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Abstract

MobileNets, a class of top-performing convolutional

neural network architectures in terms of accuracy and ef-

ficiency trade-off, are increasingly used in many resource-

aware vision applications. In this paper, we present Har-

monious Bottleneck on two Orthogonal dimensions (HBO),

a novel architecture unit, specially tailored to boost the ac-

curacy of extremely lightweight MobileNets at the level of

less than 40 MFLOPs. Unlike existing bottleneck design-

s that mainly focus on exploring the interdependencies a-

mong the channels of either groupwise or depthwise con-

volutional features, our HBO improves bottleneck repre-

sentation while maintaining similar complexity via joint-

ly encoding the feature interdependencies across both spa-

tial and channel dimensions. It has two reciprocal com-

ponents, namely spatial contraction-expansion and chan-

nel expansion-contraction, nested in a bilaterally symmet-

ric structure. The combination of two interdependent trans-

formations performing on orthogonal dimensions of feature

maps enhances the representation and generalization abil-

ity of our proposed module, guaranteeing compelling per-

formance with limited computational resource and power.

By replacing the original bottlenecks in MobileNetV2 back-

bone with HBO modules, we construct HBONets which are

evaluated on ImageNet classification, PASCAL VOC objec-

t detection and Market-1501 person re-identification. Ex-

tensive experiments show that with the severe constraint of

computational budget our models outperform MobileNetV2

counterparts by remarkable margins of at most 6.6%, 6.3%

and 5.0% on the above benchmarks respectively. Code and

pretrained models are available at https://github.

com/d-li14/HBONet.

1. Introduction

By winning ImageNet classification challenge 2012 with

a large margin, AlexNet [18] ignited the surge of deep Con-

∗Equal contribution. This work was done when Duo Li and Aojun Zhou

were interns at Intel Labs China, supervised by Anbang Yao who is respon-

sible for correspondence. Intern Duo Li performed most experiments.
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Figure 1. Comparison of top-1 accuracy and FLOPs for Mo-

bileNetV2 and our HBONet models with five different width mul-

tipliers, tested on the ImageNet validation set with the single crop.

Our models demonstrate increasingly large margins against Mo-

bileNetV2 counterparts when the computational budget goes to

less than 40 MFLOPs.

volutional Neural Networks (CNNs) in a variety of com-

puter vision tasks such as image classification [32], objec-

t detection [4] and semantic segmentation [21]. In order

to achieve higher accuracy, there shows an evident trend

to make CNN architectures deeper and topological connec-

tions more sophisticated in recent literature [35, 37, 7, 12,

43, 10]. However, top-performing CNNs usually come with

tremendous storage consumption and heavy computation-

al cost, which prohibits the feasibility of their practical de-

ployment in resource-constrained environments.

Towards the problem above, numerous research efforts

have been devoted to engineering lightweight CNN archi-

tectures from scratch with expertise. Among existing de-

signs, the family of CNNs [2, 9, 45, 22, 33, 44, 49, 26]

built upon depthwise separable convolutions is becoming

the mainstream due to its leading performance in balanc-

ing accuracy and efficiency. A standard depthwise sepa-

rable convolution, which consists of a depthwise convolu-

tion and a pointwise convolution, was originally presented

in [34]. Later, it was extensively used in the Xception archi-

tecture [2]. MobileNetV1 [9], the pioneering lightweight

CNN backbone specially designed for vision applications

on mobile and embedded devices, is mainly built on depth-

wise separable convolutional layers stacked in a straight-
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forward way. ShuffleNetV1 [45] uses residual bottlenecks

harnessing pointwise group convolutions to reduce the com-

plexity of 1x1 pointwise convolutions, and channel shuffle

operations to enhance inter-channel correlations. Preserv-

ing the effective shuffling operation in ShuffleNetV1 [45],

ShuffleNetV2 [22] presents more hardware-aware modu-

lar designs in which the specific configuration of feature

channels and the order of basic operations are adjusted

to better match the proposed practical guidelines. Mo-

bileNetV2 [33], an advanced variant of MobileNetV1 [9],

is based on an inverted residual structure with linear bottle-

necks. Owing to improved information flow in the repre-

sentation space, MobileNetV2 achieves much better trade-

off between accuracy and efficiency compared with its pre-

decessor. Following a similar design principle, each of

these state-of-the-art lightweight architectures provides a

spectrum of models at different computational complexi-

ties. However, they all perform unsatisfactorily at the level

of less than 40 MFLOPs which is a necessary requirement

in many extremely low-power platforms [22]. In this paper,

we attempt to bridge this accuracy gap with a novel bottle-

neck design, taking MobileNetV2 backbone as a reference

case without loss of generality.

