each sub-encoder is self-

attentive and of the same structure, i.e., a stack of N identi-

cal blocks.

Take the output of the l-th (0 ≤ l < N ) block Ol ∈
Rd×n as an example. They are first fed into the multi-head

self-attention module in the (l + 1)-th block:

Ml+1 = MultiHead(Ol,Ol,Ol), (4)

where Ml+1 is the hidden state calculated by multi-head

attention. The query, key and value matrices have the same

shape. Notice that the O0 is the output of the embedding

layer.

The subsequent sub-layer is a position-wise feed-

forward network (FFN) which consists of two linear trans-

formations with a ReLU activation in between:

FFN(x) = W2 ·ReLU(W1 · x+ b1) + b2,

Ol+1 = [FFN(Ml+1
·,1 ); . . . ;FFN(Ml+1

·,n )],
(5)

where W2 ∈ R
d×dm , W1 ∈ R

dm×d, Ol+1 ∈ Rd×n are

the outputs of the (l + 1)-th block, and Ml+1
·,i represents

column i of matrix M, thus the i-th feature vector. The two

equivalent expressions are used interchangeably in the sub-

sequent description. Same to [37], the residual connection

and layer normalization are used after the forementioned

sub-layers, and we omit them for a concise explanation.

The structure described above can be used for encod-

ing both the visual and semantic features. Before feeding

into the sub-encoder, the nv visual features are mapped into

V0 ∈ R
d×nv by a linear transformation, and the ns one-hot

semantic attributes are projected into S0 ∈ R
d×ns by an

embedding layer. Furthermore, we share the word embed-

dings between the semantic encoder and the decoder so that

our model can utilize the target information directly.

4.2. Multimodal Decoder

In addition to the basic block of the encoder, the decoder

block inserts an ETA module and a GBC module between

the self-attention sub-layer and the feed-forward sub-layer,

which empowers the decoder block to perform attention

over the visual outputs VN and semantic outputs SN of

the dual-way encoder simultaneously. Similar to the en-

coder, the decoder consists of N identical blocks, and we

employ residual connections around each of the sub-layers,

followed by layer normalization.

Suppose the decoder is generating the t-th word in the

target sentence. We denote wt ∈ R
d×1 as the vector repre-

sentation of the t-th word, which is the sum of word embed-

ding and positional encoding. Therefore, the input matrix

representation for time step t is:

W<t = [w0; . . . ;wt−1], (6)

where W<t ∈ R
d×t and w0 is the feature vector of the

token representing the start of sentence.

For the (l + 1)-th block, the inputs Hl
≤ t ∈ R

d×t =

(hl
1, . . . ,h

l
t) are fed into a multi-head self-attention sub-

layer, notice that h0
t corresponds to wt−1:

Al+1
·,t = MultiHead(Hl

·,t,H
l
<t,H

l
<t), (7)

where Hl
·,t ∈ R

d×1, Al
·,t ∈ R

d×1, and h0
t = wt−1. Notice

that W<t is the inputs for the first layer. Subsequently, the

self-attention output al+1
t is passed into the ETA to incor-

porate with visual and semantic features:

El+1
·,t = ETA(Al+1

·,t ,VN ,SN ), (8)

where El+1
·,t ∈ R

d×1 contains the visual and semantic in-

formation which is elaborately integrated according to the

importance of modalities in channel level. After the pro-

cess of FFN, we obtain the output hl+1
t = FFN(el+1

t ) of

current layer.

Finally, the output of layer N is fed into the classifier

over vocabulary to predict next word. Notice that the proce-

dure described above illustrates the incremental generation

in inference. Because all the input tokens are known in the

training stage, the attention is implemented with highly op-

timized matrix multiplication.

4.3. EnTangled Attention

Most of the previous attempts trying to integrate multi-

modal information for image captioning only perform atten-

tion over the multiple modalities separately and then fuse

the independent attention representations. Therefore, they

fail to leverage the complementary nature of visual and se-

mantic information in attention operations. Differently, as

shown in Figure 3 (b), we implement the attention in an en-

tangled manner so that it can be affected by the preliminary

modality while performing attention over the target one.

