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Abstract

Domain generalization (DG) is the challenging and topi-

cal problem of learning models that generalize to novel testing

domains with different statistics than a set of known training do-

mains. The simple approach of aggregating data from all source

domains and training a single deep neural network end-to-end

on all the data provides a surprisingly strong baseline that sur-

passes many prior published methods. In this paper we build on

this strong baseline by designing an episodic training procedure

that trains a single deep network in a way that exposes it to

the domain shift that characterises a novel domain at runtime.

Specifically, we decompose a deep network into feature extrac-

tor and classifier components, and then train each component

by simulating it interacting with a partner who is badly tuned for

the current domain. This makes both components more robust,

ultimately leading to our networks producing state-of-the-art

performance on three DG benchmarks. Furthermore, we con-

sider the pervasive workflow of using an ImageNet trained CNN

as a fixed feature extractor for downstream recognition tasks.

Using the Visual Decathlon benchmark, we demonstrate that

our episodic-DG training improves the performance of such a

general purpose feature extractor by explicitly training a feature

for robustness to novel problems. This shows that DG training

can benefit standard practice in computer vision.

1. Introduction

Machine learning methods often degrade rapidly in perfor-

mance if they are applied to domains with very different statistics

to the data used to train them. This is the problem of domain

shift, which domain adaptation (DA) aims to address in the case

where some labelled or unlabelled data from the target domain

is available for adaptation [2, 36, 22, 10, 23, 4]; and domain gen-

eralisation (DG) aims to address in the case where no adaptation

to the target problem is possible [27, 12, 18, 33] due to lack of

data or computation. DG is a particularly challenging problem

setting, since explicit training on the target is disallowed;

yet it is particularly valuable due to its lack of assumptions.

For example, it would be valuable to have a domain-general

visual feature extractor that performs well ‘out of the box’ as a

representation for any novel problem, even without fine-tuning.

The significance of the DG challenge has led to many stud-

ies in the literature. These span robust feature space learning

[27, 12], model architectures that are purpose designed to en-

able robustness to domain shift [16, 39, 17] and specially de-

signed learning algorithms for optimising standard architectures

[33, 18] that aim to fit them to a more robust minima. Among

all these efforts, it turns out that the naive approach [17] of

aggregating all the training domains’ data together and train-

ing a single deep network end-to-end is very competitive with

state-of-the-art, and better than many published methods – while

simultaneously being much simpler and faster than more elabo-

rate alternatives. In this paper we aim to build on the strength and

simplicity of this simple data aggregation strategy, but improve

it by designing an episodic training scheme to improve DG.

The paradigm of episodic training has recently been

popularised in the area of few-shot learning [9, 28, 34]. In

this problem, the goal is to use a large amount of background

source data, to train a model that is capable of few-shot learning

when adapting to a novel target problem. However despite the

data availability, training on all the source data would not be

reflective of the target few-shot learning condition. So in order

to train the model in a way that reflects how it will be tested,

multiple few-shot learning training episodes are setup among

all the source datasets [9, 28, 34].

How can an episodic training approach be designed for

domain generalisation? Our insight is that, from the perspective

of any layer l in a neural network, being exposed to a novel

domain at testing-time is experienced as that layer’s neighbours

l−1 or l+1 being badly tuned for the problem at hand. That is,

neighbours provide input to the current layer (or accept output

from it) with different statistics to the current layer’s expectation.
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Therefore to design episodes for DG, we should expose layers to

neighbours that are untrained for the current domain. If a layer

can be trained to perform well in this situation of badly tuned

neighbours, then its robustness to domain-shift has increased.

To realise our episodic training idea, we break networks

up into feature extractor and classifier modules and train

them with our episodic framework. This leads to more robust

modules that together obtain state-of-the-art results on several

DG benchmarks. Our approach benefits from end-to-end

learning, while being model agnostic (architecture independent),

and simple and fast to train; in contrast to most existing DG

techniques that rely on non-standard architectures [17], auxiliary

models [33], or non-standard optimizers [18].

Finally, we provide a practical demonstration of the value

of explicit DG training, beyond the isolated benchmarks that

are common in the literature. Specifically, we consider whether

DG can benefit the common practitioner workflow of using

an ImageNet [31] pre-trained CNN as a feature extractor for

novel tasks and datasets. The standard (homogeneous) DG

problem setting assumes shared label-spaces between source

and target domain, thus highly restricting its applicability. To

benefit the wider computer vision workflow, we go beyond

this to heterogeneous DG (Table 5). That is, to train a feature

extractor specifically to improve its robustness in representing

novel downstream tasks without fine-tuning. Using the Visual

Decathlon benchmark [29], we show that Episodic training

provides an improved representation for novel downstream

tasks compared to the standard ImageNet pre-trained CNN.

2. Related Work

Multi-Domain Learning (MDL) MDL aims to learn sev-

eral domains simultaneously using a single model [3, 29, 30, 40].

