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Abstract

Effective feature representations which should not only

express the images individual properties, but also reflect

the interaction among group images are essentially cru-

cial for real-world co-segmentation. This paper proposes

a novel end-to-end deep learning approach for group-wise

object co-segmentation with a recurrent network architec-

ture. Specifically, the semantic features extracted from a

pre-trained CNN of each image are first processed by sin-

gle image representation branch to learn the unique proper-

ties. Meanwhile, a specially designed Co-Attention Recur-

rent Unit (CARU) recurrently explores all images to gener-

ate the final group representation by using the co-attention

between images, and simultaneously suppresses noisy infor-

mation. The group feature which contains synergetic infor-

mation is broadcasted to each individual image and fused

with multi-scale fine-resolution features to facilitate the in-

ferring of co-segmentation. Moreover, we propose a group-

wise training objective to utilize the co-object similarity

and figure-ground distinctness as the additional supervi-

sion. The whole modules are collaboratively optimized in

an end-to-end manner, further improving the robustness of

the approach. Comprehensive experiments on three bench-

marks can demonstrate the superiority of our approach in

comparison with the state-of-the-art methods.

1. Introduction

Object co-segmentation aims at discovering and seg-

menting the co-occurring objects from the given set of im-

ages containing the same or similar objects. Unlike the sin-

gle image object segmentation methods which individually

segment image only using the information within one single

image, object co-segmentation methods can further exploit

the synergetic relationship among the multiple relevant im-

ages for higher accuracy. With such property, object co-

segmentation can benefit various computer vision applica-

tions and beyond, such as image matching [4], weakly su-

pervised learning [32], video object segmentation [18], and

3D reconstruction [36].

In order to segment the co-occurring objects accurately,

two issues should be concerned: 1) extract and learn effec-

tive feature representations of images in the group; 2) model

the synergetic relationship among the common objects to

generate the final co-segmentation results. For 1), feature

representation in the co-segmentation task should not only

express the images individual properties, but also reflect the

relevance and interaction between group images. For 2),

the synergetic relationship such as common objects, similar

categories, and related scenes should be fully exploited at

group level. Therefore, the co-segmentation job can apply

the single and the group-wise information to model the in-

teraction between the images so that they mutually facilitate

each other for the final co-segmentation results.

Conventional co-segmentation approaches [6, 9, 20, 21,

22, 24, 28] utilize handcrafted features to represent im-

ages, such as color, texture and SIFT descriptors etc., and

these methods rely on researchers prior knowledge like ob-

jectness and saliency to model the interaction between the

group images. However, low-level features and predefined

prior knowledge are too subjective to face the multiple chal-

lenges including background clutter, appearance variance of

co-object across images, and similarity between co-object

and non-common object, etc. Encouraged by the success

of deep learning in many computer vision tasks, recent re-

searches [12, 19, 33] improve object co-segmentation by

using deep neural network (DNN) to learn visual represen-

tation or segmentation inference module in a data driven

manner. However, as feature extraction and object seg-

mentation are treated as separate steps in these approaches,

the learned features are not tailored for segmenting the co-
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occurring objects, resulting in suboptimal performance. As

mentioned by Han et al. [8], it is hard to design the net-

work architecture for co-segmentation task, since the di-

mension of DNNs input data should usually be constant,

whereas the number of the contained images is not constant

both in training and testing. The very recent works [3, 15]

integrated the process of feature learning as well as co-

segmentation inferring as an organic whole and proposed

end-to-end deep learning methods for co-segmentation. For

designing a feasible network, they simply fixated the num-

ber of input images to two and then segment the co-object

in a pairwise manner. However, seeking co-segment objects

in two images at a time can only utilize the limited relation-

ship between the image pair, which damages the robustness

of co-segmentation when extending beyond pairwise rela-

tions and limits its practical application value. So, how to

design an end-to-end network architecture for group-level

object co-segmentation is still an unsolved challenge.

In this paper, we propose a novel end-to-end deep learn-

ing approach for group-wise object co-segmentation with

a recurrent network architecture. Unlike the previous pair-

wise methods, our aim is to create a robust and effective

co-segmentation network by making use of all available

information including individual image properties and the

group-level synergetic relationships to meet the need for

real-world applications. Specifically, our network first ex-

tracts the semantic features of all images, then the features

are processed by two branches. The single image represen-

tation branch processes each image individually to learn the

unique properties. Meanwhile, the group-wise representa-

tion branch can gradually explore all images in the group

to learn a robust group-wise representation by introducing

the recurrent architecture. The group feature is then broad-

casted to each individual image and fused with single image

feature, which allows the network to sufficiently exploit the

complementarity and interaction of group and single repre-

sentation to facilitate the final co-segmentation reasoning.

