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Abstract

In this paper, we propose a level-aware progressive net-

work (LAP-Net) for single image dehazing. Unlike previous

multi-stage algorithms that generally learn in a coarse-to-

fine fashion, each stage of LAP-Net learns different levels

of haze with different supervision. Then the network can

progressively learn the gradually aggravating haze. With

this design, each stage can focus on a region with specific

haze level and restore clear details. To effectively fuse the

results of varying haze levels at different stages, we develop

an adaptive integration strategy to yield the final dehazed

image. This strategy is achieved by a hierarchical integra-

tion scheme, which is in cooperation with the memory net-

work and the domain knowledge of dehazing to highlight the

best-restored regions of each stage. Extensive experiments

on both real-world images and two dehazing benchmarks

validate the effectiveness of our proposed method.

1. Introduction

Outdoor images often suffer from the inclement weath-

ers, such as fog and haze, leading to the degradation of color

and textures for distant objects. The problem caused by fog

and haze has become a critical issue in many application-

s like visual surveillance, remote sensing, and intelligent

transportation. Plenty of techniques are proposed for de-

hazing [26], and most of them are based on the atmospheric

scattering model [29]. Extra information [19, 32] and mul-

tiple images [37, 31, 10] are solutions in the early stage.

Then single image dehazing techniques [14, 54, 4] gradual-

ly become popular because of their efficiency. The power-

ful feature representation ability of deep learning also pro-

motes the application of neural networks in haze removal

∗Corresponding author

[34, 20, 35, 48].

Figure 1. The principle of LAP-Net and comparison with a gener-

al multi-stage scheme in a coarse-to-fine fashion. In (b), different

stages in the coarse-to-fine network have the same supervision and

can only refine the details of stage 1 as marked in the red box. It

cannot handle the condition where haze varies in close and distant

regions even in the last stage as marked in yellow. By contrast,

in (c), each stage in our LAP-Net focuses on haze removal in d-

ifferent regions with different supervision, and after an adaptive

weighted fusion, the final restoration exhibits a clear view on the

whole. (Best viewed in color and zooming in.)

In the real-world situation, different positions of one im-

age can be influenced by different haze conditions. Corre-

spondingly, the degradation levels vary a lot along with dif-

ferent haze levels and the scene depth. As shown in Fig.1,

regions far away from the camera like the buildings are de-

graded more than the close tree. That is because with the in-

creasing of scene depth, the scattering mechanism becomes

more complex. In the distant regions, the scene radiance

should pass through more aerosol particles to the camera.

It is likely to be scattered among particles for many times

rather than reaching the camera after one time of scattering.

Therefore, more efforts should be made to handle the differ-
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ent degradation between close and distant regions. To ad-

dress this issue, the haze condition can be learned progres-

sively with different stages of the network, and each stage

only concerns one haze level. Specifically, mild haze can

be tackled by the network with fewer stages, whereas heavy

haze needs to be handled by more stages. Instead of giving

the same supervision to each sub-network in the model, d-

ifferent supervision should be given to different stages, and

in this way, the network can understand the gradual degra-

dation caused by the haze in an easy-to-hard fashion. To

this end, a sophisticated design of loss function that better

guides the network to learn varying haze levels at multiple

stages is required.

With the dehazed images at different stages, it becomes

a critical problem on how to effectively integrate them to

yield a natural result. Due to the complexity of real-world

scenes, the restoration quality of different regions is not

the same even in one stage. Thus we need to evaluate the

restoration quality of different regions so that well-restored

regions can contribute more to the final dehazed results.

From Fig.1 we can see, if a region is clearly restored like

the distant region in Ĵ
S of our LAP-Net, the local variation

of pixels at these positions will be higher. Such a variation

can be estimated by local entropy. Therefore, we employ

the measurement of local entropy as guidance. On the oth-

er hand, even if we are aware of whether a region in each

stage is well-restored, we still need to know which stage

can provide better results. It can be solved by an overal-

l consideration of all stages. The prediction of haze lev-

el is also useful since it indicates which stage is likely to

yield a better result in general. For example, if an image

suffers from severe haze, the latter stages are more likely

to produce a globally visually pleasant result. Therefore,

we model the stage-wise relationship sequentially with the

guidance of haze level prediction. Then the strengths of all

the stages can be integrated to derive the final result.