Here we take the visual pathway in ETA as an illustra-

tion. To mimic the attention mechanism of the human vi-

sion system, we need a function which can inject the infor-

mation of preliminary modality SN into the self-attention

output at (see Eq. 7) so that the generated representation

g
(s)
t ∈ R

d×1 (the superscript (s) is donated for the sign of

modality) can provide proper guidance for the attention in

target modality. In order to handle the variable number of

semantic attributes, we choose multi-head attention as the

preliminary information injection function:

g
(s)
t = MultiHead(at,S

N ,SN ). (9)

Next, we use the semantic guidance gs
t to perform multi-

head attention over the target modality VN :

vt = MultiHead(g
(s)
t ,VN ,VN ), (10)
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Figure 3: The multimodal representations are first fed into

ETA to conduct EnTangled Attention, then to GBC to obtain

the final representation.

where vt ∈ R
d×1 is the final representation generated with

the guidance of semantic modality. And in a similar manner

but reversed order, we could obtain the semantic represen-

tation st ∈ R
d×1. Notice that all the attention layers in ETA

are followed with residual connection and layer normaliza-

tion which are omitted for concise expression.

4.4. Gated Bilateral Controller

In this section, we present the Gated Bilateral Controller

(GBC) specially designed for the integration of the gen-

erated representations st and vt. The gating mechanisms

controlling the path through which information flows to the

subsequent layers are widely used in the famous sequence

models like LSTM [17], GRU [6], and ConvS2S [14]. Such

multiplicative gates are adept at dealing with gradient ex-

plosion and vanishing, which enable the information to pro-

pogate unimpededly through long timesteps or deep layers.

As illustrated in Figure 3 (a), the context gate ct in GBC

is determined by the current self-attention output at, the vi-

sual guidance g(v) and the semantic guidance g(s):

ct = σ
(

Wc · [g(s)
t ,g

(v)
t ,at]

)

, (11)

where ct ∈ R
d×1, Wc ∈ R

d×3d and σ(·) denotes the sig-

moid function.

Different from the previous gating mechanism managing

only one pathway, we extend it with a bilateral scheme. The

gate value ct controls the flow of visual guidance vt while

the complement part (1 − ct) governs the propagation of

semantic information st:

et = f(vt)⊙ ct + f(st)⊙ (1− ct), (12)

where ⊙ represents the hadamard product, f(·) can be an

activation function or identity function, and et ∈ R
d×1 de-

notes the output of ETA.

The Effect of f Function. In LSTM or GRU, the left

part of the Hadamard product is always activated with func-

tion f which can be Sigmoid, Tanh or ReLU [20], etc.

Whereas, we do not apply any activation over vt and st
which are merely the outputs of the linear transformation

in multi-head attention. Compared with the saturate activa-

tions mentioned above, the identity function id(x) = x al-

lows gradients to propagate through the linear part without

downscaling. Here, following the analysis in [8], we take

the left part of the Eq. 12 as an example, whose gradient is:

∇ [f(x)⊙ ct] = f ′(x)∇ x⊙ ct. (13)

As shown in the Eq. 13, the f ′(x) can act as a scale

factor of the gradients. Additionally, tanh′(·) ∈ (0, 1],
σ′ (·) ∈ (0, 0.25], while id′(·) = 1. Thus, the saturate

activations will downscale the gradient and make gradient

vanishing even worse with the stacking of layers. Although

the non-saturate activation ReLU has similar property with

identity function, here we argue the activated gate ct has

equipped the module with non-linearity [9]. For the prin-

ciple of simplicity, we do not apply any activations over vt

and st. By comparing the effect of f function experimen-

tally in Section 5.4.3, we find the activations deteriorate the

performance greatly while the identity function achieves the

best.

5. Experiments

5.1. Datasets and Evaluation

We use the MSCOCO 2014 captions dataset [24] to eval-

uate our proposed captioning model. In offline testing, we

use the Karpathy splits [18] that have been used extensively

for reporting results in previous works. This split contains

113,287 training images with five captions each, and 5K im-

ages respectively for validation and testing. Our MSCOCO

test server submission is trained on the Karpathy’s training

split, and chosen on the Karpathy’s test split.

Data processing We follow standard practice and per-

form only minimal text pre-processing, converting all sen-

tences to lower case, tokenizing on white space, and keep-

ing words that occur at least five times, resulting in a model

vocabulary of 9,487 words. To evaluate caption quality,
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Proposal Semantic
Cross-Entropy Loss Sequence-Level Optimization

B@1 B@4 M R C S B@1 B@4 M R C S

SCST [30] ✗ ✗ - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -

LSTM-A [43] ✗ ✓ 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8

VS-LSTM [22] ✓ ✓ 76.3 34.3 26.9 - 110.2 - 78.9 36.3 27.3 - 120.8 -

Up-Down [2] ✓ ✗ 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

GCN-LSTMfuse [42] ✓ ✓ 77.4 37.1 28.1 57.2 117.1 21.1 80.9 38.3 28.6 58.5 128.7 22.1

ETA ✓ ✓ 77.3 37.1 28.2 57.1 117.9 21.4 81.5 39.3 28.8 58.9 126.6 22.7

ETAfuse ✓ ✓ 77.6 37.8 28.4 57.4 119.3 21.6 81.5 39.9 28.9 59.0 127.6 22.6

Table 1: MSCOCO Offline Evaluation. The ETA denotes the ETA-Transformer. ✓ indicates the corresponding features

(region proposals or semantic attributes) are applied, and ✗ means otherwise. All values are reported as percentage (%).