Note that modular designs of MobileNets [9, 33] and

ShuffleNets [45, 22] put an emphasis on the transforma-

tion from the perspective of feature channels, while ne-

glecting to explore the orthogonal space of spatial feature

scale. It provides further potential to shrink computation-

al cost while retaining the comparable accuracy since fea-

ture map size is another principal element involved in the

formula of complexity computation. In turn, there exists a

chance to promote the performance given a certain amount

of available computational resource. Motivated by this, we

investigate both aspects and coordinate them in one novel

bottleneck design called Harmonious Bottleneck on two Or-

thogonal dimensions (HBO), aiming to improve bottleneck

representation ability from two complementary dimension-

s. In each HBO module, a spatial contraction operation is

responsible to reduce input feature maps to a smaller size

temporally, offering a capacity guarantee to increase com-

putational efficiency. The following channel expansion-

contraction component compensates for resulting side ef-

fect by encouraging informative features. Finally, a spatial

expansion operation is performed to make output features

have the same size as that of the output from the shortcut

connection.

Summarily we make the following contributions to effi-

cient yet accurate neural network architecture design:

• We present a bottleneck design named HBO, which

subtly arranges spatial and channel transformations in

a bilaterally symmetric layout for their mutual promo-

tion. We notice that it has never been well studied in

the research field of lightweight CNN design from both

of these two orthogonal dimensions before us.

• We use HBOs to replace the original inverted bottle-

necks in MobileNetV2 and construct HBONets. Ben-

efiting from the conjugation of spatial and channel

transformations, the performance of HBONet back-

bones exceeds that of MobileNetV2 counterparts by

at most 6.6%, 6.3% and 5.0% on different tasks and

benchmarks under limited computational budgets, e.g.

less than 40 MFLOPs. To the best of our knowledge,

we are the first to push the lower boundary with respect

to the computational complexity of lightweight CNNs

to such an extreme domain. Figure 1 provides com-

prehensive comparative results under different compu-

tational budgets.

• Our proposed HBONet (1.0) surpasses state-of-the-art

lightweight architectures on the challenging ImageNet

benchmark at the level of 300 MFLOPs, achieving

73.1% top-1 classification accuracy.

2. Related Work

We summarize representative advances on efficient neu-

ral network architectures and transformations with respect

to spatial feature dimensions as follows.

Neural Network Compression. By default, deep neu-

ral networks are trained with 32-bit floating-point parame-

ters, thus network quantization is a natural way to obtain

more efficient and smaller models using low-bit parameter-

s. For instance, [5] and [39] adopt 16-bit and 8-bit fixed-

point implementation respectively, and [14, 29, 47, 48] at-

tempt to train binary/ternary neural networks either from

the pre-trained models or from scratch. Network pruning

presents another promising way to convert dense neural net-

work models into sparse equivalents without loss of predi-

cation accuracy. This line of research includes network pa-

rameter pruning [6], filter pruning [19] and channel prun-

ing [8]. Deep neural networks can also be compressed and

accelerated via factorized networks [17, 40] which utilize

filter factorization techniques to reduce the computational

cost of convolutional layers. However, our research effort-

s have been mainly invested in designing hand-engineered

efficient neural network architectures from scratch, without

cumbersome iterative training and fine-tuning in some com-

pression methodology.

Computational Efficient Neural Networks. In order to

reduce parameter size and computational burden, many top-

performing CNNs adopt group convolution in which input

channels are split into different groups and each convolu-

tion only operates on the corresponding channel group. As

discussed in the last section, MobileNets [9, 33] and Shuf-

fleNets [45, 22] heavily rely on depthwise convolution dur-

ing their construction process which is an extreme and pop-

ular case of standard group convolution. Group convolu-

3317



tion was first used in AlexNet [18] to make its training ap-

plicable on two separate GPUs. Inception series [16, 38]

customizes group convolution application by coupling it

with multi-branch design. SqueezeNet [15] is based on a

very small inception-like fire module and achieves AlexNet-

level accuracy with 50× fewer parameters. ResNeXt [43]

integrates group convolution into the residual block and

improves efficiency through introducing a new dimension

called “cardinality”. CondenseNet [11] flexibly combines

densely connected group convolutions with a filter prun-

ing strategy to remove redundant connections. IGCNet-

s [44, 42, 36] introduce two successive interleaved group

convolutions to enhance feature representation ability. Re-

cently, NAS [49] and ENAS [26] use reinforcement learning

to automatically search an optimal neural network architec-

ture based on a set of pre-defined operation units including

depthwise convolution, opening up a new neural network

design direction.