Combining the above ideas, we propose an end-to-end

model called level-aware progressive network (LAP-Net)

for dehazing. With a specially designed loss function, each

stage of LAP-Net focuses on one haze level and the en-

tire work can learn the aggravation of haze with progres-

sively increasing stages. After that, to effectively fuse the

restoration in each stage, we design a hierarchical integra-

tion scheme. The lower level pays attention to the content

of each stage with measuring the local entropy. It highlights

the clearly restored regions for each stage. The higher lev-

el models the inter-stage relations from a global view. It

weights all the stages with the guidance of haze level. With

the integration scheme, we can preserve the good regional

quality in each stage and fuse them for the final restoration.

Our contribution can be summarized as three-fold:

1) An end-to-end progressive dehazing network. Unlike

the previous multi-stage methods [34, 35], stages in our net-

work are supervised by the haze conditions from mild to

dense orderly so that our network can dehaze progressively

and is more adaptive to different haze conditions.

2) A hierarchical integration scheme guided by domain

knowledge. The lower level of the scheme focuses the clear

regions of each stage with the measurement of local entropy,

while the higher level further updates the weight of each

stage with the consideration of other stages and the guid-

ance of haze level.

3) Extensive experiments that prove the integration of

our designs can ultimately improve the performance of

restoration both qualitatively and quantitatively.

2. Related work

Evolution of Dehazing approaches. Early method-

s are often based on the external information such as ex-

isting georeference model [19], user interaction parame-

ter [32], and multiple images taken with different polar-

ization degrees [37, 39] or weather conditions [31]. As

it needs no extra devices or operations, single image de-

hazing techniques then raise the attention of researchers

[41, 8, 14, 30, 2, 9, 54, 4, 11, 27, 36], among which the

dark channel prior proposed by He et al. [14] is the most

widely used. Recently, the rapid progress of deep learning

also boosts learning-based dehazing methods. Tang et al.

[42] first try to learn the transmission with a random for-

est model. The single-stage CNN [5] and multi-scale CNN

[34] are proposed to estimate the transmission map. Then

[20, 52] try to learn the two parameters of transmission and

atmospheric light together. A conditional generative adver-

sarial network (cGAN) [23] is also used to directly restore

the haze-free image. Some methods [48, 28] dehaze by it-

eratively optimizing the transmission map.

Multi-stage strategy. Multi-stage networks have been

widely used in both high-level and low-level tasks. Stacked

hourglass and stage-wise refinement model are used for

high-level issues like pose estimation [33, 49] or object de-

tection [43]. For image de-weathering, Ren et al. [34, 35]

employ a cascaded network to refine stage by stage. Yang

et al. [50] repeatedly use a contextualized dilated network

for removing rain streaks. Li et al. [24] combine the RNN

and CNN structures to perform a stage-wise deraining. In

most of these methods, the multi-stage network is used in a

coarse-to-fine fashion. The latter stages always attempt to

refine the features from its predecessor. In comparison, dif-

ferent stages in our network have different responsibilities,

and they handle the haze in an easy-to-hard fashion. With

a specifically designed loss, the early stages focus on mild

haze, and the successive ones learn the denser haze based on

the early ones. The results of them are integrated to exploit

the advantages of each stage and thus to handle the complex

real-world scenes.