Depending on the problem, how much data is available per

domain, and how similar the domains are, multi-domain

learning can improve [40] – or sometimes worsen [3, 29, 30]

– performance compared to a single model per domain. MDL is

related to DG because the typical setting for DG is to assume a

similar setup in that multiple source domains are provided. But

that now the goal is to learn how to extract a domain-agnostic

or domain-robust model from all those source domains. The

most rigorous benchmark for MDL is the Visual Decathlon

(VD) [29]. We repurpose this benchmark for DG by training

a CNN on a subset of the VD domains, and then evaluating its

performance as a feature extractor on an unseen disjoint subset

of them. We are the first to demonstrate DG at this scale, and

in the heterogeneous label setting required for VD.

Domain Generalization Despite different details, previous

DG methods can be divided into a few categories by motivat-

ing intuition. Domain Invariant Features: These aim to learn a

domain-invariant feature representation, typically by minimising

the discrepancy between all source domains – and assuming that

the resulting source-domain invariant feature will work well for

the target as well. To this end [27] employed maximum mean

discrepancy (MMD), while [12] proposed a multi-domain re-

construction auto-encoder to learn this domain-invariant feature.

More recently, [20] applied MMD constraints within the rep-

resentation learning of an autoencoder via adversarial training.

Hierarchical Models: These learn a hierarchical set of model

parameters, so that the model for each domain is parameterised

by a combination of a domain-agnostic and a domain-specific

parameter [16, 17]. After learning such a hierarchical model

structure on the source domains the domain agnostic parameter

can be extracted as the model with the least domain-specific bias,

that is most likely to work on a target problem. This intuition has

been exploited in both shallow [16] and deep [17] settings. Data

Augmentation: A few studies proposed data augmentation strate-

gies to synthesise additional training data to improve the robust-

ness of a model to novel domains. These include the Bayesian

network [33], which perturbs input data based on the domain

classification signal from an auxiliary domain classifier. Mean-

while, [37] proposed an adversarial data augmentation method

to synthesize ‘hard’ data for the training model to enhance its

generalization. Optimisation Algorithms: A final category of

approach is to modify a conventional learning algorithm in an at-

tempt to find a more robust minima during training, for example

through meta-learning [18]. Our approach is different to all of

these in that it trains a standard deep model, without special data

augmentation and with a conventional optimiser. The key idea

requires only a simple modification of the training procedure to

introduce appropriately constructed episodes. Finally, in contrast

to the small datasets considered previously, we demonstrate the

impact of DG model training in the large scale VD benchmark.

Neural Network Meta-Learning Learning-to-learn and

meta-learning methods have resurged recently, in particular

in few-shot recognition [9, 34, 25], and learning-to-optimize

[28] tasks. Despite signifiant other differences in motivation

and methodological formalisations, a common feature of these

methods is an episodic training strategy. In few-shot learning,

the intuition is that while lot of source tasks and data may be

available, these should be used for training in a way that closely

simulates the testing condition. Therefore at each learning

iteration, a random subset of source tasks and instances are

sampled to generate a training episode defined by a random

few-shot learning task of similar data volume and cardinality

as the model is expected to be tested on at runtime. Thus the

model eventually ‘sees’ all the training data in aggregate, but

in any given iteration, it is evaluated in a condition similar to

a real ‘testing’ condition. In this paper we aim to develop an

episodic training strategy to improve domain-robustness, rather

than learning-to-learn. While the high-level idea of an episodic

strategy is the same, the DG problem and associated episode

construction details are completely different.
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Figure 1: Illustration of vanilla domain-aggregation for multi-domain

learning. A single model ψ(θ(·)) classifies data from all domains.

3. Methodology

In this section we will first introduce the basic dataset

aggregation method (AGG) which provides a strong baseline

for DG performance, and then subsequently present three

episodic training strategies for training it more robustly.

Problem Setting In the DG setting, we assume that we

are given n source domains D=[D1,...,Dn], where Di is the

ith source domain containing data-label pairs (xji ,y
j
i )

1. The

goal is to use these to learn a model f :x→y that generalises

well to a novel testing domain D∗ with different statistics to

the training domains, without assuming any knowledge of the

testing domain during model learning.

For homogeneous DG, we assume that all the source domains

and the target domain share the same label space Yi=Yj=Y∗,

∀i,j ∈ [1,n]. For the more challenging heterogeneous setting,

the domains can have different, potentially completely disjoint

label spaces Yi 6= Yj 6= Y∗. We will start by introducing the

homogeneous case and discuss the heterogeneous case later.

Architecture We break neural network classifiers f :x→y

into a sequence modules. In practice, we use two: A feature

extractor θ(·) and a classifier ψ(·), so that f(x)=ψ(θ(x)).

