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Abstract

Adaptive inference is a promising technique to improve

the computational efficiency of deep models at test time. In

contrast to static models which use the same computation

graph for all instances, adaptive networks can dynamically

adjust their structure conditioned on each input. While

existing research on adaptive inference mainly focuses on

designing more advanced architectures, this paper investi-

gates how to train such networks more effectively. Specif-

ically, we consider a typical adaptive deep network with

multiple intermediate classifiers. We present three tech-

niques to improve its training efficacy from two aspects:

1) a Gradient Equilibrium algorithm to resolve the con-

flict of learning of different classifiers; 2) an Inline Subnet-

work Collaboration approach and a One-for-all Knowledge

Distillation algorithm to enhance the collaboration among

classifiers. On multiple datasets (CIFAR-10, CIFAR-100

and ImageNet), we show that the proposed approach con-

sistently leads to further improved efficiency on top of state-

of-the-art adaptive deep networks.

1. Introduction

Convolutional neural networks (CNNs) have gained re-

markable success on a variety of visual recognition tasks

[21, 10, 27, 9]. Modern CNNs such as GoogleNet [32],

ResNet [10] and DenseNet [16] are endowed with unprece-

dented network depth to achieve state-of-the-art accuracy.

However, very deep models usually come along with high

computational cost, which prevents them from performing

real-time inference on resource-constrained platforms like

smart phones, wearable devices and drones.

Extensive efforts have been made to improve the in-

ference efficiency of deep CNNs in recent years. Pop-

ular approaches include efficient architecture design [30,

28, 15, 40], network pruning [8, 23, 26], weight quantiza-
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tion [4, 8, 17] and adaptive inference [7, 14, 2, 35, 6, 34].

Among them, adaptive inference is gaining increasing atten-

tion recently, due to its remarkable advantages. First, it is

compatible with almost all the other approaches, i.e., adap-

tive inference can be performed on highly optimized archi-

tectures like MobileNets [30] and ShuffleNets [28], and can

also benefit from model pruning and weight quantization.

Second, by conditioning the computation of a deep model

on its inputs, adaptive inference can save a considerable

amount of computational cost on “easy” samples and/or

less important regions, drastically reducing the average in-

ference time. Third, adaptive inference algorithms usually

have a set of tunable parameters that dynamically control

the accuracy-speed tradeoff. This is a valuable property

in many scenarios, where the computational budget may

change over time or vary across different devices. In con-

trast to static models which have a fixed computational cost,

adaptive models are able to trade accuracy for speed or vise

verse on-the-fly, to meet the dynamically changing demand.

Existing works on adaptive inference in the context of

deep learning mainly focus on designing more specialized

network architectures [14, 33, 34] or better inference algo-

rithms [2]. In comparison, less effort has been made to

improve the training process. But in fact, adaptive CNNs

usually have quite different architectures as conventional

deep models, and training strategies optimized for the later

may not be optimal for adaptive models. In this paper, we

consider a representative type of adaptive models that have

multiple intermediate classifiers at different depths of the

network. With this architecture, adaptive computation can

be performed by early exiting “easy” samples to speed up

the inference. The multi-scale dense network (MSDNet)

proposed in [14] represents the state-of-the-art of this type

of models. We aim to improve the training efficacy of such

multi-exits networks from the following two perspectives.

First, we need to resolve the conflict while jointly op-

timizing all the classifiers. It has been observed in [14]

that the individual classifiers in the network tend to nega-

tively affect the learning of one other, and [31] discussed

that the backbone network may not converge well due to
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the accumulataion of gradients from several classifiers in a

multi-head neural network. By introducing dense connec-

tions, MSDNet has addressed the problem that early clas-

sifiers interfere with later ones. However, deep classifiers

may also negatively affect earlier classifiers. To this end,

we present a Gradient Equilibrium (GE) technique that re-

scale the magnitude of gradients along its backward prop-

agation path. This allows the gradient to have a constant

scale across the network, which helps to reduce gradient

variance and stabilize the training procedure.

Second, we aim to encourage collaboration among dif-

ferent classifiers. This is achieved by introducing two

modules, named Inline Subnetwork Collaboration (ISC)

and One-for-all Knowledge Distillation (OFA), respectively.