Attention mechanism in reconstruction. As our guid-
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Figure 2. An overview of our method. We use the cascaded hourglass units to construct t-net, which is used for estimating the transmission

map stage by stage with the supervision of different haze levels. Meanwhile, a residual dense pooling network serves as the A-net to learn

the atmospheric light. The predictions of t-net and A-net are sent to the restoration layer to generate progressive restorations. Then we

send the restored images of each stage as the input to the I-net for integration. The I-net cooperates with a hierarchical integration scheme

that selects the clear regions of each stage and weights them with the guidance of haze level to restore the final haze-free image.

ance for integration pays attention to the local content and

the sequential relation of different stages, we investigate the

works using attention mechanism for reconstruction. The

attention mechanism is not so common in low-level tasks as

that in pose estimation [7], object detection [22] or track-

ing [6]. Zhang et al. [53] employ a channel-wise attention

for super-resolution reconstruction. Xu et al. [46] propose

an Attention-Gated Conditional Random Fields for detect-

ing contours in images. In this study, considering the com-

plexity of dehazing, our guidance is not learned with plain

CNNs, but guided by the domain knowledge of haze level

and local entropy. It can benefit both intra- and inter- stage

restorations via a hierarchical integration scheme.

3. Proposed method

3.1. Atmospheric scattering model

The atmospheric scattering model is the basic model for

most dehazing methods. It can be formulated as:

I(x) = J(x)t(x) + (1− t(x))A, (1)

where x is the position of each pixel, I(x) and J(x) are

the intensity of the hazy image and clear image, respective-

ly. A is the atmospheric light, which indicates the over-

all environmental illuminance casting on the image. t(x)
denotes the medium transmission, which is the amount of

scene radiance reaching the camera without being scattered

by haze. In other words, t(x) represents how much the haze

influences on images. t(x) is determined by the scene depth

d(x) and scattering coefficient β, and it can be expressed as:

t(x) = e−βd(x). (2)

In general, the issue of dehazing first requires the estima-

tion of A and t(x). With these two parameters solved, the

clear image J(x) can be obtained by reversing Eq.(1) as:

J(x) = (I(x)−A)/t(x) +A. (3)

Although the restoration can be theoretically realized

with t(x) and A, it may not be practical for real-world s-

cenarios. That is because in distant regions, the scattering

may occur many times among the aerosol particles, and the

degradation becomes more complex than what is expected

in Eq.(2). In other words, β is not spatial-invariant across

the image, and that hinders the accuracy of t(x). Therefore,

the accurate estimation of t(x) is always a key step in ex-

isting works for improving the restoration quality. In our

approach, t(x) is estimated progressively by multi-stages

according to the haze level, and the results are integrated

via a hierarchical scheme for a natural restoration.

3.2. Overview of the proposed network

The overview of our level-aware progressive dehazing

network is shown in Fig.2. It has four components: 1) the

progressive transmission subnet (t-net), 2) the discrete at-

mospheric light subet (A-net), 3) the restoration layer and

4) the adaptive integration subnet (I-net). The hazy image

is sent to t-net and A-net concurrently. Particularly, if the

image is with color distortion, we first eliminate it accord-

ing to [25]. Then the predictions {t̂s}Ss=1 and Â pass the

restoration layer to generate images with different restora-

tion levels. The restorations are then weighted in I-net to

yield the ultimate result. The whole network can be learned

in an end-to-end manner.

In the t-net, the transmission t(x) of the hazy image is

learned by multiple progressive stages. Denote the number

of stages by S and adopt S = 4 in experiments. Then we

3278



can obtain S stages of transmission maps. Instead of being

supervised by the same ground truth like previous method-

s [34], different stages of the proposed network are super-

vised by different maps, which are generated with a fixed β
value for each stage and represent an increasing haze level.

In the A-net, the atmospheric light is learned via a classi-

fication task. We discretize its interval and use the 18-layer

residual network [16] for estimation.

The restoration layer obtains S dehazed images for the

S progressive stages using Eq.(3). The inputs of this lay-

er are transmission maps t(x) from the t-net and the atmo-

spheric light A from the A-net.

The I-net is proposed to combine the best-restored re-

gions from the S stages and to derive the final result with

the hierarchical integration scheme. The lower level con-

siders the clearness of the content at each stage with local

entropy. The higher level focuses on the information be-

yond the single stage. It takes sequential relations and the

consistency of each stage with the haze level into consider-

ation for updating weights.