3.1. Overview

Vanilla Aggregation Method A simple approach to the DG

problem is to simply aggregate all the source domains’ data

together, and train a single CNN end-to-end ignoring the domain

label information entirely [17]. This approach is simple, fast and

competitive with more elaborate state-of-the-art alternatives. In

terms of neural network modules, it means that both the classi-

fier ψ and the feature extractor θ are shared across all domains2,

as illustrated in Fig. 1, leading to the objective function:

argmin
θ,ψ

EDi∼D

[

E(xi,yi)∼Di

[

ℓ(yi,ψ(θ(xi))
]]

(1)

where ℓ(·) is the cross-entropy loss here.

Domain Specific Models Our goal is to improve robustness

by exposing individual modules to neighbours that are badly

calibrated to a given domain. To obtain these ‘badly calibrated’

components, we also train domain-specific models. As illus-

trated in Fig. 2, this means that each domain i has its own model

1i indicates domain index and j indicates instance number within domain.

For simplicity, we will omit j in the following.
2At least in the homogeneous case
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Figure 2: Illustration of domain-specific branches. One classifier and

feature extractor are trained per-domain.

composed of feature extractor θi and classifierψi. Each domain-

specific module is only exposed to data of that corresponding

domain. To train domain-specific models, we optimise:

argmin
[θ1,...,θn],[ψ1,...,ψn]

EDi∼D

[

E(xi,yi)∼Di

[

ℓ(yi,ψi(θi(xi))
]]

(2)

Episodic Training Our goal is to train a domain agnostic

model, as per ψ and θ in the aggregation method in Eq. 1. And

we will design an episodic scheme that makes use of the domain-

specific modules as per Eq. 2 to help the domain-agnostic

model achieve the desired robustness. Specifically, we will

generate episodes where each domain agnostic module ψ and θ

is paired with a domain-specific partner that is mismatched with

the current data being input. So module and data combinations

of the form (ψ,θi,xi′) and (ψi,θ,xi′) where i 6=i′.

3.2. Episodic Training of Feature Extractor

To train a robust feature extractor θ, we ask it to learn

features which are robust enough that data from domain i can

be processed by a classifier that has never experienced domain

i before as shown in Fig. 3. To generate episodes according

to this criterion, we optimise

argmin
θ

Ei,j∼[1,n],i6=j

[

E(xi,yi)∼Di

[

ℓ(yi,ψj(θ(xi))
]]

(3)

where i 6=j and ψj means that ψj is considered constant for the

generation of this loss, i.e., it does not receive back-propagated

gradients. This gradient-blocking is important, because without

it the data xi from domain i would ‘pollute’ the classifier ψj
which we want to retain as being naive to domains outside of j.

Thus in this optimisation, only the feature extractor θ

is penalized whenever the classifier ψj makes the wrong

prediction. That means that, for this loss to be minimised, the

shared feature extractor θ must map data xi into a format that a

‘naive’ classifier ψj can correctly classify. The feature extractor

must learn to help a classifier recognize a data point that is from

a domain that is novel to that classifier.
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Figure 3: Episodic training for feature and classifier regularisation.

The shared feature extractor feeds domain specific classifiers. The

shared classifier reads domain-specific feature extractors.

3.3. Episodic Training of Classifier

Analogous to the above, we can also interpret DG as the

requirement that a classifier should be robust enough to classify

data even if it is encoded by a feature extractor which has never

seen this type of data in the past, as illustrated in Fig. 3. Thus

to train the robust classifier ψ we ask it to classify domain i

instances xi fed through a domain j-specific feature extractor

θj. To generate episodes according to this criterion, we do:

argmin
ψ

Ei,j∼[1,n],i6=j

[

E(xi,yi)∼Di

[

ℓ(yi,ψ(θj(xi))
]]

(4)

where i 6= j and θj means θj is considered constant for

generation of the loss here. Similar to the training of the feature

extractor module, this operation is important to retain the

domain-specificity of feature extractor θj. The result is that

only the classifier ψ is penalised, and in order to minimise this

loss ψ must be robust enough to accept data xi that has been

encoded by a naive feature extractor θj.

3.4. Episodic Training by Random Classifier

The episodic feature training strategy above is limited to the

homogeneous DG setting, since it requires all domains to share

label-space in order to create episodes. But in the heterogeneous

scenarios, the shared label-space assumption is not met. We

next introduce a novel feature training strategy that is suitable

for both homogeneous and heterogeneous label-spaces.