The motivation for ISC is that later exits may benefit from

the prediction of early exits. Therefore, we use the pre-

diction logits from previous stage as a prior to facilitate the

learning of current and subsequent classifiers. The OFA fol-

lows from the intuition that the last exit always yield the

highest accuracy among all the classifiers, and thus it could

serve as a teacher model whose knowledge could be dis-

tilled into earlier exits.

We conduct extensive experiments on three image-

classification datasets (CIFAR-10, CIFAR-100, and Ima-

geNet). The experiments demonstrate that the proposed

techniques consistently improve the efficiency of state-of-

the-art adaptive deep networks.

2. Related Work

Computationally Efficient Deep Networks. Approaches

to computationally efficient deep networks can be summa-

rized as follows. One stream focuses on designing efficient

network architectures [30, 28, 15, 40, 13], including depth-

wise separable convolution [30], point-wise group convolu-

tion with channel shuffling [39], and learned group convolu-

tion [15], to name a few. The other line of research explores

methods to prune [8, 23, 11] or quantize [4, 8, 17] neural

network weights. These strategies are effective when neural

networks have a substantial amount of redundant weights,

which can be safely removed or quantized without sacrific-

ing accuracy.

Adaptive Inference. Recently, a new emerging direc-

tion which employs adaptive learning for efficient inference

has drawn increasing research attention, with representative

works proposed in [14, 2, 25, 35, 19, 6, 24, 38, 36, 29, 37,

18]. Adaptive inference aims at achieving efficient resource

allocation during the inference stage without sacrificing ac-

curacy, by strategically save computation on “easy” sam-

ples. Compared with other directions to improve network

efficiency, adaptive inference gains advantages due to its

compatibility, flexibility and high performance.

Most prior works are dedicated to learning adaptive net-

work topology selection policies. Bolukbasi et al. [2]

adopted an ensemble model with multiple deep networks

of varying size, and proposed to learn an adaptive decision

function to determine in which stage the example should

exit. Huang et al. [14] designed a novel multi-scale convo-

lutional network with multiple intermediate classifiers with

various computational budgets, which can be adaptively se-

lected during the inference stage. On top of ResNet [10]

architecture, Veit et al. [35] and Wang et al. [36] designed

gating functions to dynamically choose layers for efficient

inference. Figurnov et al. [6] further made the gating policy

adaptive to spatial locations. To further enable adaptive in-

ference in pixel-labeling tasks, pixel-wise attentional gating

(PAG) [19] was introduced in [19] for adaptively selecting a

subset of spatial locations to process, and an RNN architec-

ture was proposed in [29] for dynamically determining the

number of RNN steps according to allowed time budget.

Adaptive inference was also studied in accelerating visual

tracking systems in [38].

Almost all the prior works focus on designing network

architectures or algorithms for adaptive inference. In this

work, we made an orthogonal effort by exploring effec-

tive strategies to facilitate the training of deep networks for

adaptive inference. Our method is model-agnostic and can

be applied to various adaptive inference architectures with

multiple intermediate classifiers including [14, 2, 29]

Knowledge Distillation. Our work is also related to

knowledge distillation strategies explored in [12, 22, 3, 1],

in which outputs from teacher networks are utilized to su-

pervise the training of student networks. Different from

previous trials in training separate teacher models in ad-

vance, Lan et al. [22] proposed a one-stage online distil-

lation framework by utilizing multi-branch network ensem-

ble to enhance the target network. Our One-for-all Knowl-

edge Distillation strategy also shares a spirit similar to these

knowledge distillation strategies by acquiring knowledge

from larger models with higher accuracy. However, in con-

trast to previous work deploying knowledge distillation to

obtain better student models, we show such strategies can

promote collaborations between multi-scale classifiers in-

side one single network, and improve the efficacy of adap-

tive inference.

3. Method

In this section, we first set up the adaptive inference

model with multiple exits (classifiers). Then we discuss our

proposed techniques for improving the training in detail.

Roughly, the first technique, Gradient Equilibrium (GE),

is introduced to resolve the gradients conflict of different

classifiers; the second and third techniques, Inline Subnet-

work Collaboration (ISC) and One-for-all Knowledge Dis-
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Figure 1. Overview of the proposed training strategies for adaptive inference on a deep convolutional network. Gradient Equilibrium (GE)

is applied to resolve the gradients conflict among different exits. Inline Subnetwork Collaboration (ISC) and One-for-all Knowledge

Distillation (OFA) are proposed to enhance the collaboration of different classifiers.

tillation (OFA), are proposed to enhance the collaboration

among classifiers. Figure 1 gives an overview of the pro-

posed approach.

