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Abstract

This paper proposes the Global-Local Temporal Repre-

sentation (GLTR) to exploit the multi-scale temporal cues

in video sequences for video person Re-Identification (ReI-

D). GLTR is constructed by first modeling the short-term

temporal cues among adjacent frames, then capturing the

long-term relations among inconsecutive frames. Specif-

ically, the short-term temporal cues are modeled by par-

allel dilated convolutions with different temporal dilation

rates to represent the motion and appearance of pedestri-

an. The long-term relations are captured by a temporal

self-attention model to alleviate the occlusions and noises

in video sequences. The short and long-term temporal cues

are aggregated as the final GLTR by a simple single-stream

CNN. GLTR shows substantial superiority to existing fea-

tures learned with body part cues or metric learning on four

widely-used video ReID datasets. For instance, it achieves

Rank-1 Accuracy of 87.02% on MARS dataset without re-

ranking, better than current state-of-the art.

1. Introduction

Person Re-Identification aims to identify a probe person

in a camera network by matching his/her images or video

sequences and has many real applications, including smart

surveillance and criminal investigation. Image person ReI-

D has achieved significant progresses in terms of both so-

lutions [38, 20, 24] and large benchmark dataset construc-

tion [23, 57, 44]. Recently, video person ReID, the interest

of this paper, has been attracting a lot of attention because

the availability of video data is easier than before, and video

data provides richer information than image data. Being

able to explore plenty of spatial and temporal cues, video

person ReID has potentials to address some challenges in

image person ReID, e.g., distinguishing different persons

wearing visually similar clothes.

The key focus of existing studies for video person ReID

lies on the exploitation of temporal cues. Existing work-

s can be divided into three categories according to their

ways of temporal feature learning: (i) extracting dynamic
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Figure 1. Illustrations of two video sequences from two different

pedestrians with similar appearance on MARS dataset (we cover

the face for privacy purpose). Local temporal cues among adja-

cent frames, e.g., motion pattern or speed helps to differentiate

those two pedestrians. The global contextual cues among adjacent

frames can be applied to spot occlusions and noises, e.g., occluded

frames show smaller similarity to other frames.

features from additional CNN inputs, e.g., through optical

flow [30, 5]; (ii) extracting spatial-temporal features by re-

garding videos as 3-dimensional data, e.g., through 3D C-

NN [27, 19]. (iii) learning robust person representations by

temporally aggregating frame-level features, e.g., through

Recurrent Neural Networks (RNN) [50, 30, 5], and tempo-

ral pooling or weight learning [26, 59, 22];

The third category, which our work belongs to, is cur-

rently dominant in video person ReID. The third catego-

ry exhibits two advantages: (i) person representation tech-

niques developed for image ReID can be easily explored

compared to the first category; (ii) it avoids the estimation

of optical flows, which is still not reliable enough due to

misalignment errors between adjacent frames. Current s-

tudies have significantly boosted the performance on exist-

ing datasets, however they still show certain limitations in

the aspects of either efficiency or the capability of tempo-

ral cues modeling. For instance, RNN model is compli-

cated to train for long sequence videos. Feature temporal

pooling could not model the order of video frames, which

also conveys critical temporal cues. It is appealing to ex-

plore more efficient and effective way of acquiring spatial-

temporal feature through end-to-end CNN learning.

This work targets to learn a discriminative Global-Local
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Temporal Representation (GLTR) from a sequence of frame

features by embedding both short and long-term temporal

cues. As shown in Fig. 1, the short-term temporal cue a-

mong adjacent frames helps to distinguish visually similar

pedestrians. The long-term temporal cue helps to alleviate

the occlusions and noises in video sequences. Dilated spa-

tial pyramid convolution [4, 51] is commonly used in image

segmentation tasks to exploit the spatial contexts. Inspired

by its strong and efficient spatial context modeling capabil-

ity, this work generalizes the dilated spatial pyramid con-

volution to Dilated Temporal Pyramid (DTP) convolution

for local temporal context learning. To capture the global

temporal cues, a Temporal Self-Attention (TSA) model is

introduced to exploit the contextual relations among incon-

secutive frames. DTP and TSA are applied on frame-level

features to learn the GLTR through end-to-end CNN train-

ing. As shown in our experiments and visualizations, GLTR

presents strong discriminative power and robustness.