In Section 3.2, we introduced the notion of regularising

a deep feature extractor by requiring it to support a classifier

inexperienced with data from the current domain. Taking this to

an extreme, we consider asking the feature extractor to support

the predictions of a classifier with random weights, as shown

in Fig. 4. To this end, our objective function here is:

argmin
θ

EDi∼D

[

E(xi,yi)∼Di

[

ℓ(yi,ψr(θ(xi))
]]

(5)

where, ψr is a randomly initialised classifier, and ψr means

it is a constant not updated in the optimization. This can be

seen as an extreme version of our earlier episodic cross-domain

Rand	Clf.	(!") Loss

#

Episodic	training	by	random	classifier

$%

Feat.	Ext.	(&) Classifier	(!)
$'

$(…
…

Loss
)

#
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Figure 4: The architecture of random classifier regularization.

Algorithm 1 Episodic Training for Domain Generalization

1: Input: D=[D1,D2,...,Dn]
2: Initialise hyper parameters: λ1,λ2,λ3,α

3: Initialise model parameters: domain specific modules

θ1, ..., θn and ψ1, ..., ψn; AGG modules θ, ψ; random

classifier ψr
4: while not done training do

5: for (θi,ψi)∈ [(θ1,ψ1),...,(θn,ψn)] do

6: Update θi :=θi−α∇θi(Lds)
7: Update ψi :=ψi−α∇ψi

(Lds)
8: end for

9: Update θ :=θ−α∇θ(Lagg+λ1Lepif+λ3Lepir)
10: Update ψ :=ψ−α∇ψ(Lagg+λ2Lepic)
11: end while

12: Output: θ,ψ

feature extractor training (not only it has not seen any data from

domain xi, but it has not seen any data at all). Moreover, it has

the benefit of not requiring a label-space to be shared across

all training domains unlike the previous method in Eq. 3.

Specifically, in Eq. 3, the routing xi 7→θ 7→ψj requires ψj
to have a label-space matching (xi,yj). But for Eq. 5, each

domain can be equipped with its own random classifier ψr with

a cardinality matching its normal label-space. This property

makes Eq. 5 suitable for heterogeneous domains.

3.5. Algorithm Flow

Our full algorithm brings together the domain agnostic

modules that are our goal to train and the supporting domain-

specific modules that help train them (Section 3.1). We generate

episodes according to the three strategies introduced above.

Referring the losses in Eq. 1, 2, 3, 4, 5 as Lagg, Lds, Lepif ,

Lepic, Lepir, then overall we optimise:

Lfull=Lagg+Lds+λ1Lepif+λ2Lepic+λ3Lepir (6)

for parameters θ,φ,{θi,ψi}
n
i=1. The full pseudocode for the al-

gorithm is given in Algorithm 1. It is noteworthy that, in practice,

when training we first warm up the domain-specific branches

for a few iterations before training both the domain-specific

and domain-agnostic modules jointly. After training, only the

domain agnostic modules (of AGG) will be deployed for testing.
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4. Experiments

4.1. Datasets and Settings

Datasets We evaluate our algorithm on three different homo-

geneous DG benchmarks and introduce a novel and larger scale

heterogeneous DG benchmark. The datasets are: IXMAS: [38]

is cross-view action recognition task. Two object recognition

benchmarks include: VLCS [8], which includes images from

four famous datasets PASCAL VOC2007 (V) [7], LabelMe (L)

[32], Caltech (C) [19] and SUN09 (S) [6] and the more recent

PACS which has a larger cross-domain gap than VLCS [17]. It

contains four domains covering Photo (P), Art Painting (A), Car-

toon (C) and Sketch (S) images. VD: For the final benchmark we

repurpose the Visual Decathlon [29] benchmark to evaluate DG.

Competitors We evaluate the following competitors: AGG

the vanilla aggregation method, introduced in Eq. 1, trains a

single model for all source domains. DICA [27] a kernel-based

method for learning domain invariant feature representations.

LRE-SVM [39] a SVM-based method, that trains different

SVM model for each source domain. For a test domain, it

uses the SVM model from the most similar source domain.

D-MTAE [12] a de-noising multi-task auto encoder method,

which learns domain invariant features by cross-domain

reconstruction. DSN [4] Domain Separation Networks

decompose the sources domains into shared and private spaces

and learns them with a reconstruction signal. TF-CNN [17]

learns a domain-agnostic model by factoring out the common

component from a set of domain-specific models, as well as

tensor factorization to compress the model parameters. CCSA

[26] uses semantic alignment to regularize the learned feature

subspace. DANN [11] Domain Adversarial Neural Networks

train a feature extractor with a domain-adversarial loss among

the source domains. The source-domain invariant feature

extractor is assumed to generalise better to novel target domains.

MAML [9] The model-agnostic meta-learning method for

fast adaptation, repurposed for DG. MLDG [18] A recent

meta-learning based optimization method. It mimics the DG

setting by splitting source domains into meta-train and meta-test,

and modifies the optimisation to improve meta-test performance.

Fusion [24] A method that fuses the predictions from source

domain classifiers for the target domain. MMD-AAE [20] A

recent method that learns domain invariant feature autoencoding

with adversarial training and ensuring that domains are aligned

by the MMD constraint. CrossGrad [33] A recent method that

uses Bayesian networks to perturb the input manifold for DG.