Particularly, instead of using conventional recurrent neural

network like LSTM [11] and GRU [5], we specially design

a novel Co-Attention Recurrent Unit (CARU) to handle the

variation of co-object in appearance and the location across

images by using the spatial and channel co-attention be-

tween images. Moreover, to make full use of the interac-

tive relationships of whole images in the training group, we

further propose a group-wise training objective as the addi-

tional supervision in our end-to-end training process.

Our main contributions can be summarized as follows.

1) We make one of the earliest efforts to formulate the ob-

ject co-segmentation in an end-to-end manner. As the first

attempt to introduce the recurrent architecture into deep co-

segmentation, our network can simultaneously segment the

co-occurring objects at group-level. 2)We design a novel

Co-Attention Recurrent Unit to recurrently learn a robust

group feature, which can handle the variation of co-object

in appearance and the location across images and mean-

while suppresses noisy information like irrelevant back-

ground and non-common object. 3) We propose a group-

wise training objective to utilize the co-object similarity and

figure-ground distinctness as the additional supervision. 4)

Comprehensive experiments on three widely used datasets

for object co-segmentation have demonstrated the superior-

ity of the proposed approach as compared to the state-of-

the-art methods.

2. Related Work

The concept of co-segmentation was first introduced by

Rother et al. [21], who used histogram matching to simul-

taneously segment out the common object from a pair of

images. Following this work, a number of researchers have

made further efforts to develop more effective object co-

segmentation models by comparing foreground color his-

tograms [28] or adopting more diverse features like Ga-

bor filters [10] and SIFT [22]. For example, Rubinstein et

al. [22] combined a visual saliency and dense SIFT match-

ing to capture the sparsity and visual variability of the com-

mon object in a group of images. In order to better explore

the correspondence relationship among common objects,

some existing methods additionally introduced prior con-

straints to better distinguish them from the undesired im-

age backgrounds. References [6, 24] first extracted prior

information of the common objects from the object class by

using shape templates [6] and part detectors [24], and then

applied the extracted prior information to segment the com-

mon object of each image. References [13, 29] exploited

the objectness [29] prior and saliency prior [13] to constrain

the obtained foreground segments in each image. However,

these methods cannot obtain robust performance in real-

world scenarios, where the handcrafted low-level features

are too subjective to face the multiple challenges including

intra-class variations and background clutters and the prede-

fined prior knowledge cannot always provide adequate and

precise constraint on the common objects.

Deep learning has recently emerged and demonstrated

success in many computer vision applications. Recent

researches [12, 19, 33] use deep visual features to im-

prove object co-segmentation and they also try to learn

more robust synergetic properties among images in a data

driven manner. Yuan et al. [33] introduced a DNN-based

dense conditional random field framework for object co-

segmentation by cooperating co-occurrence maps which are

generated using selective search [27]. Hsu et al. [12] pro-

posed a DNN-based method which uses the similarity be-

tween images in deep features and an additional object

proposals algorithm [14] to segment the common objects.

These methods achieved state-of-the-art results by substi-

tuting the features learned by DNN for engineered features.
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Figure 1. Illustration of the proposed recurrent network architecture for object co-segmentation.

However, as feature learning and object segmentation are

somehow separated in these approaches, the learned fea-

tures are not tailored for segmenting the co-occurring ob-

jects, resulting in suboptimal performance. The very recent

works [3, 15] proposed end-to-end deep learning methods

for co-segmentation by integrating the process of feature

learning and co-segmentation inferring as an organic whole.

By introducing the correlation layer [15] or a semantic at-

tention learner [3], they can utilize the relationship between

the image pair and then segment the co-object in a pair-

wise manner. However, their siamese network structures

limit their use of group-wise information which contains

more sufficient synergetic relationships than image pairs.

Consequently, co-segmenting common objects from image

pairs has very limited robustness and practical application

value when extending beyond pairwise relations. Unlike

the previous methods, by introducing the recurrent archi-

tecture, our co-segmentation network is able to make use of

all available information including individual image prop-

erties and the group-level synergetic relationships to meet

the need for real-world applications.