We test our approach on a newly proposed Large-Scale

Video dataset for person ReID (LS-VID) and four wide-

ly used video ReID datasets, including PRID [14], iLIDS-

VID [43], MARS [56], and DukeMTMC-VideoReID [47,

34], respectively. Experimental results show that GLTR

achieves consistent performance superiority on those

datasets. It achieves Rank-1 Accuracy of 87.02% on MARS

without re-ranking, 2% better than the recent PBR [39]

that uses extra body part cues for video feature learn-

ing. It achieves Rank-1 Accuracy of 94.48% on PRID and

96.29% on DukeMTMC-VideoReID, which also beat the

ones achieved by current state-of-the art.

GLTR representation is extracted by simple DTP and T-

SA models posted on a sequence of frame features. Al-

though simple and efficient to compute, this solution out-

performs many recent works that use complicated designs

like body part detection and multi-stream CNNs. To our

best knowledge, this is an early effort that jointly leverages

dilated convolution and self-attention for multi-scale tem-

poral feature learning in video person ReID.

2. Related Work

Existing person ReID works can be summarized into im-

age based ReID [43, 38, 31, 49, 55] and video based ReI-

D [56, 35, 39, 19], respectively. This part briefly reviews

four categories of temporal feature learning in video person

ReID, which are closely related with this work.

Temporal pooling is widely used to aggregate features

across all time stamps. Zheng et al. [56] apply max and

mean pooling to get the video feature. Li et al. [22] uti-

lize part cues and learn a weighting strategy to fuse features

extracted from video frames. Suh et al. [39] propose a two-

stream architecture to jointly learn the appearance feature

and part feature, and fuse the image level features through

a pooling strategy. Average pooling is also used in recen-

t works [21, 47], which apply unsupervised learning for

video person ReID. Temporal pooling exhibits promising

efficiency, but extracts frame features independently and ig-

nores the temporal orders among adjacent frames.

Optical flow encodes the short-term motion between ad-

jacent frames. Many works utilize optical flow to learn tem-

poral features [36, 8, 5]. Simonyan et al. [36] introduce a

two-stream network to learn spatial feature and temporal

feature from stacked optical flows. Feichtenhofer et al. [7]

leverage optical flow to learn spatial-temporal features, and

evaluate different types of motion interactions between t-

wo streams. Chung et al. [5] introduce a two stream ar-

chitecture for appearance and optical flow, and investigate

the weighting strategy for those two streams. Mclaughlin

et al. [30] introduce optical flow and RNN to exploit long

and short term temporal cues. One potential issue of optical

flow is its sensitive to spatial misalignment errors, which

commonly exist between adjacent person bounding boxes.

Recurrent Neural Network (RNN) is also adopted for

video feature learning in video person ReID. Mclaughlin

et al. [30] first extract image level features, then introduce

RNN to model temporal cues cross frames. The outputs of

RNN are then combined through temporal pooling as the

final video feature. Liu et al. [29] propose a recurrent ar-

chitecture to aggregate the frame-level representations and

yield a sequence-level human feature representation. RNN

introduces a certain number of fully-connected layers and

gates for temporal cue modeling, making it complicated and

difficult to train.

3D convolution directly extracts spatial-temporal fea-

tures through end-to-end CNN training. Recently, deep 3D

CNN is introduced for video representation learning. Tran

et al. [41] propose C3D networks for spatial-temporal fea-

ture learning. Qiu et al. [32] factorize the 3D convolutional

filters into spatial and temporal components, which yield

performance gains. Li et al. [19] build a compact Multi-

scale 3D (M3D) convolution network to learn multi-scale

temporal cues. Although 3D CNN has exhibited promis-

ing performance, it is still sensitive to spatial misalignments

and needs to stack a certain number of 3D convolutional k-

ernels, resulting in large parameter overheads and increased

difficult for CNN optimization.

This paper learns GLTR through posting DTP and TSA

modules on frame features. Compared with existing tempo-

ral pooling strategies, our approach jointly captures global

and local temporal cues, hence exhibits stronger temporal

cue modeling capability. It is easier to optimize than RNN

and presents better robustness to misalignment errors than

optical flow. Compared with 3D CNN, our model has a

more simple architecture and could easily leverage repre-

sentations developed for image person ReID. As shown in

our experiments, our approach outperforms the recent 3D

CNN model M3D [19] and the recurrent model STMP [29].
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Figure 2. Illustration of our frame feature aggregation subnetwork for GLTR extraction, which consists of Dilated Temporal Pyramid (DTP)

convolution for local temporal context learning and Temporal Self-Attention (TSA) model to exploit the global temporal cues.