MetaReg [1] A recent DG method that meta-learns the clas-

sifier regularizer. We note that DANN (domain adaptation) is

not designed for DG. However, DANN learns domain invariant

features, which is natural for DG. And we found it effective

for this problem. Therefore we repurpose it as a baseline.

We call our method as Episodic. We use Epi-FCR to

denote our full method with (f)eature regularisation, (c)lassifier

regularisation and (r)andom classifier regularisation respectively.

Ablated variants such as Epi-F denote feature regularisation

alone, etc. Episodic is implemented using PyTorch 3.

4.2. Evaluation on IXMAS dataset

Settings IXMAS contains 11 different human actions. All

actions were video recorded by 5 cameras with different views

(referred as 0,...,4). The goal is to train an action recognition

model on a set of source views (domains), and recognise the

action from a novel target view (domain). We follow [20]

to keep the first 5 actions and use the same Dense trajectory

features as input. For our method, we follow [20] to use

a one-hidden layer network with 2000 hidden neurons as

our backbone and report the average result of 20 runs. The

optimizer is M-SGD with learning rate 1e-4, momentum 0.9,

weight decay 5e-5. We use λ1=2.0, λ2=2.0, and λ3=0.5.

Results From the results in Table 1, we can see that: (i) The

vanilla aggregation method, AGG is a strong competitor com-

pared to several prior published methods, as is DANN, which is

newly identified by us as an effective DG algorithm. (ii) Overall

our Epi-FCR performs best, improving 2.4% on AGG, and 1.1%

on prior state-of-the-art MMD-AAE. (iii) Particularly in view

1&2 our method achieves new state-of-the art performance.

4.3. Evaluation on VLCS dataset

Settings VLCS domains share 5 categories: bird, car, chair,

dog and person. We use pre-extracted DeCAF6 features and

follow [26] to randomly split each domain into train (70%)

and test (30%) and do leave-one-out evaluation. We use a 2

fully connected layer architecture with output size of 1024

and 128 with ReLU activation, as per [26] and report the

average performance of 20 trials. The optimizer is M-SGD

with learning rate 1e-3, momentum 0.9 and weight decay 5e-5.

We use λ1=7.0, λ2=5.0, and λ3=0.5.

Results From the results in Table 2, we can see that: (i) The

simple AGG baseline is again competitive with many published

alternatives, so is DANN. (ii) Our Epi-FCR method achieves the

best performance, improving on AGG by 1.7% and performing

comparably to prior state-of-the-art MMD-AAE and MLDG

with 0.6% improvement over both.

4.4. Evaluation on PACS dataset

Settings PACS is a recent dataset with different object style

depictions, and a more challenging domain shift than VLCS,

as shown in [17]. This dataset shares 7 object categories across

domains, including dog, elephant, giraffe, guitar, house, horse

and person. We follow the protocol in [17] including the

recommended train and validation split for fair comparison.

We first follow [17] in using the ImageNet pretrained AlexNet

(in Table 3) and subsequently also use a modern ImageNet pre-

trained ResNet-18 (in Table 4) as a base CNN architecture. We

3https://github.com/HAHA-DL/Episodic-DG
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Source Target DICA [27] LRE-SVM [39] D-MTAE [12] CCSA [26] MMD-AAE [20] DANN [11] MLDG [18] CrossGrad [33] MetaReg [1] AGG Epi-FCR

0,1,2,3 4 61.5 75.8 78.0 75.8 79.1 75.0 70.7 71.6 74.2 73.1 76.9

0,1,2,4 3 72.5 86.9 92.3 92.3 94.5 94.1 93.6 93.8 94.0 94.2 94.8

0,1,3,4 2 74.7 84.5 91.2 94.5 95.6 97.3 97.5 95.7 96.9 95.7 99.0

0,2,3,4 1 67.0 83.4 90.1 91.2 93.4 95.4 95.4 94.2 97.0 95.7 98.0

1,2,3,4 0 71.4 92.3 93.4 96.7 96.7 95.7 93.6 94.0 94.7 94.4 96.3

Ave. 69.4 84.6 87.0 90.1 91.9 91.5 90.2 89.9 91.4 90.6 93.0

Table 1: Cross-view action recognition results (accuracy. %) on IXMAS dataset. Best result in bold.

Source Target DICA [27] LRE-SVM [39] D-MTAE [12] CCSA [26] MMD-AAE [20] DANN [11] MLDG [18] CrossGrad [33] MetaReg [1] AGG Epi-FCR

L,C,S V 63.7 60.6 63.9 67.1 67.7 66.4 67.7 65.5 65.0 65.4 67.1

V,C,S L 58.2 59.7 60.1 62.1 62.6 64.0 61.3 60.0 60.2 60.6 64.3

V,L,S C 79.7 88.1 89.1 92.3 94.4 92.6 94.4 92.0 92.3 93.1 94.1

V,L,C S 61.0 54.9 61.3 59.1 64.4 63.6 65.9 64.7 64.2 65.8 65.9

Ave. 65.7 65.8 68.6 70.2 72.3 71.7 72.3 70.5 70.4 71.2 72.9

Table 2: Cross-dataset object recognition results (accuracy. %) on VLCS benchmark. Best in bold.

train our network using the M-SGD optimizer (batch size/per

domain=32, lr=1e-3, momentum=0.9, weight decay=5e-5) for

45k iterations when using AlexNet and train our network using

the same optimizer (weight decay=1e-4) for ResNet-18. We

use λ1=2.0, λ2=0.05, and λ3=0.1 for both settings. We use the

official PACS protocol and split [17] and rerun MetaReg [1]

on this split, since MetaReg did not release their protocol.