B@1 B@4 M R C S

VS-LSTMs 74.3 33.3 26.5 - 105.1 -

VS-LSTMv 75.1 33.5 26.5 - 105.8 -

VS-LSTM 76.3 34.3 26.9 - 110.2 -

GCN-LSTMs 77.3 36.8 27.9 57.0 116.3 20.9

GCN-LSTMv 77.2 36.5 27.8 56.8 115.6 20.8

GCN-LSTMfuse 77.4 37.1 28.1 57.2 117.1 21.1

Transformers 71.1 29.0 25.3 52.8 96.2 18.2

Transformerv 75.9 34.0 27.5 56.1 112.2 21.0

ETA 77.3 37.1 28.2 57.1 117.9 21.4

ETAoracle 97.0 76.7 47.9 84.2 204.2 34.7

Table 2: The results on single modality. The ETA denotes

the ETA-Transformer. Subscript indicates that the visual

modality or semantic modality is applied.

we use the standard automatic evaluation metrics, namely

SPICE [1], CIDEr-D [38], METEOR [10], ROUGE-L [23]

and BLEU [28].

5.2. Implementation Details

Visual & Semantic Features. For visual features, we

use the region proposals as the visual representations. To

select the salient regions, we follow the settings in Up-

Down [2]. When comparing with some previous meth-

ods [18, 3], we also encode the full-sized input image with

the final convolutional layer of VGG-16 [32] and use adap-

tive pooling to resize the outputs into a fixed size of 7x7.

For semantic features, we follows the settings of Fang et.

al [12] to detect semantic attributes. The backbone of at-

tribute detector is fine-tuned from VGG16 equipped with a

noisy-OR version of multiple instance loss. We only keep

the top-1000 frequent words as labels. And in the training

stage, we use the detected semantic attributes rather than the

ground truth.

Model Settings & Training. We follow the same hyper-

parameter settings in [37]. We use N = 6 identical lay-

ers in both encoder and decoder. The output dimension of

the word embedding layers is 512, and the input visual fea-

tures are also mapped into 512 with a linear projection. The

inner-layer of the feed-forward network has dimentional-

ity dm = 2048. And h = 8 parallel attention layers are

employed in multi-head attention. Besides, we also share

the word embedding between semantic sub-encoder and the

decoder in order to leverage the target word representation

directly. In training stage, we use the same learning rate

schedule as [37]. The input batch size is 75 image-sentence

pairs and the warm-up step is 20000. We use the Adam op-

timizer [18] with β1 = 0.9, β2 = 0.98.

5.3. Comparision with State­of­the­Art Methods

Offline Evaluation. Table 1 shows the performance of

our model and state-of-the-art approaches in recent two

years. Note that the comparative methods are all based on

LSTM and its variants, which is the dominant framework in

image captioning. All the baselines adapt ResNet-101 as the

backbone network of visual representation. The self-critical

sequence-level training strategy devised in SCST [30] is

applied by Up-Down [2], GCN-LSTM [42] and ETA-

Transformer for optimizing the CIDEr-D score, while VS-

LSTM [22] employs an improved version of SCST. LSTM-

A [43] investigates how to utilize the predicted semantic at-

tributes efficiently. We use them as the LSTM baselines.

Up-Down [2] presents a two-layer LSTM to conduct at-

tention over bottom-up and top-down visual features sep-

arately. VS-LSTM [22] use a similar design but replace

the low-level visual features with semantic attributes. Re-

stricted by the complexity of LSTM, the models have diffi-

culties in stacking deep layers. Benefits from the scalability

of the Transformer and the cohesiveness of our proposed

modules, the multimodal attention can be conducted at dif-

ferent levels of abstraction. In our experiments, we employ

N=6 multimodal attentions in the decoding stage. Thus,

our method outperforms them with a large margin. Aim-

ing at modeling the relations of objects, GCN-LSTM [42]

introduced graph convolutional neural network to encode

the detected entities. To make fair comparison, we also

provide the late-fused performance of two models with

different initialization. The result shows that our model

achieves superior performance on the cross-entropy train-

ing. And in sequence level training, our model produces

higher performance in five out of six metrics, especially the

BLEU@4(39.9%) and SPICE(22.7%).