One closely related topic to object co-segmentation is

co-saliency detection [34], which aims at generating co-

saliency maps for each of the images from the given im-

age collection to highlight the common and salient ob-

jects. Compared with co-saliency detection, object co-

segmentation only aims at segmenting the co-occurring ob-

jects without constraining those objects to be (co-)salient.

Even though, the co-saliency maps generated by co-saliency

detection can still be used as prior knowledge for object

co-segmentation [2, 16, 26]. As an end-to-end work, our

method needs no such predefined prior knowledge as addi-

tional information in object co-segmenting.

3. Proposed Approach

3.1. Problem Formulation

Object co-segmentation aims at discovering and seg-

menting the co-occurring objects from a group of N rele-

vant images I = {In}
N
n=1. The co-occurring object masks

M = {Mn}
N
n=1 are produced by a co-segmentation model:

M = F (I;Θ), (1)

where F () is the model function that takes an image group

as input and outputs a group of co-segmentation results si-

multaneously. Θ represents model parameters which are

optimized by an end-to-end learning scheme in this work.

The core idea of this work is trying to make full use of

all available information to learn the effective feature rep-

resentations which can not only express the images individ-

ual properties, but also reflect the interaction among group

images for robust co-segmentation referring. The overall

architecture of the proposed approach is illustrated in Fig-

ure 1. For an input image group with an arbitrary size, our

network first extracts the semantic features of all images.

Then the single image representation (SIR) branch pro-

cesses each image individually to learn the unique proper-

ties. Meanwhile the Co-Attention Recurrent Unit (CARU)

in the group-wise representation branch recurrently ex-

plores all images in the group to learn the robust group

representation. The two branches are later merged in the

Multi-scale Features Fusion (MFF) module for the final ob-

ject co-segmentation referring.

3.2. Single Image Representation

As a basic rule in object segmentation, it is important to

learn the unique properties of each image to capture poten-
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tial co-occurring objects in the individual image. In the pro-

posed approach, for each image In in the input group I we

first use a pre-trained convolutional neural network (CNN)

VGG19 [23] to extract the pooled features (Pool5) as its

semantic features Xn 2 RH⇥W⇥C . Then we construct an

SIR block with 3 convolutional layers to encode the indi-

vidual properties for each image S = {Sn}
N
n=1, which is

defined as follows:

Sn = fS(Xn;ΘS), (2)

where ΘS are the parameters learned from the convolutional

process fS .

3.3. Group Representation with CARU

As images within a co-segmentation group are contex-

tually associated with each other in different ways such

as common objects, similar categories, and related scenes,

learning a robust group representation which contains the

relevance and interaction between group images is ex-

tremely important for co-segmentation referring. In this

work, we proposed to use a recurrent architecture to learn

the group representation GN for an arbitrary size group I.

It is defined as follows:

GN = fG({Xn}
N
n=1;ΘG), (3)

where ΘG are the parameters learned from the recurrent

convolutional process fG. Since there is much noise infor-

mation of irrelevant background and non-common object in

the group and the appearance as well as the location of co-

occurring object varies across images, we specifically de-

sign a novel recurrent unit CARU to gradually explore all

the synergetic relationships between images for the group

representation. As illustrated in Figure 2(a), for step n,

CARU takes two inputs: the current image feature map Xn

and the group representation Gn�1 of all the images been

explored. In the first step, G0 is initialized with X1. We

construct two gates in our CARU, the reset gate gd is used

for denoising current image and the update gate gz is used

to decide how to update current group representation Gn.

Since all images in the group share the common objects,

we want to use the synergetic relationships between the ex-

plored images and the current image to suppress the noise

data in current image, like the irrelevant background and

non-common object. The reset gate D is defined as:

D = gd([Gn�1, Xn]). (4)

Then the denoised feature map X̃n is computed as:

X̃n = Xn�D = Xn�sigmoid(Wd⇥ [Gn�1, Xn]), (5)

where [Gn�1, Xn] 2 RH⇥W⇥2C is the concatenated fea-

ture map of Gn�1 and Xn, ⇥ is matrix multiplication and

� denotes element-wise multiplication. We use a FC layer

Wd to reduce the feature dimension.