Results From the AlexNet results in Table 3, we can see

that: (i) Our episodic method obtained the best performance

on held out domains C and S and comparable performance

on A, P domains. (ii) It also achieves the best performance

overall, with 3.3% improvement on vanilla AGG, and at least

1.7% improvement on prior state-of-the-art methods MLDG

[18], Fusion [24] and MetaReg [1].

Meanwhile in Table 4, we see that with a modern ResNet-18

architecture, the basic results are improved across the board as

expected. However our full episodic method maintains the best

performance overall, with a 2.4% improvement on AGG.

We note here that when using modern architectures like

[35, 13] for DG tasks we need to be careful with batch

normalization [14]. Batchnorm accumulates statistics of the

training data during training, for use at testing. In DG, the

source and target domains have domain-shift between them,

so different ways of employing batch norm produce different

results. We tried two ways of coping with batch norm, one is

directly using frozen pre-trained ImageNet statistics. Another is

to unfreeze and accumulate statistics from the source domains.

We observed that when training ResNet-18 on PACS with accu-

mulating the statistics from source domains it produced a worse

accuracy than freezing ImageNet statistics (75.7% vs 79.1%).

4.5. Further Analysis and Insights

Ablation Study To understand the contribution of each

component of our model, we perform an ablation study using

PACS-AlexNet shown in Fig. 6a. Episodic training for the

feature extractor, gives a 1.6% boost over the vanilla AGG. In-

cluding episodic training of the classifier, further improves 0.5%.

Finally, combine all the episodic training components, provides
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Figure 5: Cross-domain test accuracy on PACS (AlexNet) with shared

feature extractor or classifier. A7→C means, feed A data through

C-specific module. Eg, left: xA 7→θ 7→ψC , right: xA 7→θC 7→ψ.

3.3% improvement over vanilla AGG. This confirms that each

component of our model contributes to final performance.

Cross-Domain Testing Analysis To understand how our

Epi-FCR method obtains its improved robustness to domain

shift, we study its impact on cross-domain testing. Recall

that when we activate the episodic training of the agnostic

feature extractor and classifier, we benefit from the domain

specific branches by routing domain i data across domain j

branches. E.g., we feed: xi 7→θ 7→ψj 7→yi to train Eq. 3, and

xi 7→θj 7→ψ 7→yi to train Eq. 4.

Therefore it is natural to evaluate cross-domain testing after

training the models. As illustrated in Fig. 5, we can see that the

episodic training strategy indeed improves cross-domain testing

performance. For example, when we feed domain A data to

domain C classifier xA 7→θ 7→ψC 7→yA, the Episodic-trained

agnostic extractor θ improves the performance of the domain-C

classifier who has never experienced domain A data (Fig. 5,

left); and similarly for the Episodic-trained agnostic classifier.

Analysis of Solution Robustness In the above experiments

we confirmed that our episodic model outperforms the strong

AGG baseline in a variety of benchmarks, and that each

component of our framework contributes. In terms of analysing

the mechanism by which episodic training improves robustness

to domain shift, one possible route is through leading the model

to find a higher quality minima. Several studies recently have

analysed learning algorithm variants in terms of the quality of

the minima that they leads a model to [15, 5].
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Source Target DICA [27] D-MTAE [12] DSN [4] TF-CNN [17] Fusion [24] DANN [11] MLDG [18] CrossGrad [33] MetaReg [1] AGG Epi-FCR

C,P,S A 64.6 60.3 61.1 62.9 64.1 63.2 66.2 61.0 63.5 63.4 64.7

A,P,S C 64.5 58.7 66.5 67.0 66.8 67.5 66.9 67.2 69.5 66.1 72.3

A,C,S P 91.8 91.1 83.3 89.5 90.2 88.1 88.0 87.6 87.4 88.5 86.1

A,C,P S 51.1 47.9 58.6 57.5 60.1 57.0 59.0 55.9 59.1 56.6 65.0

Ave. 68.0 64.5 67.4 69.2 70.3 69.0 70.0 67.9 69.9 68.7 72.0

Table 3: Cross-domain object recognition results (accuracy. %) of different methods on PACS using pretrained AlexNet. Best in bold.