Spatial Feature Scale. Being primarily engineered for

ImageNet classification task, prevalent CNN backbones in-

cluding but not limited to AlexNet [18], VGGNet [35],

GoogLeNet [37], ResNet [7], DenseNet [12], ResNeX-

t [43], SENet [10], MobileNets [9, 33] and ShuffleNet-

s [45, 22] follow a common design principle: the spatial

feature scale of convolutional layers starts with a relatively

large value (e.g. 224×224) and then reduces by a factor of

2 after each downsampling layer using either pooling oper-

ations or convolutions with stride 2, until reaching its de-

sired value (e.g. 1× 1), no matter how deep the network is.

This spatial feature downsampling design over the network

body facilitates hierarchical feature extraction at different

scales, meanwhile balancing layer-wise distribution of the

computational cost of the whole network. However, as for

the building block design regarding all these backbones, the

spatial feature scale usually keeps unchanged across all lay-

ers inside one single block, except for certain layers respon-

sible for downsampling located in the entry of few blocks.

In order to achieve pixelwise predication outputs from

arbitrary-sized input, Long et al. [21] propose fully convo-

lutional networks which combine multi-scale feature maps

from shallow, intermediate and deep layers of a classifica-

tion network via deconvolution operators for upsampling.

U-Net [31] further develops this idea with a U-shaped ar-

chitecture in which several expansion blocks are stacked

for successive upsampling operations. Such kind of conv-

deconv and encoder-decoder architectures are also used in

other vision tasks such as style transfer [1] and image gen-

eration [28]. To address human pose estimation, [23]

presents repeated hourglass modules where each of them

has a downsampling-upsampling symmetric structure. Re-

cently, [25] proposes a more simple spatial module de-

sign to replace any single convolutional layer and acceler-

ate corresponding convolution operations. In our proposed

HBO design, a channel expansion-contraction module is

wrapped up in a spatial contraction-expansion componen-

t in the micro-architecture, resembling the conv-deconv or

encoder-decoder framework in the macro-architecture.

3. Proposed CNN Architecture

In this section, we first describe our core bottleneck de-

sign HBO which delicately couples two structurally sym-

metric components: bottleneck in spatial dimension and in-

verted bottleneck in channel dimension. We then describe

our HBO exemplars used to construct the HBONet archi-

tecture.

3.1. Depthwise Separable Convolutions

Modern CNNs tend to have no fully connected layer re-

gardless of the last prediction layer with a softmax func-

tion, thus convolutional layers occupy most of the compu-

tational cost and parameters of the whole model. Depth-

wise separable convolution serves as a computational ef-

fective equivalent of standard convolution and is utilized as

the most critical ingredient in many efficient CNN architec-

tures [9, 45, 22, 33, 44, 49, 26], which is extensively em-

ployed in our HBO design without exception. A standard

convolutional layer directly transforms an h×w× c1 input

feature tensor into an h×w× c2 output feature tensor by a

c1 × k × k × c2 convolutional kernel, where h × w, c1/c2
and k × k are the spatial size of input/output feature maps,

the number of input/output feature channels and the convo-

lutional kernel size, respectively. Neglecting the bias terms,

it has the computational cost of h×w× c1 × c2 × k× k. A

depthwise separable convolutional layer decomposes stan-

dard convolution operation from one stage into two stages.

It starts with a depthwise convolution that performs a k× k
convolution on each channel of the input feature tensor, and

follows with a 1 × 1 pointwise convolution to project the

concatenated c1 channels produced by the depthwise con-

volution to a new space with the desired channel size of c2,

introducing interactions among different channels as well.

By performing convolutions in this way, a depthwise sep-

arable convolutional layer only has the computational cost

of

h× w × c1 × k × k + h× w × c1 × c2, (1)

which is approximately 1/k2 compared to that of the cor-

responding standard convolutional layer. For instance, Mo-

bileNets [9, 33] adopt 3 × 3 depthwise separable convo-

lutions and have 8× to 9× less computational cost than

the counterparts using standard convolutions. ShuffleNet-

s [45, 22] further utilize pointwise group convolutions, cou-

pled with channel shuffling operations, to reduce the com-

plexity of standard 1× 1 pointwise convolutions.
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Figure 2. Bottleneck comparison between MobileNetV2 and HBONet. The lower design represents our proposed HBO module while the

upper one represents Inverted Residual with Linear Bottleneck in MobileNetV2. EltAdd means element-wise addition with corresponding

channels in the input feature map, resembling the residual path. Concat means concatenation with partial channels of the input tensor.