As the appearance and the location of co-occurring ob-

ject varies across images, we want to fully explore the
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Figure 2. (a) The architecture of co-attention recurrent unit

(CARU). (b) The architecture of proposed update gate model gz .

spatial-channel-wise variation of the co-occurring object

object with co-attention mechanism to determine what

group information should be retained in Gn�1 and what

new information should be updated from X̃n. So Zn =
(Gn�1 �Xn ) is used as an input of gz to model the cross-

images variation in each step. The update gate Z is defined

as follows:

Z = gz(Zn;Θz) = gz(Gn�1 �Xn). (6)

Figure 2(b) illustrates the structure of update gate model gz .

For spatial attention model, we first use a global cross-

channel average pooling layer to get the overall response

in each spatial position.Then two FC layers (the first layer

is followed by ReLU) are applied to generate the spatial

attention maps Zs 2 RH⇥W⇥1. It is formulated as:

Zs = W2
s ⇥ReLU(W1

s ⇥ ZH,W
n ), (7)

where ZH,W
n 2 RH,W is the result of Zn after cross-

channel average pooling.

For channel attention model, we first introduce a global

spatial space average pooling layer to get overall response

of each channel. Then a FC layer is applied to get the chan-

nel attention maps Zc 2 R1⇥1⇥C , which is formulated as:

Zc = Wc ⇥ ZC
n , (8)

where ZC
n 2 RC is the result of Zn after global spatial

space average pooling.

The overall attention maps of current input feature are

the product of spatial attention maps and channel attention

maps. After a sigmoid operation, the overall attention maps

are normalized into the range between 0 and 1,

Z = sigmoid( Zs � Zc ), (9)

where Z 2 RH⇥W⇥C . Then the CARU updates Gn by

Gn = Z �Gn�1 + (1� Z)� X̃n. (10)
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The value of each position in Z denotes the probability

for the activation value in corresponding position of Gn�1

to be reserved and position of X̃n to be updated. Higher

probability value indicates that the update gate model gz
considers that last group feature Gn�1 in this location has

high quality group information and should be reserved.

While location with lower probability means there is new

useful synergetic information in X̃n should be updated to

Gn. After exploring all the images in group, we use the

last output of CARU GN as the group-wise representation.

Unlike the conventional recurrent units (GRU or LSTM),

our CARU can use co-attention to recurrently learn robust

group representation for co-segmentation referring mean-

while reducing the noise data. We will provide justification

on this issue in the later experiments section.

3.4. Co-Segmentation with Fused Representation

As described previously, the group feature is then broad-

casted to each individual image, which allows the network

to leverage the synergetic information and unique properties

between the images. So the interaction of group and single

representation are sufficiently exploited to facilitate the ro-

bust co-segmentation reasoning. Regarding visual features,

coarse-resolution features from high layers of neural net-

work emphasize the abstraction of visual content and con-

tain the context with large receptive field to the summary of

object, while fine-resolution features from low layers em-

phasize the appearance details and are more conducive to

the location of objects. In our work, besides the single and

group semantic features, we also utilize the low layer fea-

tures (Pool3, Pool4) in the backbone network as the com-

plementary and fuse the visual features from multiple lay-

ers to provide a comprehensive representation for object co-

segmentation. Specifically, we concatenate the group-wise

representation GN with the single image representation Sn

as well as the fine-resolution features of each image, and

a 1 ⇥ 1 convolutional layer is used to reduce the dimen-

sionality. The resultant feature , called {V 3
n , V

4
n , V

5
n }

N
n=1,

are jointly used for co-segmentation as shown in Figure 3.

Starting from V 5
n ,the coarser-resolution feature map is up-

sampled by a factor of 2 using a deconvolutional layer. The

upsampled map is then merged with the finer-resolution one

by element-wise addition. This process iterates until the

finest map V̂n is obtained. To alleviate the aliasing effect of

upsampling, we add a 3 ⇥ 3 convolutional layer after each

merging operation. So the co-segmentation results Mn can

be obtained with the fused features by applying 3 ⇥ 3 con-

volutional layers and deconvolutional layers followed with

a sigmoid activation function. It is formulated as:

Mn = fC(V̂n;ΘC), (11)

where ΘC are the parameters learned from the fusion and

convolutional process fC .
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Figure 4. Illustration of the group-wise training objective.