3.3. The t­net for transmission map estimation

As aforementioned, previous methods [34, 5, 52] always

learn the transmission with one ground truth corresponding

to the hazy image. However, the uneven distribution of haze

in real-world scenes makes the network hard to estimate

the transmission in different haze conditions. Therefore, we

propose a progressive t-net to estimate the transmission with

different haze levels. This strategy helps the network han-

dle the complex distribution of haze in real scenes. The t-net

consists of S hourglass-shaped units for transmission esti-

mation. Note that learning the transmission of mild haze

is easier than that of dense haze. Therefore, we train the

network in an easy-to-hard fashion, and the responsibility

for estimating transmission is shared by a series of cascad-

ed sub-networks. The prediction of transmission map t̂s at

stage s can be formulated as:

t̂s =

{

F(I, θs) s = 1

F(I, θs, t̂s−1) s > 1,
(4)

where I, t̂ and s are the hazy image, the predicted transmis-

sion map and stage index, respectively. F denotes the net-

work with the parameter θs at stage s. At the first stage, the

t-net predicts the transmission map with a mild haze con-

dition. Then the predicted transmission map and the hazy

image are fed into the next stage to handle heavier haze.

3.4. The A­net for atmospheric light estimation

Atmospheric light is another important parameter in E-

q.(1). In previous methods[14, 34, 5], the atmospheric light

is manually obtained from the top 0.1% pixels in dark chan-

nel [14]. Such a statistical method cannot be directly inte-

grated into the network. To make the haze removal process

end-to-end learnable, we add a branch called A-net in the

network for atmospheric light estimation.

Though the value of each component of A is continuous,

we find that using MSE loss for learning has the regression-

to-mean problem [44], which is unfavorable to obtain a pre-

cise estimation. Therefore, we consider the estimation of A

as a classification task. Assuming the component of A to

be a real value in [Al, Ah], we separate this interval into

n(Ah − Al) discrete values (n is a precision controlling s-

calar and we have n = 100 here) and use the hazy image as

the input for the classification. We employ the Res-18 net-

work [16] as the basic network. The integration of low-level

and high-level information can help estimate the global il-

luminance on images. Thus we add a multi-layer feature

fusion module in the A-net. This module uses a global av-

erage pooling layer to normalize the features of different

layers into resolution 1 × 1 and stack them together. Then

it derives a normalized value to serve as the estimation of

atmospheric light.

3.5. The I­net for integrating dehazed images from
multiple stages

With the predicted {t̂s}Ss=1 and Â, a series of pro-

gressive dehazed results {Ĵs}Ss=1 can be obtained via the

restoration layer. Then we need to adaptively combine these

results to obtain the ultimate restoration Ĵ, which can avoid

the possible error propagation in the serial learning of t̂ and

further coordinate the good restoration of each stage. This

process is formulated as:

Ĵ =
∑

s

W
s ◦ Ĵs, (5)

where W
s is the normalized three-channel weight map for

stage s. It is extended by the one-channel weight ws derived

from the I-net. “◦” denotes the element-wise multiplication.

In this section, we discuss how we get the weights {ws}Ss=1

via the I-net.

3.5.1 The pipeline of I-net

The overall pipeline of the I-net is illustrated in Fig. 3. The

derivation of ws for each stage s involves three steps:

Step 1: Obtain the initial content-based weight ws
c . ws

c

focuses on the content of Ĵs at stage s. With the guidance

of local entropy, we highlight the clearly restored regions of

each stage. The confidence map of the clearness for each

stage is used as the content-based prediction of ws
c . The

detail is discussed in Section 3.5.2.

Step 2: Obtain the intermediate contextual weight ws
l

from the initial content-based weights obtained in Step 1.

ws
l is derived according to the information beyond the con-

tent of stage s itself. We call that information as the contex-

tual information since it includes the relationship with the
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previous/subsequent stages and the probability that stage s
is consistent with the haze level. The deviation of ws

l is

detailed in Section 3.5.3.