Adaptive inference model. We set up the adaptive infer-

ence model as a network that is composed of k classifiers.

The model can be viewed as a conventional CNN with k−1
intermediate classifiers attached at varying depths of the

network. Each classifier is also referred to as an exit. The

model can generate a set consisting of k predictions, one

from each of the exits, i.e.,

[y1, ..., yk]=f(x; θ) = [f1(x; θ1), . . . , fk(x; θk)],

where x is the input image, and fi and θi (i = 1, . . . , k)

represent the transformation learned by the i-th classifier

and its corresponding parameters, respectively. Note that

θi’s have shared parameters here.

At test time, the inference is performed dynamically

conditioned on each input. Formally, the prediction for

a test sample x is given by ŷ = fI(x)(x, θI(x)), where

I(x) ∈ {1, . . . , k} is a function of x, which is usually ob-

tained by a certain decision function. In our experiment, we

simply follow [14] to use a confidence-based approach to

compute I(x).

3.1. Gradient Equilibrium

Adaptive inference can be considered as a sequential pre-

diction process by a set of subnetworks. A straightforward

way to train an adaptive network is to train the subnetworks

sequentially. However, this method is far from optimal due

to the conflict between two optimization goals: to learn dis-

criminative features for the current classifier, and to main-

tain necessary information for generating high-quality fea-

tures for later classifiers [14]. A more effective training

strategy is to jointly optimize all the subnetworks. For ex-

ample, the MSDNet [14] minimizes a weighted cumulative

loss function:

L(y, f(x; θ)) =
∑

i

λiCE(y, fi(x; θi)), (1)

where λi > 0 is the coefficient for the i-th (i = 1, . . . , k)

classifier, and CE(·, ·) denotes the cross-entropy loss func-

tion. In MSDNet, all the λi’s are simply set to 1.

This form of loss functions may lead to a gradient imbal-

ance issue due to the overlap of the subnetworks. Specifi-

cally, consider training a k-exit adaptive network using the

sum of the cross-entropy losses of all the classifiers. The

backward graph can be described by a binary tree with

depth k, where the gradients come from leave nodes and

propagate from child nodes to father nodes. The gradient of

the i-th block is contributed by the i-th node as well as the

subsequent (k − i) leave nodes:

∇wi
L =

∑

i≤j≤k

λi∇wi
CEj , (2)

where wi denotes the features at the i-th stage.

From the above equation, it is easy to see that the to-

tal variance of ∇L can become very large as the gradients

propagate backward. Formally, consider a situation that the

gradients of the loss w.r.t. each wi are irrelevant, and the

total variance of ∇wi
L is computed by:

Var(∇wi
L) =

∑

i≤j≤k

λ2
jVar(∇wi

CEj). (3)
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As the number of subnetworks increases, the variance

of the gradient may grow overly large, leading to unstable

training. Note that this issue can be fixed by averaging the

cumulative loss, i.e., 1
k

∑

i λiCEi, but it tends to result in

overly small gradients, which hinders the convergence.

To address this issue, we propose a Gradient Equilib-

rium (GE) method which re-normalizes the gradients at fa-

ther nodes while maintaining the information flow in the

forward procedure. The GE method consists of a series of

gradient re-scaling operations R(·; s) where s is a scaling

factor:

R(x; s) = x; ∇xR(x; s) = s. (4)

To stabilize the backward procedure and resolve the gra-

dient conflict, we propose to re-normalize the gradients in

the following manner. For the i-th branch, we add two re-

scaling modules for the gradients contributed by the current

i-th classifier and the subsequent (k − i) classifiers, setting

their s to 1
k−i+1 and k−i

k−i+1 , respectively. This ensures that

the gradients have a bounded scale. To see this, we first

calculate the gradient of Lj w.r.t. wi, with the re-scaling

factors given above:

∇(GE)
wi

Lj =
∏

i≤h<j

k − h

k − h+ 1
×

1

k − j + 1
×∇wi

Lj

=
1

k − i+ 1
∇wi

Lj .