4. Loss Function

Let I = {In}
N
n=1 and their groundtruth {GT

n }
N
n=1 denote

a collection of training samples where N is the number of

images. After object co-segmenting, the co-segmentation

results are {Mn}
N
n=1. We use the cross-entropy loss as the

individual supervision for each image In:

Ls(In;Θ) = �
�

GT
n log(Mn) + (1� GT

n )log(1�Mn)
�

.

(12)

In addition to the cross-entropy losses, we propose a group-

wise training objective to further explore the interactive re-

lationships of whole images in the training group. Two

criteria are jointly considered in the design of group-wise

training objective, including 1) high cross-image similarity

between the co-occurring objects and 2) high distinctness

between the detected co-occurring objects and the rest of

the images like background and non-common objects. We

apply triplet loss as the group-wise constraint. Specifically,

for a image In, we can generate three masked images with

its co-segmentation mask Mn and groundtruth GT
n

Ion = Mn ⌦ In, I
G
n = GT

n ⌦ In and I�G
n = (G�T

n )⌦ In,

(13)

where ⌦ denotes element-wise multiplication and G�T
n =

1 � GT
n . The masked image Ion means our current detected

co-segmentation objects of In while image IGn and I�G
n

mean the real co-segmentation objects and non-common

segmentation regions of In. Then we apply the extractor

φ to all masked images {Ion, I
G
n , I

�G
n }Nn=1 and obtain their
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corresponding features {φ(Ion),φ(I
G
n ),φ(I

�G
n )}Nn=1. We

apply triplet loss Lc on each Ion as the group-wise training

objective as shown in Figure 4, formulated as:

Lc(In, Im 6=n;Θ) =
1

N � 1

X

m 6=n

⇥

b+max E(Ion, I
G
m)

�min E(Ion, I
�G
m )

⇤

+
,

(14)

where b is the margin and E(·, ·) denotes the Euclidean dis-

tance between two feature vectors. The group-wise train-

ing objective uses the hinge function [b + •]+ to forces

co-segmentation result Mn to be more similar to real co-

segmentation objects than non-common regions. In co-

segmentation task, it can be beneficial to pull together co-

occurring objects as much as possible. For this purpose, it

is possible to replace the hinge function by a smooth ap-

proximation using the softplus function: In
�

1 + exp(•)
�

.

The softplus function has similar behavior to the hinge, but

it decays exponentially instead of having a hard cut-off, we

hence refer to it as the soft-margin formulation. Note that

all parts of our network are trained jointly, and the overall

loss function is given as:

L =
1

N

N
X

n=1

�

Ls(In;Θ) + λ · Lc(In, Im 6=n;Θ)
�

, (15)

where λ is the tradeoff parameter and Θ = {ΘS ,ΘG,ΘC}
is the all learnable parameters set of our network.

5. Experiments

5.1. Experimental Setup

Datasets. We evaluate the proposed method and compare

it with existing methods on three benchmarks for object co-

segmentation, including the Internet dataset [22], the iCoseg

dataset [1], and the PASCAL-VOC dataset [7]. These

datasets are composed of real-world images with large intra-

class variations, occlusions and background clutters. The

Internet dataset contains images of three object categories

including airplane, car and horse. Thousands of images in

this dataset were collected from the Internet. Following the

same setting of the previous work [12, 22, 25] , we use the

same subset of the Internet dataset where 100 images per

class are available. iCoseg consists of 38 groups of total 643

images which are challenging for object co-segmentation

task because of the large variations of viewpoints and mul-

tiple co-occurring object instances. The PASCAL-VOC

dataset contains total 1,037 images of 20 object classes from

PASCAL-VOC 2010 dataset. The PASCAL-VOC dataset is

more challenging and difficult than the Internet dataset due

to extremely large intra-class variations and subtle figure-

ground discrimination.

Implementation Details. We select the widely used pre-

trained VGG19 net [23] (over the MS COCO dataset [17])

as the backbone network to extract the semantic features Xn

and the fine-resolution features for each image. The decon-

volutional layers are initialized with simple bilinear inter-

polation parameters. All images and groundtruth maps are

resized to 224 ⇥ 224. The proposed models are optimized

by standard SGD in which the momentum parameter is cho-

sen as 0.99, the learning rate is set to 1e-5, and the weight

decay is 0.0005. We need about 5000 training iterations

for convergence. And for group-wise constraint, we use

the activated layers Relu3 1, Relu4 1, Relu5 1 of VGG

as the feature vectors to calculate the Euclidean distance.