Step 3: Obtain the final weight ws by a pixel-wise refine-

ment. ws
l is refined with guided filter [15] and continuous

CRF [47] to obtain the final weight ws.

Figure 3. The structure of the I-net, which explores the memory

network and a hierarchical scheme for adaptive integration.

3.5.2 Content-based weight prediction

The initial content-based weights ws
c at stage s is obtained

as following:

ws
c = qs ⊕ (

∑

k

psk ◦ms
k). (6)

There are two kinds of inputs combined by element-wise

addition ⊕ for ws
c : one is guidance weight qs obtained from

the measurement of the local entropy; the other is memory

weight, which consists of the sum of weighted candidate

memories as
∑

k p
s
k ◦ ms

k. ms
k is the memory storing the

k-th feature map learned from Ĵ
s. It is weighted by a soft-

addressing scheme associated with its probability psk. ◦ here

also denotes the element-wise multiplication.

Local entropy guidance weight qs. The restoration of

hazy image essentially needs a result with clear texture and

vivid color. Local entropy can serve as the indicator of

clearness since it evaluates the local variation of pixels. If

the image is well-restored, the local variation in a patch can

be dramatic. Otherwise, if the image is under-processed,

the remaining haze causes the loss of clearness and lead-

s to lower local variation. Similarly, the darkness caused

by over-processing can also decrease the local variation.

Therefore, we use the local entropy map as the guidance

to focus on the clear patches, namely well-restored regions

in each stage. Denote N as the set of neighboring pixels

surrounding pixel location p in Ĵ
s, and qs(p) as the element

at the pixel location p of the guidance weight qs. qs(p) is

calculated as the local entropy of N via a residual block as:

qs(p) = G(Hs(N ), θsq) + Hs(N ), (7)

where G is a three-layer convolutional network with param-

eter θsq . Hs(N ) = −
∑

i∈N PN (xi)logPN (xi) denotes the

local entropy of N at stage s, which also filters the com-

pletely black or white pixels like [13], and xi is one possible

grayscale value in {x1, x2, . . . , xn}. In this paper we have

n = 256. PN (xi) is the normalized histogram counts in the

patch N .

Memory ms
k and its probability psk. Besides qs, we

also hope to take the features from the restored image Ĵ
s

into consideration so that the predicted weight map can be

smooth. To this end, we define K candidate memories of

{ms
k}

K
k=1 for each stage. Each memory is used to store the

one-channel feature map extracted from Ĵ
s via a network H

as ms
k = H(Ĵs, θsk). The probability psk indicates the con-

fidence that the feature map in ms
k can serve as the weight.

psk here is defined as the matching degree between ms
k and

the local entropy map of Hs, which is calculated as follows:

psk =
exp(SSIM(ms

k,H
s))γ

∑

k exp(SSIM(ms
k,H

s))γ
, (8)

where the SSIM(·) measures the matching degree and de-

rived from the structural similarity index [45]. γ can ampli-

fy the focusing degree on one memory by enlarging it.

With ms
k and psk, we can obtain the memory weight. Like

[12], instead of specifying single ms
k with the highest prob-

ability as the final memory weight, we use the weighted

sum, namely
∑

k p
s
k ◦m

s
k. This strategy not only makes the

memory weight more comprehensive but more importantly

makes this manipulation differentiable.

3.5.3 Contextual weight prediction

The initial content-based weight ws
c focuses on regions in-

side one stage, but the relationship among the weights from

different stages remains untreated. Take the restoration of

Ĵ
S−1 and Ĵ

S in Fig.2 as an example, if we only consider

the content of the single stage, the buildings in distant re-

gions are clearer than the others (like the trees in the close

region) for both images. However, only when we consider

from a contextual view, namely the relationship among the

different stages, can we notice the distant region in stage S
is restored better than that in stage S − 1. Meanwhile, the

guidance of haze level also plays an important role in bal-

ancing the stages. If the image is with dense haze, the latter

restoration stages are more likely to recover clear details.