(5)

For simplicity, we let n=k−i+1 and Xj=∇wi
Li+j−1.

Then we have

Var

( k
∑

j=i

∇(GE)
wi

Lj

)

= Var

(

1

k − i+ 1

k
∑

j=i

∇wi
Lj

)

= Var

(

1

n

n
∑

j=1

Xj

)

=
1

n2

( n
∑

j=1

Var(Xj) +
∑

m 6=j

Cov(Xm, Xj)

)

≤
1

n2

( n
∑

j=1

Var(Xj) +
∑

m 6=j

√

Var(Xm)Var(Xj)

)

≤
1

n2

(

nmax
l

(Var(Xl)) + n(n− 1)max
l

(Var(Xl))

)

≤
2

n2
∗ n2 ∗max

l
(Var(Xl))

= 2max
l

(Var(Xl)) < ∞

(6)

3.2. Forward Knowledge Transfer

In this and the following subsections, we aim to en-

courage collaboration among different classifiers in adap-

tive networks. In existing work, different exits are usually

treated as independent models, except that their losses are

simply summed up during training process. In fact, these

classifiers heavily share parameters, and they are combined

to solve the same task at test time, hinting that a collabo-

rated learning process may significantly improve the train-

ing efficacy. Therefore, we propose two approaches to dis-

till this insight into practical algorithms.

Our first approach is to promote forward knowledge

transfer in adaptive networks. Specifically, we add a knowl-

edge transfer path between every two adjacent classifiers, to

directly bypass the prediction at the i-th stage to the (i+1)-
th classifier (i = 1, . . . , k − 1). The knowledge transfer

path may correspond to a tiny fully connected network or

some functions without learning ability. Our experimental

results show that even the simplest identity transform im-

proves the performance of adaptive inference, where each

classifier (except the very first one) can be considered as

performing residual learning. Note that in this case, we dis-

card the gradients along knowledge transform path in back

propagation to prevent a classifier from being negatively af-

fected by the latter ones.

Similar to the Knowledge Distillation algorithm [12], we

use the logits of the i-th classifier as the knowledge to facil-

itate the learning of its subsequent classifier, and we call the

above approach Inline Subnetwork Collaboration (ISC).

Although being very simple, ISC consistently improves the

performance of adaptive networks in our experiments.

3.3. Backward Knowledge Transfer

In the previous subsection, we introduce how to use the

prediction from an early classifier to boost the performance

for the latter classifiers. Here we introduce an approach to

utilize the deepest classifier to help the learning of shallow

classifiers. In a k-exit adaptive network, the last classifier

usually achieves the best accuracy due to its highest capac-

ity. This motivates us to adopt the knowledge distillation

algorithm in the network. We call the approach One-for-

all Knowledge Distillation (OFA), as all the intermediate

exits are supervised by the last classifier.

In specific, the loss function for the i-th classifier con-

sists of two parts weighted by a coefficient α:

Li = αCEi + (1− α)KLDi, (7)

where CEi is the Cross-Entropy loss, and KLDi quantifies

the alignment of soft class probabilities between the teacher

and student models using the Kullback Leibler divergence:

KLDi = −
∑

c∈Y

pk(c | x; θ, T ) log
pi(c | x; θ, T )

pk(c | x; θ, T )
. (8)
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4. Experiments

To demonstrate the effectiveness of our approach, we

conducted extensive experiments on three representative

image classification datasets, i.e., the CIFAR-10, CIFAR-

100 [20] and ILSVRC 2012 (ImageNet) [5]. In addition,

ablation studies are performed to analyze the three compo-

nents of our method. All of our experiments are conducted

on the multi-scale dense network (MSDNet) proposed in

[14], with the model re-implemented in PyTorch. Code to

reproduce our results is avaliable at https://github.

com/kalviny/IMTA.

Datasets. The CIFAR-10 and CIFAR-100 datasets con-

tain RGB images of size 32 × 32, corresponding to 10 and

100 classes, respectively. They both contain 50, 000 images

for training and 10, 000 images for testing. Following [14],

we hold out 5, 000 training images as a validation set to

search the confidence threshold for adaptive inference. We

apply standard data augmentation schemes [10]: 1) images

are zero-padded with 4 pixels on each side, and then ran-

domly cropped to produce 32×32 inputs; 2) images are hor-

izontally flipped with probability 0.5; 3) RGB channels are

normalized by subtracting the corresponding channel mean

and divided by their standard deviation.