DWConv and PWConv denote depthwise and pointwise convolution respectively. Best viewed in color.

3.2. HBO Structure

By exploring the interdependencies among the channel-

s of convolutional feature maps via a two-stage decompo-

sition, depthwise separable convolution demonstrates im-

pressive computation performance without noticeable sac-

rifice of accuracy compared to standard convolution. The

characteristics of depthwise separable convolution render

it especially fit for modern lightweight convolutional neu-

ral networks. In this line of research, how to design more

powerful and efficient building blocks based on depthwise

separable convolutions is the primary issue. Delving into

recent state-of-the-art MobileNets [9, 33] and ShuffleNet-

s [45, 22], we notice that although various complex modu-

lar designs focusing on channel transformations have been

invented to boost the performance within the limit of com-

plexity, the spatial feature scale keeps the same across all

compositional layers of these networks. This means the s-

patial feature dimension which is naturally complementary

to the feature channel dimension in terms of accuracy and

efficiency trade-off has never been explored. Hence we con-

jecture there is still exists remaining room to strike an im-

proved balance between the representation capability and

computational efficiency via further taking the spatial trans-

formation into consideration, from a perspective orthogonal

to aforementioned seminal works.

To this end, we introduce a novel bottleneck design,

Harmonious Bottleneck on two Orthogonal dimensions (H-

BO), which consists of two reciprocal components, spatial

contraction-expansion and channel expansion-contraction,

nested in a bilaterally symmetric structure as illustrated in

Figure 2 and functioning in a harmonious manner. Inverted

residual blocks in MobileNetV2 reverse the classical con-

figuration of bottlenecks for improved information flow. N-

evertheless, the channel expansion-contraction transforma-

tion yields very wide feature maps in the middle of the

building block, inevitably increasing the computational bur-

den of relevant layers. We alleviate this problem by squeez-

ing the channel expansion-contraction component, i.e., in-

verted bottleneck (in the channel dimension), into a pair of

inverse spatial transformations which constitutes the spa-

tial contraction-expansion component. This set of transfor-

mations from two orthogonal dimensions guarantees a s-

limmed spatial size of wide feature maps in each stage, mit-

igating a soaring consumption of computational resource

arising from channel expansion operations. Benefiting from

the inverse variation tendency of feature map size in two di-

mensions (spatial and channel), our proposed module tends

to demand less computational resource against its straight-

forward counterparts given expected accuracy and is capa-

ble of retaining decent performance given limited computa-

tional cost. Subsequent layers responsible for upsampling

are indispensable in most modular cases, which expand the

spatial size of narrow feature maps for the convenience of

spatial contraction operation in the follow-up HBO mod-

ule, guaranteeing the depth of HBONet with hierarchical

stacked HBO modules.

In the spatial contraction-expansion component, spatial

contraction operation exploits the depthwise convolution

with stride s to downsample the spatial size of the input

feature tensor from h×w× c1 into h/s×w/s× c1, and s-

patial expansion operation aims to upsample output features

to make them have the identical spatial size with that of the

input feature tensor, or probably its pooled version. After

merging the spatial contraction-expansion component into

existing blocks, the overall computational cost becomes

B/s2 + (h/s× w/s× c1 + h× w × c2)× k2, (2)

where B denotes the original computational cost of the

blocks inserted between the spatial contraction and expan-

sion operations. Spatial contraction-expansion component,

which is also ready to be integrated into building blocks of
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Input size Operator t c n s

2242 × 3 conv2d 3x3 - 32 1 2

1122 × 32 Harmonious Bottleneck 1 20 1 1

1122 × 20 Harmonious Bottleneck 2 36 1 1

1122 × 36 Harmonious Bottleneck 2 72 3 2

562 × 72 Harmonious Bottleneck 2 96 4 2

282 × 96 Harmonious Bottleneck 2 192 4 2

142 × 192 Harmonious Bottleneck 2 288 1 1

142 × 288 conv2d 1x1 - 144 1 1

142 × 144 Inverted Residual 6 200 2 2

72 × 200 Inverted Residual 6 400 1 1

72 × 400 conv2d 1x1 - 1600 1 1

72 × 1600 avgpool 7x7 - - 1 -

12 × 1600 conv2d 1x1 - k -

Table 1. HBONet : Each line describes a sequence of 1 or more

identical (modulo stride) layers, repeated n times. All layers in the

same sequence have the same number c of output channels. The

first layer of each sequence has a stride s and all others use stride

1. The expansion factor t is always applied to the input size as

described in Figure 2.

any other state-of-the-art CNNs, demonstrates impressive

flexibility and scalability.