To obtain the comprehensive weights for each stage, we

derive intermediate contextual weights from a higher level.

We analyze the inter-stage relations and leverage the glob-

al guidance of haze level to highlight the restoration stage

which has high consistency with the haze condition.

Inspired by [51], we employ a “budget gating” technique

to model the intermediate contextual weights ws
l based on
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the result of ws
c . The contextual weighting is formulated as:

ws
l =







ws
c ⊕ pslv s = 1

s−1
∏

i=1

(1− wi
l)(w

s
c ⊕ pslv) s > 1,

(9)

where
∏

denotes the element-wise product operator, which

multiplies the inverse weight of all the early stages together

with the weight at the current stage s. The inverse weight

of wi
l is obtained by 1 − wi

l . The pslv is the consistency

degree of stage s with the haze level of the input image,

and it is obtained by learning with a classification module.

This module has a similar architecture and learning strategy

to A-net. To achieve the haze level classification, we first

define S levels of the haze degree, which is in accord with

the number of stages. Similar to the A-net, the hazy image

is sent to the network but output S probabilities, which are

normalized by the softmax function and serve as {pslv}
S
s=1.

3.6. Network training

The entire network is trained in a two-stage scheme. In

the first phase, the t-net and A-net are trained independent-

ly. The parameters {θs}Ss=1 of the t-net are learned by min-

imizing the MSE criterion Lt over N training samples:

Lt =
1

N

N
∑

i=1

S
∑

s=1

||F(Ii, θ
s, t̂s−1

i )− tsi ||
2, (10)

where F is the mapping function mentioned in Section 3.3,

Ii is the i-th input hazy image from N samples and tsi is the

s-th level transmission ground truth for the corresponding

image. t̂s−1
i is the prediction from the previous stage. Ob-

viously, it only exists when s is over 2. The parameters for

the A-net is learned via a normal cross-entropy loss LA:

LA = −
K
∑

k=1

pklog(p̂k), (11)

where pk = {p1, p2, . . . , pK} is the ground-truth probabil-

ity distribution of the k-th class of A value, and p̂k is its

estimation.

In the second phase, we initialize the t-net and A-net with

parameters learned in the first phase, and jointly optimize

the entire network with a multi-task loss function:

L = Lt + LA + Lc, (12)

where Lc is a restoration loss to minimize the difference

between predicted haze-free image Ĵ and ground truth J

over N samples as Lc =
1
N

∑N
i=1 ||Ĵi − Ji||

2.

4. Experiments

4.1. Experiments setup

Network parameters. Our experiments are conducted

with the Caffe framework [17] on a NVIDIA TITAN X G-

PU. During the training process, we randomly crop the in-

put images with the size of 64×64. Then we send them into

the network with a mini-batch size of 96. The CRF module

parameters are the same as [47]. For the optimization, we

adopt the ADAM algorithm [18]. The initial learning rate of

the t-net is 0.001 and decreases by 10 times per 5000 itera-

tions. The weight decay is 0.005, and β1 and β2 are fixed as

the default value of 0.9 and 0.999. The training work stop-

s after 30,000 iterations. The A-net is finetuned from the

Resnet-18 model with an initial learning rate of 10−5. The

other settings are the same as those in the t-net. After the

first training phase, we start to end-to-end train the whole

network with the pre-trained parameters of the above two

sub-networks. The learning rate of the layers that have been

pre-trained is set to 10−7. Except for them, the same hyper-

parameters of the first phrase are all used in this phase.

Training data. Owing to the difficulty in obtaining real-

istic training data, we adopt the similar strategy as the pre-

vious methods [34, 5, 20, 35, 52] to synthesize hazy images

with NYU depth dataset v2 [40] according to Eq.(2). Differ-

ent from the previous ones, for better verifying the general-

ization of our method in real-world haze scenes, we do not

select images from NYU dataset for testing. The scattering

coefficient β is selected from [0.4, 1.6], and the atmospheric

light is from [0.7, 1.0] to synthesize hazy samples.