The ImageNet dataset contains 1, 000 classes, with 1.2
million training images and 50, 000 for testing 1. We hold

out 50, 000 images from the training set as the validation

set. We follow the practice in [10, 16] for data augmentation

at training time. At test time, images are firstly rescaled to

256×256 followed by a single 224×224 center crop, which

are finally classified by the network.

Training Details. On the two CIFAR datasets, we opti-

mize all models using stochastic gradient descent (SGD)

with a mini-batch size 64. We use Nesterov momentum

with a momentum weight of 0.9 without dampening, and a

weight dacay of 10−4. The training is split into two phases.

In phase I, the models are trained from scratch with Gra-

dient Equilibrium for 300 epochs, with an initial learning

rate of 0.1, which is further divided by a factor of 10 after

150 and 225 epochs. In phase II, we start with the model ob-

tained from phase I, and fine-tune only the last layer of each

classifier with the proposed One-for-all Knowledge Distil-

lation (OFA) and Inline Subnetwork Collaboration (ISC).

This stage lasts for 180 epochs, with an initial learning rate

of 0.1 and divided by 10 after 90 and 135 epochs, respec-

tively. We apply the same training scheme to the ImageNet

dataset, except that we increase the mini-batch size to 256,

1This subset is usually referred to as the validation set, as the true test

set has not been made public. But in order to avoid confusion with the

additional validation set we hold out from the training set, we view this

subset as our test set.
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Figure 2. Accuracy (top-1) of budgeted batch classification as

a function of average computational budget per image on the

CIFAR-10.

and all the models are trained for 90 epochs both in phase I

and II with learning rate drops after 30 and 60 epochs.

Adaptive inference with MSDNet. Following [14], we

evaluate our model in the adaptive inference setting. For a

given input image, we forward it through the intermediate

classifiers in an one-by-one manner. At each exit, we com-

pare the prediction confidence, which is the highest soft-

max probability in our experiment, to a threshold, which is

dependent on the given computational budget. If the cur-

rent classifier is sufficiently confident about its prediction,

i.e., the confidence value is greater than the threshold, the

current prediction is used as the final prediction, and the

latter classifiers are not evaluated. Otherwise, the subse-

quent classifier is evaluated, until a sufficient high confi-

dence has been obtained, or the last classifier is evaluated.

Intuitively, “easy” examples are predicted by early classi-

fiers, while only “hard” examples are propagated through

the latter classifiers of the network. In practice, most sam-

ples are relatively easy, thus this adaptive evaluation pro-

cedure can drastically improve the inference efficiency by

saving computation on those large portion of “easy” sam-

ples in the dataset.

Compared Models. To verify the effectiveness of our ap-

proach for adaptive inference, we mainly compare with the

following baseline models.

• MSDNet [14]. As our proposed learning strategies are

also performed on MSDNet, it serves as a direct base-

line for our experiments.

• ResNet [10] and DenseNet [16]. We also compare our

approach with ResNets and DenseNets. We do not per-

form adaptive inference on these models, since they
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Figure 4. Ablation results produced by integrating GE, ISC, OFA

on CIFAR-100.

are not designed for this purpose, and are shown to

yield inferior results compared to MSDNet [14].

As we mainly focus on the training strategy of adaptive

CNNs, we do not compare with efficient models with more

advance architecure designs, such as the MobileNet [13],

ShuffleNet [39] and NASNet [40]. As discussed earlier in

the paper, the architecture innovations for these models, like

the depth separable convolutions, are orthogonal to adaptive

inference methods, and in principle, they may benefit the

adaptive models as well. To focus on the adaptive learning

setting, we leave investigations on this direction for future

work.