To provide a more detailed comparison, we also report
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Model B@1 B@2 B@3 B@4 M R-L C-D

- c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.3 56.3 70.7 114.7 116.0

LSTM-A 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0

VS-LSTM 78.8 94.6 62.8 87.5 47.9 77.3 35.9 66.3 27.0 35.3 56.5 70.3 116.6 119.5

Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

GCN-LSTM - - 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

ETA 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4

Table 3: MSCOCO Online Evaluation. The ETA denotes the ETA-Transformer. cX means evaluation on X captions. All

values are reported as percentage (%).

B@1 B@4 M R C S

LSTM [18] 71.3 30.3 24.7 52.5 91.2 17.2

Convolution [3] 71.1 28.7 24.4 52.2 91.2 17.5

Transformers 71.1 29.0 25.3 52.8 96.2 18.2

- Encoder 70.3 28.5 24.8 52.0 93.1 17.7

Transformerv 71.0 30.2 24.9 52.6 93.8 18.0

- Encoder 70.2 28.2 24.2 51.6 91.8 17.2

ETA 72.2 31.9 25.7 53.4 99.2 18.6

Table 4: Comparison with different model structures. And

“-Encoder” implies the Encoder is removed from the model.

All results are reported in token-level training.

the results on single modality. ETA-Transformer and VS-

LSTM use weak semantic labels generated from the ground

truth captions (see [12] for more details), but the GCN-

LSTM employs a fully-supervised model trained on the

region-level annotations of Visual Genome [19]. There-

fore, the GCN-LSTMs has superior performance to the

Transformers and VS-LSTMs. However, as shown in Ta-

ble 2, our model provides the most significant improve-

ments when combining the two modalities. This compar-

ison further proves the effectiveness of our proposed mod-

ules in leveraging the complementary information. We also

report the performance of our model under an Oracle set-

ting (see the ETAoracle), where the semantic attributes tok-

enized from the ground truth captions are provided during

test time. This can be viewed as the upper bound of our

method when we have a perfect attribute detector.

Online Evaluation. We ensembled three models trained

on sequence-level criterion with different initalization, and

submitted our results to the online testing server. Table 3 in-

cludes the top-5 methods which have been officially pub-

lished, and it shows that the ETA-Transformer is among

the top-2 performance over all the metrics. In particular,

the B@3, B@4, METEOR, and ROUGE-L are superior on

both c5 and c40 testing sets. The submission results named

ETA-Transformer have been public on the leaderboard 1.

1https://competitions.codalab.org/competitions/

3221

B@1 B@4 M R C S

Transformerv 80.6 38.3 28.5 58.3 124.1 22.3

Transformers 76.6 32.6 25.5 54.4 102.8 19.1

Tv & Ts fuse 79.6 37.5 27.6 57.6 118.7 19.8

Parallel 80.9 38.7 28.8 58.7 124.9 22.4

Stackedv 80.7 39.1 28.6 58.6 125.0 22.4

Stackeds 80.8 38.8 28.6 58.5 124.5 22.5

ETA 81.5 39.3 28.8 58.9 126.6 22.7

Table 5: Ablation experiments. ETA is denotes the ETA-

Transformer. And all results are trained on sequence-level

criterion.

5.4. Ablation Study

5.4.1 Comparison with Different Frameworks

In the ablation study, we first compare the Transformer with

the other two classical sequence model LSTM [41] and

ConvS2S [3, 14]. The two models are all equipped with

visual attention mechanism. Following the feature extrac-

tion settings in [3], we use 7x7 feature maps of the fifth

convolution layer in VGG-16 as our visual representations.

The performance on Table 4 shows that the standard Trans-

former is comparable with LSTM and ConvS2S model in

the image captioning problem.

Further, to validate the previous declaration that the self-

attention can benefit the feature representation from model-

ing the relationships of input entities, we report the results

of the encoder-removed transformer on both modalities. As

shown in Table 4, the performance has dropped significantly

over all the metrics.

5.4.2 Comparison with Strong Baselines

In this section, we provide other two simplified versions of

our proposed modules, and the late-fusion of Transformers
(Ts) & Transformerv (Tv), as strong baselines. In the first

one, we remove the GBC module and extract one pathway

of ETA as the first version. We refer this version as Stacked

Attention (SA) because it has two stacked multi-head at-

tentions. In the second one, we remove the preliminary

information injection blocks in ETA and simply use GBC

to integrate the outputs of encoder (SN and V N ) directly.
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𝑇𝑣: a bunch of fruit sitting in a sink.𝑇𝑠: a table with a lot of food on it.𝐸𝑇𝐴 : a bowl of fruits and vegetables on a stove.