4.2. Quantitative evaluation

We conduct the quantitative evaluation on two bench-

mark dataset of RESIDE [21] and O-HAZE [3]. The 500

outdoor image pairs of the Synthetic Objective Testing Set

(SOTS) in RESIDE dataset are always with mild haze. The

O-HAZE dataset contains 45 image pairs with denser haze

than SOTS, and it can be used to test the performance for

challenging conditions. Like [1], we use SSIM [45] and

CIEDE2000 [38] for evaluation.

The first row in Table 1 reports the results of our method

together with the other state-of-the-art ones on the outdoor

image of SOTS in RESIDE dataset 1. Ours performs fa-

vorably against the state-of-the-art dehazing methods. The

metrics of SSIM and CIEDE2000 of our algorithm both

achieve the best performance. These indexes are 0.019 and

0.336 better than the second-best one of [20] and [5], re-

spectively. The visualized comparison in Fig.4 also shows

ours can maintain the clear textures of close objects, like the

bus and the ground while removing the influence of haze.

The fidelity of color is also preserved and the restored im-

age is not over-saturated like [14] or over-exposed like [52].

The comparison on the O-HAZE dataset is shown in the

second row of Table 1. Facing the challenging condition of

1Note that there are two branches of indoor and outdoor in the latest

released version of SOTS, which is a little different from what is stated

in [21]. Our comparison is on the outdoor branch. For a fair comparison

between the SOTS and O-HAZE, the metric of SSIM is calculated with the

grayscale image, which is in accord with the results reported in [3].
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Table 1. Quantitative comparison on RESIDE and O-HAZE dataset.
Dataset DCP [14] MSCNN [34] DehazeNet [5] AOD [20] GFN [35] DCPCN [52] cGAN [23] PDN [48] Ours

RESIDE

SOTS-outdoor

SSIM 0.786 0.855 0.873 0.915 0.836 0.883 0.881 0.865 0.934

CIEDE2000 14.162 8.253 6.200 7.141 6.788 7.781 6.317 8.694 5.864

O-HAZE
SSIM 0.735 0.765 0.666 0.608 0.721 0.710 0.626 0.739 0.798

CIEDE2000 20.745 14.670 17.348 19.110 17.269 22.311 14.162 17.402 13.743

Figure 4. Visualization comparison of dehazing results on SOTS-outdoor of RESIDE [21] and O-HAZE [3]. SSIM/CIEDE2000 metrics

are also marked below each image. (Best viewed in color and zooming in.)

Figure 5. Qualitative comparison with other methods on real-world images. (Best viewed in color and zooming in.)

denser haze than SOTS, the performance of our network

can still be better than existing works. Compared with

MSCNN [35], which has the best performance of SSIM,

the absolute improvement of our method is about 0.033.

The CIEDE2000 is also 0.419 lower than the second-best

method of cGAN [23], although it is trained on both indoor

and outdoor data with perception loss and adversarial loss.

From Fig.4 we can also find that our result preserves the

global color fidelity of the haze-free image when compared

with the others. The dense haze in the far distant regions is

also restored without over-processing.

4.3. Visual Comparison

The qualitative comparison results of [14, 34, 5, 20, 35,

52, 23, 48] and ours are shown in Fig.5. With such a com-

parison, we find our method can achieve more appealing re-

sults under various conditions. The color and texture of dis-

tant objects, like the brick wall in “sweden”, and the sculp-

ture in “pedestrian” are restored more clearly in our result.

Compared with methods like DCP [14] or DCPCN [52], our

method also avoids over-saturation or over-exposure when

restores the color, and it is attributed to our appropriate es-

timation of atmospheric light. Another remarkable strength

of our method is that the good restoration of distant regions

is not at the expense of the quality of close objects. Compar-

ing the highlighted faces in “pedestrian”, we find that ours

keeps the color fidelity better than methods like DCP [14],

MSCNN [34] and PDN [48], even though PDN restores the

distant sculpture as well. It benefits from our adaptive in-

tegration scheme, which provides different restoration de-

grees to different regions according to the degradation con-

dition.