3.3. HBO Exemplars

As illustrated in Figure 3, we follow the design princi-

ple of layer modules in MobileNetV2 and use its body as

our channel expansion-contraction pattern, where the low-

dimensional representation is expanded in the channel di-

mension and filtered with an efficient depthwise convo-

lution, subsequently contracted back to the space of low

dimension with a linear convolutional filter. We go one

step further to investigate transformations in the spatial di-

mension, through attaching a preceding depthwise convo-

lution with stride and an optional subsequent bilinear up-

sampling operation and its corresponding depthwise convo-

lutional layer to the channel expansion-contraction module.

We also follow the convention of including a residual path

in the family of modern lightweight network architectures

to facilitate the gradient propagation across multiple layers.

Last but not least, half of the channels in the output feature

map are drawn from the input tensor or its pooled version.

This concatenation operation decreases the number of out-

put channels to be computed in the main branch and encour-

ages feature reuse in the information flow as an efficient and

effective component.

3.4. Network Architecture

Taking MobileNetV2 [33] as a reference, we construct

HBONet by stacking a set of HBO blocks and using them

to replace some of the original blocks. We describe the ar-

chitecture of HBONet in Table 1, where Harmonious Bot-

tleneck denotes our proposed building block while Inverted

Residual denotes the reserved architecture unit as in Mo-

bileNetV2. Some other modifications are also made instead

of performing a trivial replacement. For instance, we adjust

the width with respect to each layer to approach a better bal-

ance between the model capacity and computational com-

plexity. The expansion factor t in the micro-architecture is

decreased compared with the original configurations of Mo-

bileNetV2, accommodating increased output channels c in

the macro-architecture with the same level of computational

budget. There also exists a pointwise convolution without

subsequent nonlinear activation operation inserted between

the two block groups of different types, projecting interme-

diate features into a low-dimensional representation space.

Following a similar design principle as in MobileNetV2, we

also provide a spectrum of models at different computation-

al complexities.

4. Experiments

We conduct extensive experiments on several challeng-

ing benchmarks of visual recognition including image clas-

sification, object detection and person re-identification. Ex-

perimental results empirically demonstrate the scalability

and efficiency of our proposed HBONet which is ready to be

deployed in resource-aware platforms. All network archi-

tectures are constructed with the PyTorch [24] framework.

4.1. Image Classification

Our main experiments are performed to train the net-

works for the ImageNet [32] classification task. So far, both

in academia and industry, ImageNet is known as the most

famous image classification benchmark. It has about 1.2

million training images and 50 thousand validation images.

The images in the dataset are natural images, and each im-

age is annotated as one of 1000 object classes. We use scale

and aspect ratio augmentation together with horizontal flip-

ping as in [37, 12] to pre-process the dataset before feeding

it into the networks for training. During evaluation, we fol-

low a rescaling scheme that matches the smaller edges of

images to the scale proportional to the training input size

(i.e., divided by 0.875) and keeps their aspect ratios. Center

regions of training input size are cropped from the resized

images for single crop testing following common practice.

We re-implement the MobileNetV2 [33] with a spectrum

of width multipliers by ourselves. We keep the detailed op-

timization hyper-parameters totally the same for fair com-

parison when training our proposed corresponding network-

s. All models are trained with Stochastic Gradient Descend

(SGD) with momentum for 150 epochs using batch size

256. The momentum is set as 0.9 and weight decay as 4e-5.

The learning rate initiates from 0.05 and declines following

a cosine function shaped decay strategy approximating to

zero.

Experimental results with networks in a spectrum of

width multipliers are summarized in Table 2, where the re-
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Figure 3. Basic modules of Inverted Residual with Linear Bottleneck and Harmonious Bottleneck, shown as (1) and (2) respectively. Each

module is depicted under two circumstances with different settings of stride. Best viewed zoomed in.

Width Multiplier Top-1 / Top-5 Acc. (%) MFLOPs Top-1 Gain

MobileNetV2 (1.0) 72.2 / 90.5 300 –

HBONet (1.0) 73.1 / 91.0 305 0.9

MobileNetV2 (0.75) 70.0 / 89.0 209 –

HBONet (0.8) 71.3 / 89.7 205 1.3

MobileNetV2 (0.5) 64.6 / 85.4 97 –

HBONet (0.5) 67.0 / 86.9 96 2.4

MobileNetV2 (0.35) 59.7 / 81.7 59 –

HBONet (0.35) 62.4 / 83.7 61 2.7

MobileNetV2 (0.25) 52.3 / 75.9 37 –

HBONet (0.25) 57.3 / 79.8 37 5.0

MobileNetV2 (0.1) 34.9 / 56.6 13 –

HBONet (0.1) 41.5 / 65.7 14 6.6

Table 2. Performance comparison on ImageNet validation set for

different networks with varied width multipliers.