Source Target AGG DANN [11] MAML [9] MLDG [18] CrossGrad [33] MetaReg [1] Epi-FCR

C,P,S A 77.6 81.3 78.3 79.5 78.7 79.5 82.1

A,P,S C 73.9 73.8 76.5 77.3 73.3 75.4 77.0

A,C,S P 94.4 94.0 95.1 94.3 94.0 94.3 93.9

A,C,P S 70.3 74.3 72.6 71.5 65.1 72.2 73.0

Ave. 79.1 80.8 80.6 80.7 77.8 80.4 81.5

Table 4: Cross-domain object recognition results (accuracy. %) of

different methods on PACS using ResNet-18. Best in bold.

One intuition is that converging to a ‘wide’ rather than ‘sharp’

minima provides a more robust solution, because perturbations

(such as domain shift, in our case) are less likely to cause a

big hit to accuracy if the model’s performance is not dependent

on a very precisely calibrated solution. Following [15, 41],

we therefore compare the solutions found by AGG and our

Epi-FCR by adding noise to the weights of the converged model,

and observing how quickly the testing accuracy decreases with

the magnitude of the noise. From Fig. 7 we can see that both

models’ performance drops as weights are perturbed, but our

Epi-FCR model is more robust to weight perturbations. This

suggests that the minima found by Epi-FCR is a more robust

one than that found by AGG, which may explain the improved

cross domain robustness of Epi-FCR compared to AGG.

Computational Cost Our Episodic model is comparable in

cost overall to many contemporaries. Our Epi-C variant does re-

quire training multiple feature extractors for the source domains

(as do [16, 39, 17, 24]). However, users are more practically in-

terested in testing performance, where our model is as small, fast

and simple as AGG (unlike, e.g., [39, 24]). In terms of training

requirements, we note that only the Epi-C variant requires multi-

ple feature extractor training, so Epi-FR can still safely be used if

this is an issue. Furthermore if a large number of source domains

are present, we can sample a subset of them at each batch.

Concretely, we compare the training time of different

methods in Fig. 6b. All the methods were run on PACS

(ResNet-18) for 3k iterations with CPU: Intel i7-7820

(@3.60GHz x 16) and GPU: 1080Ti. As expected vanilla AGG

is the fastest to train (9.8 mins), so we regard it as the the base

unit. The second tier are our Epi-F and Epi-R. As expected

without Epi-C, our Epi-F and Epi-R variants run fast. The

next tier are MetaReg, Epi-FCR and MLDG. And the most

expensive one is CrossGrad. Although the use of ‘Epi-C’ here

requires domain-specific feature extractors, our Epi-FCR is still

comparably efficient. This is because our episodic training does

not generate multi-step graph unrolling or meta-optimization

in gradient updates. As a result, our time cost is on par with

MetaReg [1] and faster than MLDG [18] and CrossGrad [33].
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Figure 6: (a) Ablation study on PACS (↑). (b) Computational cost

comparison on PACS (↓).

4.6. Evaluation on VD-DG dataset

Heterogeneous Problem Setting Visual Decathlon contains

ten datasets and was initially proposed as a multi-domain learn-

ing benchmark [29]. We re-purpose Decathlon for a more am-

bitious challenge of domain generalisation. As explained earlier,

our motivation is find out if DG learning can improve the defacto

standard ‘ImageNet trained CNN feature extractor’ for use as a

fixed off-the-shelf representation for new target problems. In this

case the feature extractor is trained on the source domain, and

used to extract features of the target domain data. Then a target

domain-specific classifier (we use SVM) is trained to classify in

the target domain. As explained in Table 5 (left), this is quite dif-

ferent from the standard DG setting in that target domain labels

are used (for shallow classifier training), but the focus here is on

the robustness of the learned feature when generalising to repre-

sent new domains and tasks without further fine-tuning. If DG

training can improve feature generalisation compared to a vanilla

ImageNet CNN, this could be of major practical value given the

widespread usage of this workflow by vision practitioners.

Besides evaluating a potentially more generally useful prob-

lem setting compared to standard homogeneous DG, our VD

experiment is also a larger scale evaluation compared to existing

DG studies. As shown in Table 5 (right), VD-DG has twice

the domains of VLCS and PACS and is an order of magnitude

larger evaluation in terms of data and category numbers.

Settings We consider five larger datasets in VD (CIFAR-100,

Daimler Ped, GTSRB, Omniglot and SVHN) as our source

domains, and the four smallest datasets (Aircraft, D. Textures,

VGG-Flowers and UCF101) as our target domains. The goal is

to use DG training among the source datasets to learn a feature

which outperforms the off-the-shelf ImageNet-trained CNN

that we use as an initial condition. We use ResNet-18 [13]

as the backbone model, and resize all images to 64×64 for

computational efficiency. To support the VD heterogeneous

label space, we assume a shared feature extractor, and a source
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Figure 7: Minima quality analysis: Episodic training (Epi-FCR) vs baseline (AGG).

