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Abstract

Understanding people’s actions and interactions typi-

cally depends on seeing them. Automating the process of

action recognition from visual data has been the topic of

much research in the computer vision community. But what

if it is too dark, or if the person is occluded or behind a

wall? In this paper, we introduce a neural network model

that can detect human actions through walls and occlu-

sions, and in poor lighting conditions. Our model takes

radio frequency (RF) signals as input, generates 3D human

skeletons as an intermediate representation, and recognizes

actions and interactions of multiple people over time. By

translating the input to an intermediate skeleton-based rep-

resentation, our model can learn from both vision-based

and RF-based datasets, and allow the two tasks to help each

other. We show that our model achieves comparable accu-

racy to vision-based action recognition systems in visible

scenarios, yet continues to work accurately when people are

not visible, hence addressing scenarios that are beyond the

limit of today’s vision-based action recognition.

1. Introduction

Human action recognition is a core task in computer vi-

sion. It has broad applications in video games, surveil-

lance, gesture recognition, behavior analysis, etc. Action

recognition is defined as detecting and classifying human

actions from a time series (video frames, human skeleton

sequences, etc). Over the past few years, progress in deep

learning has fueled advances in action recognition at an

amazing speed [30, 40, 36, 31, 48, 10, 18, 8, 11, 23, 17,

20]. Nonetheless, camera-based approaches are intrinsi-

cally limited by occlusions – i.e., the subjects have to be

visible to recognize their actions. Previous works mitigate

this problem by changing camera viewpoint or interpolating

frames over time. Such approaches, however, fail when the

camera is fixed or the person is fully occluded for a rela-

tively long period, e.g., the person walks into another room.

Intrinsically, cameras suffer from the same limitation we,

∗Indicates equal contribution. Ordering determined by inverse alpha-

betical order.

Figure 1: The figure shows two test cases of our system. On the left, two

people are shaking hands, while one of them is behind the wall. On the

right, a person is hiding the dark and throwing an object at another per-

son who is making a phone call. The bottom row shows both the skeletal

representation generated by our model and the action prediction.

humans, suffer from: our eyes sense only visible light and

hence cannot see through walls and occlusions. Yet visi-

ble light is just one end of the frequency spectrum. Radio

signals in the WiFi frequencies can traverse walls and oc-

clusions. Further, they reflect off the human body. If one

can interpret such radio reflections, one can perform action

recognition through walls and occlusions. Indeed, some re-

search on wireless systems has attempted to leverage this

property for action recognition [33, 39, 19, 1, 37]. However,

existing radio-based action recognition systems lag signif-

icantly behind vision-based systems. They are limited to

a few actions (2 to 10), poorly generalize to new environ-

ments or people unseen during training, and cannot deal

with multi-person actions (see section 2 for details).

In this paper, we aim to bridge the two worlds. We

introduce, RF-Action, an end-to-end deep neural network

that recognizes human actions from wireless signals. It

achieves performance comparable to vision-based systems,

but can work through walls and occlusions and is insen-

sitive to lighting conditions. Figure 1 shows RF-Action’s

performance in two scenarios. On the left, two people are

shaking hands, yet one of them is occluded. Vision-based
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systems would fail in recognizing the action, whereas RF-

Action easily classifies it as handshaking. On the right, one

person is making a phone call while another person is about

to throw an object at her. Due to poor lighting, this latter

person is almost invisible to a vision-based system. In con-

trast, RF-Action recognizes both actions correctly.

RF-Action is based on a multimodal design that al-

lows it to work with both wireless signals and vision-based

datasets. We leverage recent work that showed the feasi-

bility of inferring a human skeleton (i.e., pose) from wire-

less signals [43, 45], and adopt the skeleton as an interme-

diate representation suitable for both RF and vision-based

systems. Using skeletons as an intermediate representation

is advantageous because: (1) it enables the model to train

with both RF and vision data, and leverage existing vision-

based 3D skeleton datasets such as PKU-MMD and NTU-

RGB+D [26, 31]; (2) it allows additional supervision on the

intermediate skeletons that helps guide the learning process

beyond the mere action labels used in past RF-based action

recognition systems; and (3) it improves the model’s ability

to generalize to new environments and people because the

skeleton representation is minimally impacted by the envi-

ronment or the subjects’ identities.