𝑇𝑣: a baby girl laying on a bed holding a toy.𝑇𝑠: a baby girl laying on a bed with a bed.𝐸𝑇𝐴: a baby sitting on a bed with a bottle.

𝑇𝑣: a giraffe eating from a feeder in a zoo.𝑇𝑠: a giraffe eating a tree with a tree in background.𝐸𝑇𝐴: a giraffe eating hay out of a feeder.

𝑇𝑣 : a clock hanging from a wall next to a window.𝑇𝑠: a large clock sitting on top of a wall.𝐸𝑇𝐴: a clock hanging on the side of a building.

Figure 4: Qualitative examples of different methods. Compared with Transformerv (Tv) and Transformers (Ts), the ETA-

Transformer (ETA) generates more descriptive and more accurate captions.

B@1 B@4 M R C S

Sigmoid 74.5 32.1 26.3 54.8 104.9 19.4

Tanh 74.8 32.0 26.2 54.8 104.1 19.6

ReLU 76.3 36.1 27.9 56.2 114.0 20.8

Linear 76.3 36.3 28.1 56.5 115.2 21.0

Table 6: The effect of activation functions in GBC. All re-

sults are reported in token-level training.

This version is named as Parallel Attention (PA). In Ts &

Tv fuse, we train the two standard transformer model sepa-

rately and late-fused the results of them.

The late fusion of monomodal models can only have lim-

ited gains, sometimes, even severe degeneration. As shown

in Table 5, the performance of Ts & Tv fuse is worse even

compared with Tv . This is mainly caused by the inferior

single model Ts. Differently, the ETA-Transformer, which

integrates the multimodal information at the feature level,

obtains significant and stable improvement in performance.

In Table 5, compared results of the multimodal versions

with Transformers or Transformerv , we can find that vi-

sual and semantic modalities are complementary. The in-

tegration of visual and semantic information can contribute

to better performance despite that the semantic represen-

tations are considerably worse than the visual representa-

tions. Notwithstanding the huge performance gap between

Transformerv and Transformers, SAs and SAv (see the

Stackeds and Stackedv in Table 5 have near performance

on all the metrics. These experimental results show the En-

Tangled Attention can benefit from fusing the visual and

semantic information with an ordered manner. Besides, the

widely used skip connection, which equally combines the

preliminary and target representations without any adaptive

trade-off, sustains the impact of the preliminary modality.

Thus the performance of semantic information is enhanced.

Without using the EnTangled Attention mechanism, the

parallel attention only employs the gated bilateral controller

to combine the encoded visual and semantic representations

adaptively. And PA gains comparable and slightly better

performance than SAs and SAv . Furthermore, The ETA

can be viewed as the combination of PA and SA, which in-

corporates the advantages of both. Shown in Table 5, the

ETA achieves superior performances against the two strong

baselines in all the metrics noteworthily.

5.4.3 The Effect of Activation in GBC

As shown in Table 6, the saturated activation functions like

Sigmoid and Tanh deteriorate the performance of GBC sig-

nificantly, while the identity function and the non-saturated

activation ReLU do not suffer from this degeneration. The

identity function only outperforms ReLU slightly. Follow-

ing the analysis in 4.4, bacause tanh′(·) ∈ (0, 1] has a larger

range compared with σ′ (·) ∈ (0, 0.25], Tanh should outper-

form Sigmoid. We think that the saturated area, where the

gradients are close to zero, occupies most of the feasible do-

main in saturated activation functions – consequently, Tanh

still suffers serious deterioration as Sigmoid.

Further, we compare the design principle of the gating

mechanism between RNN and Transformer. For RNN, the

supervision information is provided for every time step.

Thus the gating mechanism should be able to restrict gra-

dient explosion in the backpropagation through time. Dif-

ferently, the supervision only provided in the last layer of

the Transformer Decoder, where the gradient vanishing be-

comes the dominant problem. Therefore, the identity func-

tion should be considered first when stacking deep layers.

6. Conclusion

In this work, we devise an effective multimodal sequence

modeling framework for image captioning. By introduc-

ing the EnTangled Attention and Gated Bilateral Controller,

the Transformer model is extended to exploit complemen-

tary information of visual regions and semantic attributes

simultaneously. Moreover, comprehensive comparisons

with state-of-the-art methods and adequate ablation studies

demonstrate the effectiveness of our framework.
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[27] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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