3. Proposed Methods

3.1. Formulation

Video person ReID aims to identify a gallery video that

is about the same person with a query video from a gallery

set containing K videos. A gallery video is denoted by

Gk = {Ik1 , I
k
2 , ..., I

k
Tk} with k ∈ {1, 2, ...,K}, and the

query video is denoted by Q = {Iq1 , I
q
2 , ..., I

q
T q}, where T k

(T q) denotes the number of frames in the sequence and Ikt
(Iqt ) is the t-th frame. A gallery video G will be identified as

true positive, if it has the closest distance to the query based

on a video representation, i.e.,

G = argmin
k

dist(fG
k

, fQ), (1)

where f
G

k

and f
Q are the representations of the gallery

video Gk and the query video Q, respectively.

Our approach consists of two subnetworks to learn a dis-

criminative video representation f , i.e., image feature ex-

traction subnetwork and frame feature aggregation subnet-

work, respectively. The first subnetwork extracts features of

T frames, i.e., F = {f1, f2, . . . , fT }, where ft ∈ Rd. The

second subnetwork aggregates the T frame features into a

single video representation vector. We illustrate the second

subnetwork, which is the focus of this work in Fig. 2. We

briefly demonstrate the computation of DTP and TSA in the

following paragraphs.

The DTP is designed to capture the local temporal cues

among adjacent frames. As shown in Fig. 2, DTP takes

frame features in F as input and outputs the updated frame

feature F ′ = {f ′
1, f

′
2, . . . , f

′
T }. Each f ′

t ∈ F ′ is computed

by aggregating its adjacent frame features, i.e.,

f ′
t = MDTP (ft−i, ..., ft+i), (2)

where MDTP denotes the DTP model, and f ′
t is computed

from 2× i adjacent frames.

The TSA model exploits the relation among incon-

secutive frames to capture the global temporal cues. It

takes F ′ as input and outputs the temporal feature F ′′ =
{f ′′

1 , f
′′
2 , . . . , f

′′
T }. Each f ′′

t ∈ F ′′ is computed by consider-

ing the contextual relations among features inside F ′, i.e.,

f ′′
t = MTSA(F

′, f ′
t), (3)

where MTSA is the TSA model.

Each f ′′
t aggregates both local and global temporal cues.

We finally apply average pooling on F ′′ to generate the

fixed length GLTR f for video person ReID, i.e.,

f =
1

T

T∑

t=1

f ′′
t . (4)

Average pooling is also commonly applied in RNN [30] and

3DCNN [19] to generate fixed-length video feature. The

global and local temporal cues embedded in each f ′′
t guar-

antee the strong discriminative power and robustness of f .

The following parts introduce the design of DTP and TSA.

3.2. Dilated Temporal Pyramid Convolution

Dilated Temporal Convolution: Dilated spatial convolu-

tion has been widely used in image segmentation for its ef-

ficient spatial context modeling capability [52]. Inspired by

dilated spatial convolution, we implement dilated temporal

convolution for local temporal feature learning. Suppose

the W ∈ Rd×w is a convolutional kernel with temporal

width w. With input frame features F = {f1, f2, . . . , fT },

the output F (r) of dilated convolution with dilation rate r
can be defined as,

F (r) = { f
(r)
1 , f

(r)
2 , ..., f

(r)
T },

f
(r)
t =

w∑

i=1

f[t+r·i] ×W
(r)
[i] , f

(r)
t ∈ Rd,

(5)

where F (r) is the collection of output features containing

f
(r)
t . W (r) denotes dilated convolution with dilation rate r.

The dilation rate r indicates the temporal stride for sam-

pling frame features. It decides the temporal scales cov-

ered by dilated temporal convolution. For instance, with
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Figure 3. Visualization of F , F ′, F ′′, M and f computed on a

tracklet with occlusions. Dimensionality of F , F ′, F ′′ is reduced

to 1 × T by PCA for visualization. It is clear that, occlusion af-

fects the baseline feature F , i.e., feature substantially changes as

occlusion happens. DTP and TSA progressively alleviate the oc-

clusions, i.e., features of occluded frames in F
′ and F

′′ appear

similar to the others. f∗ is generated after manually removing oc-

cluded frames. f is quite close to f∗, indicating the strong robust-

ness of GLTR to occlusion.

r = 2, w = 3, each output feature corresponds to a tem-

poral range of five adjacent frames. Standard convolution

can be regarded as a special case with r = 1, which covers

three adjacent frames. Compared with standard convolu-

tion, dilated temporal convolution with r ≥ 2 has the same

number of parameters to learn, but enlarges the receptive

field of neurons without reducing the temporal resolution.