We further augment our model with two innovations that

improve its performance: First, skeleton, particularly those

generated from RF signals, can have errors and mispredic-

tions. To deal with this problem, our intermediate repre-

sentation includes in addition to the skeleton a time-varying

confidence score on each joint. We use self-attention to al-

low the model to attend to different joints over time differ-

ently, depending on their confidence scores.

Second, past models for action recognition generate a

single action at any time. However, different people in the

scene may be engaged in different actions, as in the scenario

on the right in Figure 1 where one person is talking on the

phone while the other is throwing an object. Our model can

tackle such scenarios using a multi-proposal module specif-

ically designed to address this issue.

To evaluate RF-Action, we collect an action detection

dataset from different environments with a wireless device

and a multi-camera system. The dataset spans 25 hours and

contains 30 individuals performing various single-person

and multi-person actions. Our experiments show that RF-

Action achieves performance comparable to vision-based

systems in visible scenarios, and continues to perform well

in the presence of full occlusions. Specifically, RF-Action

achieves 87.8 mean average precision (mAP) with no occlu-

sions, and an mAP of 83.0 in through-wall scenarios. Our

results also show that multimodal training improves action

detection for both the visual and wireless modalities. Train-

ing our model with both our RF dataset and the PKU-MMD

dataset, we observe a performance increase in the mAP of

the test set from 83.3 to 87.8 for the RF dataset (no oc-

clusion), and from 92.9 to 93.3 for the PKU-MMD dataset

(cross subjects), which shows the value of using the skele-

ton as an intermediate common representation.

Contributions: The paper has the following contributions:

• It presents the first model for skeleton-based action recog-

nition using radio signals; It further demonstrates that

such model can accurately recognize actions and inter-

actions through walls and in extremely poor lighting con-

ditions using solely RF signals (as shown in Figure 1).

• The paper proposes “skeletons” as an intermediate rep-

resentation for transferring knowledge related to action

recognition across modalities, and empirically demon-

strate that such knowledge transfer improves perfor-

mance.

• The paper introduces a new spatio-temporal attention

module, which improves skeleton-based action recogni-

tion regardless of whether the skeletons are generated

from RF or vision-based data.

• It also presents a novel multi-proposal module that ex-

tends skeleton-based action recognition to detect simulta-

neous actions and interactions of multiple people.

2. Related Works

(a) Video-Based Action Recognition: Recognizing ac-

tions from videos has been a hot topic over the past several

years. Early methods use hand-crafted features. For in-

stances, image descriptors like HOG and SIFT have been

extended to 3D [6, 27] to extract temporal clues from

videos. Also, descriptors like improved Dense Trajectories

(iDT) [35] are specially designed to track motion informa-

tion in videos. More recent solutions are based on deep

learning, and fall into two main categories. The first cat-

egory extracts motion and appearance features jointly by

leveraging 3D convolution networks [5, 30]. The second

category considers spatial features and temporal features

separately by using two-stream neural networks [32, 36].

(b) Skeleton-Based Action Recognition: Skeleton-

based action recognition has recently gained much attention

[12, 4]. Such an approach has multiple advantages. First,

skeletons provide a robust representation for human dynam-

ics against background noise [23]. Second, skeletons are

more succinct in comparison to RGB videos, which reduces

computational overhead and allows for smaller models suit-

able for mobile platforms [20].

Prior work on skeleton-based action recognition can be

divided to three categories. Early work used Recurrent Neu-

ral Networks (RNNs) to model temporal dependencies in

skeleton data [9, 31, 48]. Recently, however, the litera-

ture shifted to Convolutional Neural Networks (CNNs) to

learn spatio-temporal features and achieved impressive per-

formance [8, 23, 20]. Also, some papers represented skele-

tons as graphs and utilized graph neural network (GNN)
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Figure 2: RF heatmaps and an RGB image recorded at the same time.

for action recognition [38, 13]. In our work, we adopt

a CNN-based approach, and expand on the Hierarchical

Co-occurrence Network (HCN) model [23] by introducing

a spatio-temporal attention module to deal with skeletons

generated from wireless signals, and a multi-proposal mod-

ule to enable multiple action predictions at the same time.