ported results of MobileNets are reproduced by ourselves

which are comparative or higher than officially released re-

sults [33]. For comparable complexity, we make minor

adjustments to the configuration with respect to numbers

of channels which are by default expected to be divisible

by 8. Specifically, numbers of channels in MobileNetV2

(0.1) and our proposed counterpart are set to be divisible

by 4, HBONets with width multipliers 0.5 and 0.25 set to

be divisible by 2. From Table 2, we observe that with

the spatial contraction-expansion and channel expansion-

contraction modules working collaboratively, our HBONet

outperforms vanilla MobileNetV2 consistently under each

level of complexity. Intriguingly, along with the decreasing

complexity, gain of our HBONet over MobileNetV2 with

the same level of computational cost tends to go larger. E-

specially under the computational budget of less than 40

MFLOPs, our network architectures still maintain decent

performance, achieving impressive improvement upon Mo-

bileNetV2 which neglects transformation on the spatial di-

mension in its building blocks.

We further conduct experiments on a spectrum of input

Input Resolution Top-1 / Top-5 Acc. (%) MFLOPs Top-1 Gain

MobileNetV2 (224× 224) 69.8 / 89.6 209 –

HBONet (224× 224) 71.3 / 89.7 205 1.5

MobileNetV2 (192× 192) 68.7 / 88.9 153 –

HBONet (192× 192) 70.0 / 89.2 150 1.3

MobileNetV2 (160× 160) 66.4 / 87.3 107 –

HBONet (160× 160) 68.3 / 87.8 105 1.9

MobileNetV2 (128× 128) 63.2 / 85.3 69 –

HBONet (128× 128) 65.5 / 85.9 68 2.3

MobileNetV2 (96× 96) 58.8 / 81.6 39 –

HBONet (96× 96) 61.4 / 83.0 39 2.6

Table 3. Performance comparison on ImageNet validation set

for the same networks with varied input image resolutions. Mo-

bileNetV2 (0.75) and HBONet (0.8) with almost the same com-

putational cost when the size of images fed into the networks is

identical are selected for this comparison.

Input Resolution Top-1 / Top-5 Acc. (%) MFLOPs Top-1 Gain

MobileNetV2 (224× 224) 60.3 / 82.9 59 –

HBONet (224× 224) 62.4 / 83.7 61 2.1

MobileNetV2 (192× 192) 58.2 / 81.2 43 –

HBONet (192× 192) 60.9 / 82.6 45 2.7

MobileNetV2 (160× 160) 55.7 / 79.1 30 –

HBONet (160× 160) 58.6 / 80.7 31 2.9

MobileNetV2 (128× 128) 50.8 / 75.0 20 –

HBONet (128× 128) 55.2 / 78.0 21 4.4

MobileNetV2 (96× 96) 45.5 / 70.4 11 –

HBONet (96× 96) 50.3 / 73.8 12 4.8

Table 4. Performance comparison on ImageNet validation set

for the same networks with varied input image resolutions. Mo-

bileNetV2 (0.35) and HBONet (0.35) with almost the same com-

putational cost when the size of images fed into the networks is

identical are selected for this comparison.

resolutions for comparison. From Table 3 and Table 4, it is

evident that our proposed HBONet also outperforms vanilla

MobileNetV2 with varied input image resolutions. It shows

the similar trend that decreasing computational cost leads to

larger margin between each group of rivals with the similar

complexity. The performance of MobileNetV2 in Table 3

3321



Width & Resolution Top-1 / Top-5 Acc. (%) MFLOPs

MobileNetV2 (0.5) (224× 224) 64.6 / 85.4 97

HBONet (0.6) (192× 192) 67.7 / 87.4 98

MobileNetV2 (0.6) (192× 192) 65.6 / 86.1 111

HBONet (0.5) (224× 224) 67.3 / 87.3 108

Table 5. Performance comparison on ImageNet validation set for

different networks with varied configurations of width multipliers

and input image resolutions. Evaluations are performed after re-

sizing the short sides of input images to 256, keeping their aspect

ratios and cropping 224× 224 regions in the center.

Down / Up-sampling rate Top-1 / Top-5 Acc. (%) MFLOPs

HBONet (2×) 58.3 / 80.6 44

HBONet (4×) 59.3 / 81.4 45

HBONet (8×) 58.2 / 80.4 45

Table 6. Performance comparison on ImageNet validation set for

different networks with varied spatial contraction units. HBONet

(0.25) is utilized as the test case. Notice that numbers of channels

in the HBONet (0.25) here are set to be divisible by 8, which is

different from the one in Table 2. A variant network is denoted

as HBONet (2k×) if the maximum number of spatial contraction

units in one block is k as illustrated in Figure 4.

and Table 4 is collected from the official GitHub page of

TensorFlow1.