This property makes dilated temporal convolution an effi-

cient strategy for multi-scale temporal feature learning.

Dilated Temporal Pyramid Convolution: Dilated tempo-

ral convolutions with different dilation rates model temporal

cues at different scales. We hence use parallel dilated con-

volutions to build the DTP convolution to enhance its local

temporal cues modeling ability.

As illustrated in Fig. 2, DTP convolution consists of N
parallel dilated convolutions with dilation rates increasing

progressively to cover various temporal ranges. For n-th

dilated temporal convolution, we set its dilation rate rn as

rn = 2n−1 to efficiently enlarge the temporal receptive

fields. We concatenate the outputs from N branches as the

updated temporal feature F ′, i.e., we compute f ′
t ∈ F ′ as

f ′
t = concat(f

(r1)
t , f

(r2)
t , ..., f

(rN )
t ), f ′

t ∈ RNd, (6)

where ri is the dilation rate of i-th dilated temporal convo-

lutions.

3.3. Temporal Self Attention

Self-Attention: The self-attention module is recently used

to learn the long-range spatial dependencies in image seg-

mentation [10, 15, 53], action recognition [42] and image

person ReID [16, 1]. Inspired by its promising performance

in spatial context modeling, we generalize self-attention to

to capture the contextual temporal relations among incon-

secutive frames.

Temporal Self-Attention: The basic idea of TSA is to

compute an T × T sized attention mask M to store the con-

textual relations among all frame features. As illustrated

in Fig. 2, given the input F ′ ∈ R Nd×T , TSA first ap-

plies two convolution layers followed by Batch Normaliza-

tion and ReLU to generate feature maps B and C with size

(Nd/α)× T , respectively. Then, it performs a matrix mul-

tiplication between C and the transpose of B, resulting in a

T × T sized temporal attention mask M.

M is applied to update the F ′ to embed extra global tem-

poral cues. F ′ is fed into a convolution layer to generate a

new feature map F̄ ′ with size (Nd/α) × T . F̄ ′ is hence

multiplied by M and is fed into a convolution layer to re-

cover its size to Nd×T . The resulting feature map is fused

with the original F ′ by residual connection, leading to the

updated temporal feature F ′′. The computation of TSA can

be denoted as

F ′′ = W ∗ (F̄ ′ · M) + F ′,F ′′ ∈ RNd×T , (7)

where W denotes the last convolutional kernel. W is ini-

tialized as 0 to simplify the optimization of residual con-

nection. α controls the parameter size in TSA. We experi-

mentally set α as 2. F ′′ is processed with average pooling

to generate the final GLTR f ∈ RNd.

We visualize the F , F ′, F ′′, M, and f computed on a

tracklet with occlusion in Fig. 3. DTP reasonably alleviates

occlusion by applying convolutions to adjacent features. T-

SA alleviates occlusion mainly by computing the attention

mask M, which stores the global contextual relations as

shown in Fig. 3. With M, average pooling on F ′′ can be

conceptually expressed as:

T∑

t=1

F ′′(:, t)
.
=

T∑

t=1

F ′(:, t)× m(t) +
T∑

t=1

F ′(:, t), (8)

where m =
∑T

t=1 M(:, t) is a T -dim weighting vector.

Note that, Eq. (8) omits the convolutions before and after

F̄ ′ to simplify the expression. m is visualized in Fig. 3,

where occluded frames presents lower weights, indicating

their features are depressed during average pooling. Com-

bining DTP and TSA, GLTR presents strong robustness.

4. Experiment

4.1. Dataset

We test our methods on four widely used video ReID

datasets, and a novel large-scale dataset. Example images

are depicted in Fig. 5 and statistics are given in Table 1.