4.4. Ablation study

In this section, we perform a study on the effect of each

component of our method on O-HAZE dataset. Note that

except for the compared part, the others are fixed as the final

network.
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Table 2. Quantitative comparison for ablation study.

single stage network X

multi-stage network (coarse-to-fine) X

progressive
network

average fusion (baseline) X

LSTM X

CntWgt X X X X

CtxtWgt-sequential balance X X X X X

CtxtWgt-haze level X X X X

atmospheric
light estimation

top 0.1% X

regression X

classification X X X X X X X X

SSIM 0.678 0.729 0.755 0.769 0.787 0.782 0.784 0.735 0.781 0.798

CIEDE2000 18.201 17.321 15.996 15.035 14.640 14.673 14.549 15.733 14.493 13.743

*
CntWgt=content-based weighting, CtxtWgt=contextual weighting

Progressive strategy. As can be seen in Table 2, the sin-

gle stage network gets the worst result. In comparison, the

multi-stage network, even only trained in a coarse-to-fine

fashion can improve the SSIM at 0.051 and CIEDE2000 at

0.88. It proves the multi-stage network performs better than

the single-stage one. Compared with the coarse-to-fine net-

work, the progressively trained network can always perform

better no matter what the integrating strategy is. The basic

one that averages all the stages improves metrics at 0.026

and 1.325 on the coarse-to-fine one, and it shows the effec-

tiveness of our progressive learning strategy.

Integration scheme. The control group of LSTM

scheme is employed to generate weights through a direct

recurrent structure, and it can be deemed a kind of general

attention mechanism-based strategy. We can see it improves

the metrics at 0.014 and 0.961 on the baseline. When it

turns to the domain knowledge-based attention with mem-

ory network, the improvement becomes more significant.

Even only guided by local entropy, the metrics are improved

at 0.032 and 1.356 on the baseline of averaging. For the

contextual weighting, the global guidance of haze level can

achieve slightly better performance than that of only consid-

ering the sequential relation. We also find that based on the

result of content-based weighting, the contextual weighting

can help to improve the performance. Otherwise, it is not as

good as the content-based one. This phenomenon shows the

correct prediction of each stage is the basis for the ultimate

integration.

Atmospheric light estimation. The traditional one that

estimates from the top 0.1% pixels in dark channel lim-

its the performance since it is easily influenced by high-

intensity objects. Compared with it, the A-subset trained

with the MSE loss (regression) can substantially increase

the performance at 0.046 and 1.24. Regarding the estima-

tion as a classification task can make the estimation of A

more precise and further improve the metrics at 0.017 and

0.75 on the “regression” one.

Effect of Losses. The effect of different loss terms in E-

q.(11) is tested in Table 3. Since Lt and LA are used to learn

two parameters of the scattering model, it is not proper to

test them separately. Therefore, we test the performance of

Lt+LA and Lc, respectively. With Lt+LA, SSIM is 0.791

which is higher than the group with Lc at 0.014. It proves

the scattering model can help to effectively restore the struc-

ture details of the hazy image. However, the CIEDE2000 is

a little lower at 0.083 with Lc, and it means Lc is more im-

portant to keep the color fidelity of the restoration.

Table 3. The effect of different terms of the loss function.
SSIM CIEDE2000

Lt + LA only 0.791 14.453

Lc only 0.777 14.370

L 0.798 13.743

5. Conclusion

In this paper, we propose an end-to-end level-aware pro-

gressive network for single image dehazing. It first predict-

s the transmission and atmospheric light concurrently and

outputs the restoration with progressively increasing dehaz-

ing levels. Then we deem the restorations as a sequence and

employ a hierarchical scheme for computing the weight of

each stage. To pick the clear regions of each stage and fuse

them together, we propose a hierarchical integration scheme

with domain knowledge of haze for addressing the stages

in the network. Experimental results on two representative

haze datasets and real-world images validate the effective-

ness of our methods.
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