We also take into consideration the trade-off between

width multiplier and input size, two group of networks

with similar complexity but different width multiplier and

input size are selected towards our verification goal. As

demonstrated in Table 5, we find that our proposed networks

achieve consistent improvement regardless of the combina-

tion of width multiplier and input resolution, demonstrating

the superiority of our architecture over previous engineered

blocks mainly comprising of plain depthwise separable con-

volutions.

Variants with cascade spatial contraction units. For

further exploration on the benefit of our novel spatial en-

coding methodology, we stack depthwise separable convo-

lutions with stride of 2 at the front-end and use a larger up-

sampling rate to restore the size of input feature maps or its

pooled version at the back-end. See Figure 4 for detailed

architecture of our variants. When more spatial contraction

units are inserted in one block, we only preserve the non-

linear activation operations at the start and the end respec-

tively, guaranteeing the linearity of our proposed building

block, and thus the network depth is not increased. With

this extension, we achieve further improvement compared

with our proposed basic modular design as illustrated in Ta-

ble 6, opening up a direction to explore in the future work.

The statistics with respect to computational complexity

and classification accuracy about a series of relevant com-

pact models are summarized in Table 7 for reference.

1https://github.com/tensorflow/models/tree/

master/research/slim/nets/mobilenet

DWConv+BN
(5×5,stride=2)

DWConv+BN
(3×3, stride=1)

PWConv+BN

Residual path

stride=1 block stride=2 block

PWConv+BN+ReLU6

Up-Sampling (2k×)

DWConv+BN
(5x5,stride=1)

Concatenation path

DWConv+BN
(5x5,stride=2)

DWConv+BN
(3x3, stride=1)

PWConv+BN

Residual path

PWConv+BN+ReLU6

Concatenation path

  AvgPooling
(2x2,stride=2)

× k

Up-Sampling (2(k-1)×)

× k

DWConv+BN
(5x5,stride=1)

Figure 4. Schema of variant blocks including k successive spatial

contraction units.

Networks Top-1 Acc. (%) FLOPs

MobileNetV1 (0.75) [9] 69.5 325M

CondenseNet (G=C=8) [11] 71.0 274M

ShuffleNetV1 1.5× (g=3) [45] 71.5 292M

MobileNetV2 (1.0) [33] 72.0 300M

IGCV3-D [36] 72.2 318M

ShuffleNetV2 1.5× [22] 72.6 299M

HBONet (1.0) 73.1 305M

Table 7. Performance comparison of several efficient networks

over top-1 classification accuracy on ImageNet validation set with

single crop. As is common practice for FLOPs, we count the to-

tal number of Multiply-Adds. The top-1 accuracy of our proposed

HBONet (1.0) is highlighted in blue, surpassing all the other state-

of-the-art networks under the complexity level of around 300 M-

FLOPs.

4.2. Object Detection

We also evaluate and compare the generalization ability

of our proposed HBONet and MobileNetV2 on the PAS-

CAL VOC object detection benchmark [3]. We perform

experiments with the fast single-stage detection framework,

Single Shot Detector (SSD) [20], using backbones with var-

ied width multipliers described in the previous sub-section

as feature extractors. Our evaluation aims at comparing the

efficiency of backbone networks thus we keep the detection

heads for classification and localization the same when ad-

justing the width of backbones. The specific setup (e.g. at-

tached locations in the backbone, structure of convolutional

layers, size of corresponding prior boxes, etc.) of these extra

prediction layers are consistent with MobileNetV2 + SSD

[33] in all of our experiments.
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Width Multiplier mAP (%) Gain

MobileNetV2 SSD320 (1.0) 70.4 –

HBONet SSD320 (1.0) 71.0 0.6

MobileNetV2 SSD320 (0.5) 63.6 –

HBONet SSD320 (0.5) 64.8 1.2

MobileNetV2 SSD320 (0.25) 51.6 –

HBONet SSD320 (0.25) 55.9 4.3

MobileNetV2 SSD320 (0.1) 36.3 –

HBONet SSD320 (0.1) 42.6 6.3

FD-MobileNet SSDLite [27] 62.1 –

MobileNet SSD300 [13] 68 –

Pelee [41] 70.9 –

Table 8. Performance comparison on PASCAL VOC 2007 test set

with SSD on 320×320 resolution for MobileNetV2 and HBONet.