PRID-2011 [14]. There are 400 sequences of 200 pedestri-

ans captured by two cameras. Each sequence has a length

between 5 and 675 frames.

iLIDS-VID [43]. There are 600 sequences of 300 pedestri-

ans from two cameras. Each sequence has a variable length
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Table 1. The statistics of our LS-VID dataset and other video person ReID datasets.

dataset #identity #sequence #boxes #frame #indoor cam. #outdoor cam. detector val. set evaluation

DukeMTMC 1,404 4,832 815,420 168 0 8 Hand × CMC + mAP

MARS 1,261 20,715 1,067,516 58 0 6 DPM × CMC + mAP

PRID 200 400 40,033 100 0 2 Hand × CMC

iLIDS-VID 300 600 42,460 73 2 0 Hand × CMC

LS-VID 3,772 14,943 2,982,685 200 3 12 Faster R-CNN X CMC + mAP
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Figure 4. Some statistics on LS-VID dataset: (a) the number of

sequences with different length; (b) the number of sequences in

each of the 15 cameras; (c) the number of identities with different

sequence number; (d) the ReID performance with different testing

sequence length.

between 23 and 192 frames. Following the implementa-

tion in previous works [43, 22], we randomly split this two

datasets into train/test identities. This procedure is repeated

10 times for computing averaged accuracies.

MARS [56]. This dataset is captured by 6 cameras. It con-

sists of 17,503 sequences of 1,261 identities and 3,248 dis-

tractor sequences. It is split into 625 identities for training

and 636 identities for testing. The bounding boxes are de-

tected with DPM detector [9], and tracked using the GMM-

CP tracker [6]. we follow the protocol of MARS and report

the Rank1 accuracy and mean Average Precision (mAP).

DukeMTMC-VideoReID [47, 34]. There are 702 identi-

ties for training, 702 identities for testing, and 408 identi-

ties as distractors. The training set contains 369,656 frames

of 2,196 tracklets, and test set contains 445,764 frames of

2,636 tracklets.

LS-VID. Besides the above four datasets, we collect a novel

Large-Scale Video dataset for person ReID (LS-VID).

Raw video capture: We utilize a 15-camera network and

select 4 days for data recording. For each day, 3 hours of

P
R

ID
iL

ID
S

M
A

R
S

D
u

ke
LS

-V
ID

lighting changes

scene changes

background changes

Figure 5. Frames evenly sampled from person tracklets. Each row

shows two sequences of the same person under different cameras.

Compared with existing datasets, LS-VID presents more substan-

tial variations of lighting, scene, and background, etc. We cover

the face in for privacy purpose.

videos are taken in the morning, noon, and afternoon, re-

spectively. Our final raw video contains 180 hours videos,

12 outdoor cameras, 3 indoor cameras, and 12 time slots.

Detection and tracking: Faster RCNN [33] is utilized for

pedestrian detection. After that, we design a feature match-

ing strategy to track each detected pedestrian in each cam-

era. After discarding some sequences with too short length,

we finally collect 14,943 sequences of 3,772 pedestrians,

and the average sequence length is 200 frames.

Characteristics: Example sequences in LS-VID are

shown in Fig. 5, and statistics are given in Table 1

and Fig. 4. LS-VID shows the following new features:

(1)Longer sequences. (2) More accurate pedestrian track-

lets. (3) Currently the largest video ReID dataset. (4) Define

a more realistic and challenging ReID task.

Evaluation protocol: Because of the expensive data an-

notation, we randomly divide our dataset into training set

and test set with 1:3 ratio to encourage more efficient train-
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datasets with different numbers of branches, i.e., parameter N .

ing strategies. We further divide a small validation set. Fi-

nally, the training set contains 550,419 bounding boxes of

842 identities, the validation set contains 155,191 bounding

boxes of 200 identities, and the test set contains 2,277,075

bounding boxes of 2,730 identities. Similar to existing

video ReID datasets [56, 47], LS-VID utilizes the Cumu-

lated Matching Characteristics (CMC) curve and mean Av-

erage Precision (mAP) as evaluation metric.

4.2. Implementation Details

We employ standard ResNet50 [12] as the backbone for

frame feature extraction. All models are trained and fine-

tuned with PyTorch. Stochastic Gradient Descent (SGD) is

used to optimize our model. Input images are resized to

256×128. The mean value is subtracted from each (B, G,

and R) channel. For 2D CNN training, each batch contains

128 images. The initial learning rate is set as 0.01, and is

reduced ten times after 10 epoches. The training is finished

after 20 epoches. For DTP and TSA training, we sample

16 adjacent frames from each sequence as input for each

training epoch. The batch size is set as 10. The initial learn-

ing rate is set as 0.01, and is reduced ten times after 120

epoches. The training is finished after 400 epoches. All

models are trained with only softmax loss.