(c) Radio-Based Action Recognition: Research in wire-

less systems has explored action recognition using radio

signals, particularly for home applications where privacy

concerns may preclude the use of cameras [37, 14, 29, 1].

These works can be divided into two categories: The first

category is similar to RF-Action in that it analyses the radio

signals that bounce off people’s bodies. They use action la-

bels for supervision, and simple classifiers [37, 14, 29, 1].

They recognize only simple actions such as walking, sitting

and running, and a maximum of 10 different actions. Also,

they deal only with single person scenarios. The second

category relies on a network of sensors. They either deploy

different sensors for different actions, (e.g., a sensor on the

fridge door can detect eating) [19, 39], or attach a wearable

sensor on each body part and recognize a subject’s actions

based on which body part moves [21]. Such systems require

a significant instrumentation of the environment or the per-

son, which limits their utility and robustness.

3. Radio Frequency Signals Primer

We use a type of radio commonly used in past work on

RF-based action recognition [45, 24, 41, 7, 28, 33, 16, 42,

46, 44]. The radio generates a waveform called FMCW and

operates between 5.4 and 7.2 GHz. The device has two

arrays of antennas organized vertically and horizontally.

Thus, our input data takes the form of two-dimensional

heatmaps, one from the horizontal array and one from the

vertical array. As shown in Figure 2, the horizontal heatmap

is a projection of the radio signal on a plane parallel to the

ground, whereas the vertical heatmap is a projection of the

signal on a plane perpendicular to the ground (red refers to

large values while blue refers to small values). Intuitively,

higher values correspond to higher strength of signal reflec-

tions from a location. The radio works at a frame rate of 30

FPS, i.e., it generates 30 pairs of heatmaps per second.

As apparent in Figure 2, RF signals have different

properties from visual data, which makes RF-based action

recognition a difficult problem. In particular:

• RF signals in the frequencies that traverse walls have

lower spatial resolution than visual data. In our system,

the depth resolution is 10 cm, and the angle resolution is

10 degrees. Such low resolution makes it hard to distin-

guish activities such as hand waving and hair brushing.

• The human body is specular in the frequency range that

traverse walls [2]. RF specularity is a physical phe-

nomenon that occurs when the wavelength is larger than

the roughness of the surface. In this case, the object acts

like a reflector - i.e., a mirror - as opposed to a scatterer.

The wavelength of our radio is about 5cm and hence hu-

mans act as reflectors. Depending on the orientation of

the surface of each limb, the signal may be reflected to-

wards our sensor or away from it. Limbs that reflect the

signal away from the radio become invisible for the de-

vice. Even if the signals are reflected back to the radio,

limbs with a small surface (e.g., hands) reflect less signals

and hence are harder to track.

• Though RF signals can go through walls, their attenuation

as they traverse a wall is significantly larger than through

air. As a result, the signals reflected from a human body

is weaker when the person is behind a wall, and hence the

accuracy of detecting an action decreases in the presence

of walls and occlusions.

4. Method

RF-Action is an end-to-end neural network model that

can detect human actions through occlusion and in bad

lighting. The model architecture is illustrated in Figure 3.

As shown in the figure, the model takes wireless signals

as input, generates 3D human skeletons as an intermedi-

ate representation, and recognizes actions and interactions

of multiple people over time. The figure further shows that

RF-Action can also take 3D skeletons generated from visual

data. This allows RF-Action to train with existing skeleton-

based action recognition datasets.

In the rest of this section, we will describe how we trans-

form wireless signals to 3D skeleton sequences, and how

we infer actions from such skeleton sequences –i.e., the

yellow and green boxes in Figure 3. Transforming visual

data from a multi-camera system to 3D skeletons can be

done by extracting 2D skeletons from images using an al-

gorithm like AlphaPose and then triangulating the 2D key-

points to generate 3D skeletons, as commonly done in the

literature [15, 45].
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Figure 3: RF-Action architecture. RF-Action detects human actions from wireless signals. It first extracts 3D skeletons for each person from raw wireless

signal inputs (yellow box). It then performs action detection and recognition on the extracted skeleton sequences (green box). The Action Detection

Framework can also take 3D skeletons generated from visual data as inputs (blue box), which enables training with both RF-generated skeletons and

existing skeleton-based action recognition datasets.