Since the direct use of group-wise constraints may lead the

model into the local optimal, we activate the triplet loss

after 100 training iterations with cross-entropy loss only.

And the loss tradeoff parameter λ is set to be 0.1 in our

work. Training a deep neural network requires a lot of data.

However, existing co-segmentation datasets are either are

too small or have a limited number of object classes. In-

spired by [7, 15, 30] we generated our training data from

existing image dataset (COCO dataset [17]). Our training

dataset contains 9k images belonging to 118 groups. The fi-

nal binary co-segmentation masks are obtained by the self-

adaptive threshold T [35] .

Evaluation metrics. Two widely used measures, precision

(P) and Jaccard index (J ), are adapted to evaluate the per-

formance of object co-segmentation. Precision measures

the percentage of correctly segmented pixels including both

object and background pixels. Jaccard index is the ratio of

the intersection area of the detected objects and the ground

truth to their union area. The background pixels are taken

into account in precision, so the images with larger back-

ground areas tend to have a higher performance in precision.

Therefore, precision may not very faithfully reflect the qual-

ity of object co-segmentation results. Compared with preci-

sion, Jaccard index is considered more reliable to measure

the quality of results. It provides a more appropriate evalu-

ation as it only focuses on objects.

Airplane Car Horse Avg.
Method

P J P J P J P J
Rubinstein13 [22] 88.0 0.56 85.4 0.64 82.8 0.52 82.73 0.427

Hati16 [9] 77.7 0.33 62.1 0.43 73.8 0.20 71.20 0.320

Jerripothula16 [13] 90.5 0.61 88.0 0.71 88.3 0.61 88.93 0.643

Quan16 [19] 91.0 0.56 88.5 0.67 89.3 0.58 89.60 0.603

Tao17 [25] 79.8 0.43 84.8 0.66 85.7 0.55 83.43 0.547

Yuan17 [33] 92.6 0.66 90.4 0.72 90.2 0.65 91.07 0.677

Han18 [8] 92.3 0.60 88.7 0.68 89.3 0.58 90.1 0.620

Ren18 [20] 88.3 0.48 83.5 0.62 83.2 0.49 85.0 0.530

Hsu18 [12] 94.2 0.67 93.0 0.82 89.7 0.61 92.29 0.698

Chen18 [3] - 0.71 - 0.80 - 0.71 - 0.740

Li18 [15] 94.6 0.64 94.0 0.83 91.4 0.65 93.3 0.707

Ours 97.5 0.83 97.8 0.93 96.1 0.76 97.1 0.840

Table 1. The performance of object co-segmentation on the Inter-

net dataset. The numbers in red and green respectively indicate the

best and the second best results.

5.2. Comparison to the State-of-the-Arts

We compare the proposed method with the state-of-the-

art methods on the Internet, iCoseg, and PASCAL-VOC
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Figure 5. The co-segmentation results generated by our approach

on the Internet dataset. In the three examples (rows), the common

object categories are airplane, car, and horse, respectively.

datasets, and report their performances in Table 1, Table 2,

and Table 3, respectively. The compared methods include

the conventional methods and the most recent deep learn-

ing based methods. For fair comparison, we use either the

implementations with recommended parameter settings or

the co-segmentation results provided by the authors. Our

method takes whole group with random images order as the

input and achieves the state-of-the-art performance on the

three datasets under two metrics. Specifically, on the In-

ternet dataset, our method outperforms the second best re-

sults [3, 15] a large margin 13.5% in J and a margin 4% in

P . On the iCoseg dataset, our method improves upon the

second best results [3, 12] by margins around 2% and 1.5%
in terms of J and P respectively in Table 2. Note that for

our network over 70% categories in iCoseg are unseen, the

results indicate that our method can adapt itself well to un-

seen images with large variations. The same conclusion can

be obtained from the co-segmentation examples on iCoseg

in Figure 6. In Table 3, although the PASCAL-VOC dataset

has higher variations than the Internet and iCoseg datasets,

our proposed method also outperforms the best competing

results [12, 31] by 5% and 3.4% in terms of J and P respec-

tively. Some visual co-segmentation examples of our meth-

ods on three datasets are shown in Figure 5, Figure 6 and

Figure 7. As can be seen, our method can generate promis-

ing object segments under different types of intra-class vari-

ations, such as colors, sharps, views, scales and background

clutters. Even on the PASCAL-VOC dataset which con-

tains images with higher intra-class variations and subtle

figure-ground differences than the other two datasets, our

method can infer the common object segments of high qual-

ity. For example, the sofa in the third row are of dissimilar

colors and have clutter backgrounds. The effectiveness of

our method mainly results from two properties: 1) The ro-

bust feature representations which not only express the im-

ages complementary individual properties, but also reflect

the interaction among group images. 2) The effective train-

ing supervision which makes full use of the group-wise in-

teractive relationships in the training group.