Model
Params

(×106)
Inference MADDs

×106
Accuracy

(Top-1)

Hydra-Res-d1 1.28 52 65.81

Hydra-Res-d2 2.86 118 71.24

Hydra-Res-d3 4.43 184 72.30

Hydra-Res-d4 6.01 251 73.35

Hydra-Res-d5 7.59 317 73.84

Hydra-Res-d6 9.17 383 74.29

Hydra-Res-d7 10.74 449 74.71

Hydra-Res-d9 13.90 581 75.26

MSDNet-Exit1 0.3 6.86 64.1

MSDNet-Exit2 0.65 14.35 67.46

MSDNet-Exit3 1.11 27.29 70.34

MSDNet-Exit4 1.73 48.45 72.38

MSDNet-Exit5 2.38 76.43 73.06

MSDNet-Exit6 3.05 108.9 73.81

MSDNet-Exit7 4.0 137.3 73.89

Ours-Exit1 0.3 6.86 64.00

Ours-Exit2 0.65 14.35 68.41

Ours-Exit3 1.11 27.29 71.86

Ours-Exit4 1.73 48.45 73.50

Ours-Exit5 2.38 76.43 74.46

Ours-Exit6 3.05 108.9 75.39

Ours-Exit7 4.0 137.3 75.96

Table 1. Classification accuracy of individual classifiers on

CIFAR-100.

4.1. Evaluation on CIFAR

Baselines. On the two CIFAR datasets, following the

MSDNet we train networks with three-scale features, i.e.,

32× 32, 16× 16, 8× 8. To better evaluate our approaches,

on CIFAR-10, the MSDNets are with {6, 8} exits and the

depths are {21, 36}. On CIFAR-100, we train MSDNets

with {4, 5, 6, 8} exits and the depths are {10, 15, 21, 36}
respectively. In this setting, we also compare with the orig-

inal baseline MSDNet, four ResNets with different depths,

and six DensNets with varying depths.

Results on CIFAR. The evaluation results on CIFAR-10

and CIFAR-100 are shown in Figure 2 and Figure 3, re-

spectively. The results for baseline MSDNet are plotted by

red curves (corresponding to three MSDNets with different

sizes), and the results for our proposed training strategy are

shown by black curves. As shown in the figures, MSDNet

trained with our proposed training strategy clearly achieves

better accuracy than the baseline MSDNet under the same

time budget. Moreover, the improvement increases as we

have more time budgets. For example, with 1×108 FLOPS,

our training strategy improves MSDNet baseline by more

than 0.5% in terms of top-1 accuracy. This demonstrates

that our training strategy can facilitate training of deeper
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Method Accuracy @TOP1

GE ISC OFA E-1 E-2 E-3 E-4 E-5

- - - 60.09 63.73 67.89 70.48 71.81

X 60.35 64.38 68.72 70.65 71.94

X 60.19 64.72 68.07 70.94 73.28

X 60.39 64.20 68.10 70.65 71.85

X X X 60.78 65.54 69.98 72.27 73.45

Table 2. Accuracy at different exits on CIFAR-100. The results produced by integrating GE, ISC, OFA.

Method Accuracy @TOP1

GE ISC OFA E-1 E-2 E-3 E-4 E-5

- - - 56.64 65.14 68.42 69.77 71.34

X 57.08 65.29 69.08 70.55 72.14

X 57.03 66.2 69.73 71.15 71.65

X 57.15 65.77 68.87 70.23 71.39

X X X 57.28 66.22 70.24 71.71 72.43

Table 3. Accuracy at different exits on ImageNet. The results produced by integrating GE, ISC, OFA.
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Figure 5. Top-1 accuracy of budgeted batch classification as a

function of average computational budget per image on ImageNet.

layers. Besides, compared with ResNets and DenseNets,

adaptive inference based approaches (MSDNet with and

without our training strategies) perform significantly bet-

ter with the same amount of computation. For instance,

to achieve the same accuracy on CIFAR-100 (Figure 3),

our approach requires half the amount of computation as

DenseNet and 1/3 of the computation as ResNet.

In Table 1, we report the classification accuracy of all

the individual classifiers of our model, and compare it with

MSDNet as well as the recently proposed HydraNets [34].

We can observe that the results of each individual classifier

of our network are competitive with state-of-the-art models.

4.2. Evaluation on ImageNet

Baselines. On ImageNet, we use the four-scale MSDNet,

i.e., 56× 56, 28× 28, 14× 14, 7× 7. Each of the MSDNet

has five classifiers inserted at different depths. Specifically,

the ith classifier is attached in the (t× i+ 3)th layer where

i ∈ {1, . . . , 5}, t ∈ {4, 6, 7} is the step for each network

block. We also compare with other competitive approaches,

ResNet [10], DenseNet [16] and GoogleNet [32].