During testing, we use 2D CNN to extract a d=128-dim

feature from each video frame, then fuse frame features in-

to GLTR using the network illustrated in Fig. 2. The video

feature is finally used for person ReID with Euclidean dis-

tance. All of our experiments are implemented with GTX

TITAN X GPU, Intel i7 CPU, and 128GB memory.

4.3. Ablation Study

Comparison of DTP and other local temporal cues

learning strategies: Besides DTP, we also implement the

following strategies to learn temporal cues among adjacent

frames: (i) pyramid temporal convolution without dilation,

and (ii) temporal pyramid pooling [54]. As explained in

Sec. 3.2, the dilation rate of i-th pyramid branch in DTP is

ri = 2i−1. To make a fair comparison, we set three methods

have the same number of branches, where each has the same

size of receptive field. For instance, we set the convolution

kernel size as d × 9 for the 3-rd branch of pyramid tempo-

Table 2. Performance of individual components in GLTR.

Dataset LS-VID MARS DukeMTMC PRID iLIDS

Method mAP rank1 mAP rank1 mAP rank1 rank1 rank1

baseline 30.72 46.18 65.45 78.43 82.08 86.47 83.15 62.67

DTP 41.78 59.92 75.90 85.74 89.98 93.02 93.26 84.00

TSA 40.01 58.73 75.62 85.40 89.26 92.74 92.14 83.33

GLTR 44.32 63.07 78.47 87.02 93.74 96.29 95.50 86.00

Table 3. Performance of GLTR with different backbones on LS-

VID test set.

method backbone mAP rank1 rank5 rank10 rank20

baseline

Alexnet [17] 15.98 24.23 43.52 53.45 62.13

Inception [40] 22.77 35.70 55.88 64.89 73.12

ResNet50 [12] 30.72 46.18 67.41 74.71 82.33

GLTR

Alexnet [17] 22.57 35.45 56.59 66.01 75.06

Inception [40] 35.75 51.83 71.66 79.19 84.79

ResNet50 [12] 44.43 63.07 77.22 83.81 88.41

ral convolution without dilation. The experiment results on

MARS, DukeMTMC-VideoReID, and the validation set of

LS-VID are summarized in Fig. 6.

Fig. 6 also compares average pooling as the baseline. It

is clear that, three methods perform substantially better than

baseline, indicating that average pooling is not effective in

capturing the temporal cues among frame features. With

N=1, the three methods perform equally, i.e., apply a d× 3
sized convolution kernel to frame feature F . As we increase

N , the performances of three algorithms are boosted. This

means that introducing multiple convolution scales benefits

the learned temporal feature.

It is also clear that, DTP consistently outperforms the

other two strategies on three datasets. The reason may be

because the temporal pyramid pooling loses certain tempo-

ral cues as it down-samples the temporal resolution. The

traditional temporal convolution introduces too many pa-

rameters, leading to difficult optimization. The dilated con-

volutions in DTP efficiently enlarge the temporal respective

fields hence performs better for local temporal feature learn-

ing. With N ≥ 3, the performance boost slows down for

DTP. Further introducing more branches increases the size

of parameters and causes more difficult optimization. We

select N = 3 for DTP in the following experiments.

Validity of combining DTP and TSA: This part proceeds

to evaluate that combining DTP and TSA results in the best

video feature. We compare several variants of our method-

s and summarize the results on four datasets and the test

set of LS-VID in Table 2. In the table, “baseline” denotes

the ResNet50 + average pooling. “DTP” and “TSA” denote

aggregating frame feature only with DTP or TSA, respec-

tively. “GLTR” combines DTP and TSA.

Table 2 shows that either DTP or TSA performs substan-

tially better than the baseline, indicating modeling extra lo-

cal and global temporal cues results in better video feature.

DTP model achieves rank1 accuracy of 85.74% on MARS
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Table 4. Comparison with recent works on LS-VID test set.

Method mAP rank1 rank5 rank10 rank20

ResNet50 [12] 30.72 46.18 67.41 74.71 82.33

GLAD [45] 33.98 49.34 70.15 77.14 83.59

HACNN [24] 36.65 53.93 72.41 80.88 85.27

PBR [39] 37.58 55.34 74.68 81.56 86.16

DRSA [22] 37.77 55.78 74.37 81.06 86.81

Two-stream [36] 32.12 48.23 68.66 75.06 83.56

LSTM [50] 35.92 52.11 72.57 78.91 85.50

I3D [2] 33.86 51.03 70.08 78.08 83.65

P3D [32] 34.96 53.37 71.15 78.08 83.65

STMP [29] 39.14 56.78 76.18 82.02 87.12

M3D [19] 40.07 57.68 76.09 83.35 88.18

GLTR 44.32 63.07 77.22 83.81 88.41

dataset, outperforming the baseline by large margin. Simi-

larly, TSA also performs substantially better than the base-

line. By combining DTP and TSA, the GLTR consistently

achieves the best performance on five datasets. We hence

conclude that, jointly learning local and global temporal

cues results in the best video feature.