Setting
Updated in Target Domain?

Novel Target Labels?
Feature Extractor Classifier

Homogeneous DG N N N

Heterogeneous DG N Y Y

Benchmark # of data # of Domains # of tasks task space

VLCS 10,729 4 5 Homo.

PACS 9,991 4 7 Homo.

VD-DG 238,215 9 2128 Hetero.

Table 5: Left: Difference between conventional homogeneous DG setting and new heterogeneous DG setting. Right: Contrasting the larger scale

of our VD-DG (excluding ImageNet) vs previous DG benchmarks.

Target ImageNet PT
MLDG [18] CrossGrad [33] AGG DANN [11] Epi-R

Concat Mean Combine Concat Mean Combine Concat Mean Combine Concat Mean Combine Concat Mean Combine

Aircraft 12.7 17.4 14.2 15.7 17.2 13.7 15.9 17.4 14.6 15.7 17.4 15.0 16.0 17.7 13.9 15.5

D. Textures 35.2 38.3 34.6 32.5 34.6 31.4 32.2 37.7 35.1 31.5 37.9 36.6 33.0 40.2 37.8 33.9

VGG-Flowers 48.1 54.0 53.2 54.4 49.2 49.3 54.9 56.3 52.0 57.0 55.5 52.2 53.7 55.4 53.0 55.9

UCF101 35.0 44.4 36.7 34.9 42.7 35.7 35.2 43.3 35.0 36.1 44.5 36.1 33.9 45.7 37.1 37.3

Ave. 32.8 38.5 34.7 34.4 35.9 32.5 34.6 38.7 34.2 35.1 38.8 35.0 34.1 39.7 35.5 35.7

VD-Score 185 279 194 169 241 169 169 265 185 172 277 202 165 304 217 194

Table 6: Results of top-1 accuracy (%) and visual decathlon overall scores of different methods on VD-DG. Train on CIFAR-100, Daimler Ped,

GTSRB, Omniglot, SVHN, and optionally ImageNet (Combine). Test on Aircraft, D. Textures, VGG-Flowers, UCF101.

domain-specific classifier. We perform episodic DG training

among the source domains, using our (R)andom classifier

model variant, which supports heterogeneous label-spaces.

After DG training, the model will then be used as a fixed feature

extractor for the held out target domains. With regards to use

of ImageNet during training, we consider two settings: (i) Use

ImageNet CNN as initial condition, but exclude ImageNet

data from DG training, (ii) Include ImageNet as a sixth source

domain for DG training. The former helps to constrain training

cost, but loses some performance due to the forgetting effect.

Therefore we combine (concatenation and mean-pooling) the

original ImageNet pre-trained features with the VD-DG trained

features. In each case the final feature is used to train a linear

SVM for the corresponding task, as per common practice. We

train the network using the M-SGD optimizer (batch size/per

domain=32, lr=1e-3, momentum=0.9, weight decay=1e-4) for

100k iterations where the lr is decayed in 40k, 80k iterations

by a factor 10. We set λ3=
2.5
t+50 , t is the iteration num.

Results From the results in Table 6, we observed that:

(i) All methods use the extra data in VD to improve on the

initial features (‘ImageNet PT’). (ii) In terms of other DG

competitors: Only MLDG, CrossGrad, and DANN were

feasible to run on the scale of VD; with others either not

supporting heterogeneous label-spaces or scaling to this many

domains/examples. (iii) Our Epi-R improves on the strong

AGG baseline and DG competitors in both average accuracy,

and also the VD score recommended in preference to accuracy

in [29]. This demonstrates the value of our Episodic training

in learning a feature that is robust to novel domains. (iv) Our

concatenation strategy provided the best overall performance

compared to directly including ImageNet as a source domain

(‘Combine’). This partly due to using a fixed 100k iterations to

constrain training time. With enough training, the latter option

is likely to be best. Overall this is the first demonstration that

any DG method can improve robustness to domain shift in a

larger-scale setting, across heterogeneous domains, and make a

practical impact in surpassing ImageNet feature performance4.

5. Conclusion

We addressed the domain generalisation problem by propos-

ing a simple episodic training strategy that mimics train-test

domain-shift during training, thus improving the trained model’s

robustness to novel domains. We showed that our method

achieves state-of-the-art performance on all the main existing

DG benchmarks. We also performed the largest DG evaluation

to date, using the Visual Decathlon benchmark. Importantly, we

provided the first demonstration of DG’s potential value ‘in the

wild’ – by demonstrating our model’s potential to improve the

performance of the defacto standard ImageNet pre-trained CNN

as a fixed feature extractor for novel downstream problems.

4We note one concurrent study of the heterogeneous DG setting [21]

considered the VD-DG benchmark that we propose here. Their results are

slightly higher due do use of a larger image size and cross-validation of SVM

parameters (we use sklearn defaults).
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