5.3. Ablation Studies

In this section, we conduct evaluation on PASCAL-VOC

dataset to investigate the effectiveness of various compo-

nents of the proposed model. This dataset has relative larger

Avg. Avg.
Method

P J
Method

P J
Jerripothula16 [13] 91.8 0.72 Ren18 [20] - 0.73

Quan16 [19] 93.3 0.76 Han18 [8] 94.4 0.78

Tao17 [25] 90.8 0.74 Chen18 [3] - 0.87

Wang17 [31] 93.8 0.77 Hsu18 [12] 96.5 0.77

Yuan17 [33] 94.4 0.82 Tsai19 [26] 90.8 0.72

Li18 [15] - 0.84 Ours 97.9 0.89

Table 2. The performance of object co-segmentation on the iCoseg

dataset. The numbers in red and green respectively indicate the

best and the second best results.

Figure 6. The co-segment results generated by our approach on the

iCoseg dataset. From the first row to the last row, the classes are

Taj Mahal, Pyramids, Cheetah, Woman Soccer, and kendo respec-

tively.

Figure 7. The co-segment results generated by our approach on

the PASCAL-VOC dataset. From the first row to the last row, the

classes are boat, cat, sofa, train, and bird respectively.

operable group size and is more challenging with various

common objects poses and sizes, greater appearance varia-

tions and complex backgrounds. The results are shown in

Table 4. We set the baseline approach by only using the

single feature learning branch and training it with the cross-

entropy loss Ls alone.

As can be seen, the baseline approach can’t well handle

the co-segmentation task. After applying the CARU, with

the group representation, the performance of the baseline

approach is improved by 5.8% and 3.8% in terms of J and

P . This shows that the group representation is essentially

crucial for object co-segmentation. When we replace our

CARU with the conventional recurrent units GRU, the per-

formance drops a lot. That means our CARU is more effec-

tive to capture the synergetic information in a group com-

pared with conventional recurrent units. However, the GRU

still improves the performance of baseline, which means the

recurrent architecture is naturally suitable for co-saliency

detection task. We then add the group-wise training objec-

tive Lc to form the completed version of our approach. The
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Method Avg.P Avg.J A.P Bike Bird Boat Bottle Bus Car Cat Chair Cow D.T Dog Horse M.B P.S P.P Sheep Sofa Train TV

Faktor13 [7] 84.0 0.46 0.65 0.14 0.49 0.47 0.44 0.61 0.55 0.49 0.20 0.59 0.22 0.39 0.52 0.51 0.31 0.27 0.51 0.32 0.55 0.35

Hati16 [9] 72.5 0.25 0.44 0.13 0.26 0.31 0.28 0.33 0.26 0.29 0.14 0.24 0.11 0.27 0.23 0.22 0.18 0.17 0.33 0.27 0.41 0.18

Quan16 [19] 89.0 0.52 - - - - - - - - - - - - - - - - - - - -

Jerripothula16 [13] 85.2 0.45 0.64 0.20 0.54 0.48 0.42 0.64 0.55 0.57 0.21 0.61 0.19 0.49 0.57 0.50 0.34 0.28 0.53 0.39 0.56 0.38

Wang17 [31] 84.3 0.52 0.75 0.26 0.53 0.59 0.51 0.70 0.59 0.70 0.35 0.63 0.26 0.56 0.63 0.59 0.35 0.28 0.67 0.52 0.52 0.48

Han18 [8] 90.1 0.53 - - - - - - - - - - - - - - - - - - - -

Hsu18 [12] 91.0 0.60 0.77 0.27 0.70 0.61 0.58 0.79 0.76 0.79 0.29 0.75 0.25 0.63 0.66 0.65 0.37 0.42 0.75 0.67 0.68 0.51