Different backbones: We further evaluate the effective-

ness of GLTR with different backbone networks, including

Alexnet [17], Inception [40] and ResNet50 [12]. Experi-

mental results on the test set of LS-VID are summarized in

Table 3. Table 3 shows that, implemented on different back-

bones, GLTR consistently outperforms baselines, indicating

that our methods work well with different frame feature ex-

tractors. GLTR thus could leverage strong image represen-

tations and serve as a general solution for video person ReI-

D. Since ResNet50 achieves best performance in Table 3,

we adopt ResNet50 in the following experiments.

4.4. Comparison With Recent Works

LS-VID: This section compares several recent methods

with our approach on LS-VID test set. To make a com-

parison on LS-VID, we implement several recent work-

s with code provided by their authors, including temporal

feature learning methods for person reid: M3D [19] and

STMP [29], other temporal feature learning methods: two-

stream CNN with appearance and optical flow [36], LST-

M [50], 3D convolution: I3D [2] and P3D [32], as well

as recent person ReID works: GLAD [45], HACNN [24],

PBR [39] and DRSA [22], respectively. Video features

of GLAD [45] and HACNN [24] are extracted by average

pooling. We repeat PBR [39] and DRSA [22] by referring

to their implantations on MARS. Table 4 summarizes the

comparison.

Table 4 shows that, GLAD [45] and HACNN [24] get

promising performance in image person ReID, but achieve

lower performance than temporal feature learning strate-

gies, e.g., M3D [19] and STMP [29]. This indicates the

importance of learning temporal cues in video person ReID.

Among those compared temporal feature learning methods,

Table 5. Comparison with recent works on MARS.
Method mAP rank1 rank5 rank20

BoW+kissme [56] 15.50 30.60 46.20 59.20

IDE+XQDA [56] 47.60 65.30 82.00 89.00

SeeForest [59] 50.70 70.60 90.00 97.60

QAN [28] 51.70 73.70 84.90 91.60

DCF [18] 56.05 71.77 86.57 93.08

TriNet [13] 67.70 79.80 91.36 -

MCA [37] 71.17 77.17 - -

DRSA [22] 65.80 82.30 - -

DuATM [35] 67.73 81.16 92.47 -

MGCAM [37] 71.17 77.17 - -

PBR [39] 75.90 84.70 92.80 95.00

CSA [3] 76.10 86.30 94.70 98.20

STMP [29] 72.70 84.40 93.20 96.30

M3D [19] 74.06 84.39 93.84 97.74

STA [11] 80.80 86.30 95.70 98.10

GLTR 78.47 87.02 95.76 98.23

the recent M3D achieves the best performance. In Table 4,

the proposed GLTR achieves the best performance. It out-

performs the recent video person ReID work STMP [29]

and M3D [19] by large margins, e.g., 6.29% and 5.39% in

rank1 accuracy, respectively.

MARS: Table 5 reports the comparison with recent works

on MARS. GLTR achieves the rank1 accuracy of 87.02%

and mAP of 78.47%, outperforming most of the recen-

t work, e.g., STMP [29], M3D [19] and STA [11] by 2.62%,

2.63%, and 0.72% in rank1 accuracy, respectively. Note

that, STMP [29] introduces a complex recurrent network

and uses part cues and triplet loss. M3D [19] use 3D CNN

to learn the temporal cues, hence requires higher computa-

tional complexity. STA [11] achieves competitive perfor-

mance on MARS dataset, and outperform GLTR on mAP.

Note that, STA introduces multi-branches for part feature

learning and uses triplet loss to promote the performance.

Compared with those works, our method achieves competi-

tive performance with simple design., e.g., we extract global

feature with basic backbone and train only with the softmax

loss. GLTR can be further combined with a re-ranking s-

trategy [58], which further boosts its mAP to 85.54%.