Different backbones with varied widths are evaluated for a more

comprehensive benchmark.

We train all the models on the union of PASCAL VOC

2007 trainval set and 2012 trainval set. Our training scheme

primarily follows the original SSD [20], including data aug-

mentation and hard example mining process and so forth.

We set the batch size as 32 and train for 560 epochs in total.

We adopt SGD with momentum as the default optimizer,

with the momentum set as 0.9 and the weight decay as 5e-4.

The initial learning rate of original SSD starts at 1e-3. For

better convergence, we utilize the warm-up strategy which

linearly ramps up the learning rate from a close-to-zero one

(i.e., 1e-6) to the normal initial learning rate of 1e-3 during

the first 5 epochs. When the learning rate goes back to the

original schedule, it is divided by 10 at the epoch 360 and

480 respectively. Parallel to SSD with MobileNetV2, we

resize the input image size to 320× 320.

Evaluation results are reported under the protocol of

mean Average Precision (mAP) on the PASCAL VOC

2007 test set in Table 8. We observe that similar to the

main experiments on ImageNet dataset, SSD with narrow-

er HBONets as backbones outperforms the corresponding

MobileNetV2 + SSD to a greater extent. The compari-

son further demonstrates the improved representation abili-

ty of our proposed backbone network over MobileNetV2 on

the more challenging object detection problem, especially

in the extremely resource-constrained conditions. We al-

so include the results of other detection frameworks using

lightweight networks as feature extractors in Table 8 for ref-

erence.

4.3. Person Re­Identification

We finally perform experiments on the popular person

re-identification dataset Market-1501 to address instance

level recognition problems. The Market-1501 [46] dataset

consists of 12,936 training images, 15,913 gallery images

and 3368 queries, in which bounding boxes out of 1501 i-

dentities are captured by 6 cameras in front of the supermar-

ket inside the campus of Tsinghua University.

Width Multiplier
Performance Gain

mAP Rank-1 mAP Rank-1

MobileNetV2 (1.0) 70.5 88.5 – –

HBONet (1.0) 74.4 90.2 3.9 1.7

MobileNetV2 (0.5) 67.3 86.6 – –

HBONet (0.5) 71.0 88.7 3.7 2.1

MobileNetV2 (0.25) 60.1 81.7 – –

HBONet (0.25) 63.7 84.5 3.6 2.8

MobileNetV2 (0.1) 43.7 68.3 – –

HBONet (0.1) 47.7 73.2 3.9 5.0

ResNet-50 70.3 88.5 – –

Table 9. Comparison of Rank-1 accuracy and mAP on the Market-

1501 dataset with different networks with a spectrum of width

multipliers as backbones.

We adopt our HBONets and their corresponding Mo-

bileNetV2 described above as the backbone networks. For

training, image samples are rescaled slightly larger than the

target size, then cropped to the target size of 256 × 128
randomly. Horizontal flipping and normalization are adopt-

ed as the common data augmentation techniques. The re-

ID models are trained with the AMSGRAD [30] optimizer

(β1 = 0.9, β2 = 0.999, weight decay=5e-4) for 90 epochs

using batch size 32. The learning rate initiates at 0.001 and

is decayed by a factor of 0.1 at the epoch of 60. For the

relatively large HBONet (1.0) and its MobileNetV2 coun-

terpart, we fine-tune for another 30 epochs with decayed

learning rate for better convergence. We also apply label

smooth techniques during the whole training process since

images in the re-ID datasets are not diverse enough. The

adapted fully-connected classifier for re-ID models, with-

out available pre-trained weights loaded, is trained for 10

epochs in advance. During this warm-up stage, all the other

layers are fixed.

From Table 9, we observe that substantial and increas-

ing gains are achieved using our HBONets with shrinking

width multipliers, though there shows a saturating trend in

terms of the mAP evaluation. The compelling gain in the in-

stance recognition problem further demonstrates the power

of our proposed backbone. Corresponding results using the

prevalent ResNet-50 are also included in the last row for

reference.

5. Conclusion

In this paper, we propose HBO, a compact bottleneck

specially designed to improve the performance of the class

of lightweight CNNs based on depthwise separable convo-

lutions under extremely limited computational budget (e.g.

less than 40 MFLOPs). HBO jointly models the interdepen-

dencies across spatial and channel dimensions of depthwise

convolutional features via a bilaterally symmetric structure

consisting of a spatial contraction-expansion componen-

t and a channel expansion-contraction component. Exten-

sive experiments on several datasets show the effectiveness

of HBONets constructed with HBO modules.
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