Ours 94.1 0.63 0.78 0.29 0.71 0.66 0.58 0.82 0.79 0.81 0.35 0.78 0.26 0.65 0.78 0.69 0.39 0.45 0.77 0.70 0.73 0.55

Table 3. The performance of object co-segmentation on the PASCAL-VOC dataset under Jaccard index and Precision. The class-wise

results are measured in Jaccard index. The numbers in red and green respectively indicate the best and the second best results.

triplet loss helps to further improve the performance com-

paring with CARU version by 3.8% and 2.2% in terms of

J and P . This indicates that the group-wise training su-

pervision can better model the synergetic relationships be-

tween the common objects and help the network to learn

more effective group representation, which in turn boost

the co-segmentation task. We then replace the fused fea-

tures V̂n with the single-scale feature V 5
n to investigate the

effectiveness of multi-scale visual features. Consequently,

the performance drops by 3% and 1.4% in terms of J and

P when only using the single-scale feature. This result

demonstrates that fusing visual features at multi-scales pro-

duces a comprehensive representation characterizing both

visual abstraction and details of foregrounds and is useful

for co-segmentation.

We evaluated the effects of CARU with different compo-

nent settings. As shown, for update gate gz , the combina-

tion of Zs and Zc achieves better performances than using

them alone. When we remove the reset gate gd from CARU,

the performance declines on two metrics. This indicates the

reset gate gd is able to suppress the noise information in

the group. In order to verify the adaptability of our recur-

rent architecture to different group sizes, we construct new

testing groups by randomly selecting a sub-group with dif-

ferent size 5, 10 and 15 from the original groups. As re-

ported in Table 4, our approach achieves good performance

on different size groups and still consistently outperforms

all the state-of-the-art methods. And the performance raises

along with the group size, which emphasizes the importance

of the group information completeness to robust object co-

segmentation. To further justify the denoising ability of our

CARU, we add a image which is randomly selected from

COCO dataset to the testing groups in size 5, 10 and 15

for simulating the noise data in real-world applications. As

shown in results, although the noise data damages our per-

formance a little, we still outperform all the state-of-the-art

methods, which demonstrate the robustness of the proposed

method. As for the pair-wise methods, the noise data can

badly damage their performance. To estimate the influence

of the input order of images within a group on our net-

work, we randomly generate three different input orders of

the dataset for testing. There are minor variations between

three results, which shows our method is not sensitive to the

input orders.

Method Avg.P Avg.J Method Avg.P Avg.J
Baseline 88.7 0.570 Ours(5) 93.5 0.617

Baseline+CARU 92.1 0.603 Ours(10) 93.9 0.621

Baseline+GRU 89.9 0.589 Ours(15) 94.0 0.623

Baseline+CARU+Lc 94.1 0.626 Ours(5+noise) 93.1 0.612

Baseline+CARU+Lc�MFF 92.8 0.607 Ours(10+noise) 93.7 0.620

Baseline+Lc+CARU(s) 93.8 0.621 Ours(15+noise) 93.9 0.623

Baseline+Lc+CARU(c) 93.6 0.620 Ours(order1) 94.1 0.625

Baseline+Lc+CARU(�gd) 93.1 0.615 Ours(order2) 94.0 0.623

Ours(order3) 94.1 0.622

Table 4. Ablation study of our method on PASCAL-VOC.

6. Conclusion

In this paper, we propose a novel end-to-end deep learn-

ing approach for group-wise object co-segmentation with a

recurrent network architecture. The proposed approach ex-

plores single image properties and robust group representa-

tion simultaneously, which are essentially crucial for real-

world co-segmentation. Specifically, the semantic features

extracted from a pre-trained CNN of each image are first

processed by single image representation branch to learn the

unique properties. Then, by using the spatial and channel

co-attention between images, the special designed CARU

recurrently explores all images in the group to learn the ro-

bust group representation and meanwhile suppresses noisy

information. The group feature is broadcasted to each indi-

vidual image and fused with multi-scale fine-resolution fea-

tures to facilitate the inferring of co-segmentation. More-

over, we propose a group-wise training objective to utilize

the co-object similarity and figure-ground distinctness as

the additional supervision. The whole modules are collabo-

ratively optimized in an end-to-end manner, further improv-

ing the robustness of the approach. Extensive experimental

results demonstrate the superiority of our approach. To the

best of our knowledge, this is the first attempt to address

group-wise object co-segmentation task with the recurrent

architecture.
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