PRID and iLIDS-VID: The comparisons on PRID and

iLIDS-VID datasets are summarized in Table 6. It shows

that, our method presents competitive performance on

rank1 accuracy. M3D [19] also gets competitive perfor-

mance on both datasets. The reason may be because the

M3D jointly learns the multi-scale temporal cues form

video sequences, and introduces a two-stream architecture

to learn the spatial and temporal representations respec-

tively. With a single feature extraction stream design, our

method still outperforms M3D on both datasets. Table 6 al-

so compares with several temporal feature learning method-

s, e.g., RFA-Net [50], SeeForest [59], T-CN [48], CSA [3]

and STMP [29]. Our method outperforms those works by

large margins in rank1 accuracy.

DukeMTMC-VideoReID: Comparisons on this dataset are
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Figure 7. Illustration of person ReID results on LS-VID, MARS and DukeMTMC-VideoReID datasets. Each example shows the top-5

retrieved sequences by baseline method (first tow) and GLTR (second tow), respectively. The true match is annotated by the red dot. We

cover the face for privacy purpose.

Table 6. Comparison with recent works on PRID and iLIDS-VID.
Dataset PRID iLIDS-VID

Method rank1 rank5 rank1 rank5

BoW+XQDA [56] 31.80 58.50 14.00 32.20

IDE+XQDA [56] 77.30 93.50 53.00 81.40

DFCP [25] 51.60 83.10 34.30 63.30

AMOC [26] 83.70 98.30 68.70 94.30

QAN [28] 90.30 98.20 68.00 86.80

DRSA [22] 93.20 - 80.20 -

RCN [30] 70.00 90.00 58.00 84.00

DRCN [46] 69.00 88.40 46.10 76.80

RFA-Net [50] 58.20 85.80 49.30 76.80

SeeForest [59] 79.40 94.40 55.20 86.50

T-CN [48] 81.10 85.00 60.60 83.80

CSA [3] 93.00 99.30 85.40 96.70

STMP [29] 92.70 98.80 84.30 96.80

M3D [19] 94.40 100.00 74.00 94.33

GLTR 95.50 100.00 86.00 98.00

shown in Table 7. Because DukeMTMC-VideoReID is a

recently proposed video ReID dataset, a limited number of

works have reported performance on it. We compare with

ETAP-Net [47] and STA [11] in this section. The report-

ed performance of ETAP-Net [47] in Table 7 is achieved

with a supervised baseline. As shown in Table 7, GLTR

achieves 93.74% mAP and 96.29% rank1 accuracy, outper-

forming ETAP-Net [47] by large margins. The STA [11] al-

so achieves competitive performance on this dataset. GLTR

still outperforms STA [11] on rank1, rank5, and rank20 ac-

curacy, respectively. Note that, STA [11] utilizes extra body

part cues and triplet loss.

Summary: The above comparisons on five datasets could

indicate the advantage of GLTR in video representation

learning for person ReID, i.e., it achieves competitive ac-

curacy with simple and concise model design. We also ob-

serve that, the ReID accuracy on LS-VID is substantially

lower than the ones on the other datasets. For example,

the best rank1 accuracy on LS-VID is 63.07%, substantial-

ly lower than the 87.02% on MARS. This shows that, even

Table 7. Comparison on DukeMTMC-VideoReID.

Method mAP rank1 rank5 rank20

ETAP-Net [47] 78.34 83.62 94.59 97.58

STA [11] 94.90 96.20 99.30 99.60

GLTR 93.74 96.29 99.30 99.71

though LS-VID collects longer sequences to provide more

abundant spatial and visual cues, it still presents a more

challenging person ReID task.

We show some person ReID results achieved by GLTR

and ResNet50 baseline on LS-VID, MARS [56] and

DukeMTMCVideoReID [47, 34] in Fig. 7. For each query,

we show the top5 returned video sequences by those t-

wo methods. It can be observed that, the proposed GLTR

is substantially more discriminative for identifying persons

with similar appearance.

5. Conclusion

This paper proposes the Global Local Temporal Repre-

sentation (GLTR) for video person ReID. Our proposed net-

work consists of the DTP convolution and TSA model, re-

spectively. The DTP consists of parallel dilated temporal

convolutions to model the short-term temporal cues among

adjacent frames. TSA exploits the relation among inconsec-

utive frames to capture global temporal cues. Experimental

results on five benchmark datasets demonstrate the supe-

riority of the proposed GLTR over current state-of-the-art

methods.
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