Results on ImageNet. The results on ImageNet are

shown in Figure 5. One can observe that our method with

dynamic evaluation built on the top of MSDNets consis-

tently surpass the baseline network. With 1 × 108 FLOPS

computation budget, we improve the baseline method by

around 0.5% in terms of top-1 accuracy. Again, for the

same MSDNet architecture, our method improves the base-

line by a larger margin as more allowed computational bud-

gets. This further verifies that our proposed method is ef-

fective for deeper adaptive networks. Moreover, with the

same FLOPs, our method is more accurate and efficient

than the models of ResNets and DenseNets. For instance,

with around 1× 108 FLOPs, our approach outperforms the

ResNet and DensNet by more than 6%.

4.3. Ablation Study

To investigate the effectiveness of the individual mod-

ules of the proposed approach, i.e., GE, ISC and OFA,

we conduct ablative analysis on the CIFAR-100. We set

the baseline MSDNets on CIFAR-100 with three scales and

five classifiers and on ImageNet we use MSDNet with four

scales and five classifiers. Quantitive results are shown in

Table 2 and Table 3. Our full model consistently improves

the accuracy on both CIFAR-100 and ImageNet. For stages

two to four, our full model improves the baseline method

by more than 1% on CIFAR-100 dataset, and surpasses the

baseline by more than 0.5%. All the strategies consistently

improve the performance on both datasets.
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Figure 6. Validation accuracy on CIFAR-100 at different epochs.

We plot the results of three different depth of networks with 4, 6,

8 exits respectively. The losses of the models trained with GE are

consistently lower than the baseline models.

Gradient Equilibrium. To further evaluate the effective-

ness of Gradient Equilibrium, we compare different MS-

DNet architecture trained with Gradient Equilibrium and

with the baseline MSDNet. Validation accuracy in both set-

tings are shown in Figure 6. With Gradient Equilibrium,

the validation accuracy is consistently higher and the train-

ing procedure is more stable than the baseline algorithm for

all the compared architectures. This demonstrates Gradient

Equilibrium can help stabilize the training process and at

the same time improve the accuracy which is also shown in

Table 2(line 1 vs line 2) and Table 3.

Inline Subnetwork Collaboration. Inline Subnetwork

Collaboration (ISC) can consistently improve the perfor-

mance as shown in Table 2 (line 1 vs line 3) on CIFAR-

100 dataset. Deeper layers typically benefit more from ISC,

e.g., exit 5 (E-5) improves by more than 1.4% in Top-1 ac-

curacy. This might be explained by that deeper layer can

acquire more information from other classifiers with our in-

line subnetwork collaboration module. In Figure 7, we plot

the confidence rank of all the validation samples before and

after applying ISC. One can observe a clear trend that the

red dots, which corresponding to the results with ISC, is

more concentrated than the blue dots, which corresponding

to the results without ISC. This demonstrates that with ISC,

the consistency between the rank of samples at different ex-

its (exit-1 and exit-2 here) has significantly increased, and

partially explains the effectiveness of ISC.

One-for-all Knowledge Distillation. Quantitative im-

provements with the OFA strategy are shown in Table. 2

(line 1 vs line 4). Lower layers tend to gain larger im-
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Figure 7. The distribution of confidence scores at different exits.

In order to investigate the ISC’s effects to different classifiers, we

compare the ranks of each sample on different exits. It’s obvious

that the distribution is more consistent with ISC, i.e. more closer to

the identity mapping, which indicates ISC helps the collaboration

among exits.

provement, showing that they benefited from the supervi-

sion from the deepest classifier. These results further show

that knowledge distillation is indeed effective for the adap-

tive network to exploit its own prediction.

5. Conclusion

In this paper, we have presented three techniques to im-

prove the training of adaptive neural network with multiple

exits. On one hand, a Gradient Equilibrium (GE) approach

is proposed to stabilize the training procedure and resolve

the conflict of learning objectives of different classifiers.

One the other hand, we have introduced two techniques to

strengthen collaboration among classifiers. Although being

simple, the proposed techniques have shown its effective-

ness on a number of image recognition datasets, and signifi-

cantly improved the efficiency of the recently proposed MS-

DNet. Future research may focus on extending our results

to other types of adaptive networks, e.g., spatially adaptive

networks [6], or applying them to other computer vision

tasks, such as object detection, semantic segmentation and

image generation.
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