4.1. Skeleton­Generation from Wireless Signals

To generate human skeletons from wireless signals, we

adopt the architecture from [45]. Specifically, the skele-

ton generation network (the orange box in Figure 3) takes

in wireless signals in the form of horizontal and vertical

heatmaps shown in Figure 2, and generates multi-person

3D skeletons. The input to the network is a 3-second win-

dow (90 frames) of the horizontal and vertical heatmaps.

The network consists of three modules commonly used for

pose/skeleton estimation [45]. First, a feature network com-

prising spatio-temporal convolutions extracts features from

the input RF signals. Then, the extracted features are passed

through a region proposal network (RPN) to obtain several

proposals for possible skeleton bounding boxes. Finally, the

extracted proposals are fed into a 3D pose estimation sub-

network to extract 3D skeletons from each of them.

4.2. Modality­Independent Action Recognition

As shown in Figure 3, the Modality-Independent Ac-

tion Recognition framework uses the 3D skeletons gener-

ated from RF signals to perform action detection.

Input: We first associate the skeletons across time to get

multiple skeleton sequences, each from one person. Each

skeleton is represented by the 3D coordinates of the key-

points (shoulders, wrists, head, etc.). Due to radio signal

properties, different keypoints reflect different amounts of

radio signals at different instances of time, leading to vary-

ing confidence in the keypoint location (both across time

and across keypoints). Thus, we use the skeleton generation

network’s prediction confidence as another input parameter

for each keypoint. Therefore, each skeleton sequence is a

matrix of size 4× T ×Nj , where 4 refers to the spatial di-

mensions plus the confidence, T is the number of frames in

a sequence, and Nj corresponds to the number of keypoints

in a skeleton.

Model: Our action detection model (the large green box in

Figure 3) has three modules as follows: 1) An attention-

based feature learning network, which extracts high-level

spatio-temporal features from each skeleton sequence. 2)

We then pass these features to a multi-proposal module to

extract proposals – i.e., time windows that each corresponds

to the beginning and end of an action. Our multi-proposal

module consists of two proposal sub-networks: one to gen-

erate proposals for single person actions, and the other for

two-people interactions. 3) Finally, we use the generated

proposals to crop and resize the corresponding latent fea-

tures and input each cropped action segment into a classifi-

cation network. The classification network first refines the

temporal proposal by performing a 2-way classification to

determine whether this duration contains an action or not.

It then predicts the action class of the corresponding action

segment.

Next, we describe the attention module and the multi-

proposal module in detail.

4.2.1 Spatio-Temporal Attention Module

We learn features for action recognition using a spatio-

temporal attention-based network. Our model builds on

the hierarchical co-occurrence network (HCN) [48]. HCN

uses two streams of convolutions: a spatial stream that op-

erates on skeleton keypoints, and a temporal stream that

operates on changes in the locations of the skeleton’s key-

points across time. HCN concatenates the output of these

two streams to extract spatio-temporal features from the in-

put skeleton sequence. It then uses these features to predict

human actions.

However, skeletons predicted from wireless signals may

not be as accurate as those labeled by humans. Also, differ-

ent keypoints may have different prediction errors. To make

our action detection model focus on body joints with higher

prediction confidence, we introduce a spatio-temporal at-

tention module (Figure 4). Specifically, we define a learn-
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Figure 4: Spatio-temporal attention module. Our proposed attention mod-

ule (yellow box) learns masks which make the model focus more on body

joints with higher prediction confidence. It also uses a multi-headed atten-

tion module to help the model attend more on useful time instances.

able mask weight Wm, and convolve it with latent spatial

features fs, and temporal features ft at each step:

Mask = Conv(concat(fs, ft),Wm).

We then apply the Mask on the latent features as shown

in Figure 4. In this way, the mask could learn to provide dif-

ferent weights to different joints to get better action recog-

nition performance. We also add a multi-headed attention

module [34] on the time dimension after the feature extrac-

tion to learn the attention on different timestamps.

Our proposed attention module helps the model to learn

more representative features, since the learnt mask lever-

ages information provided by both the spatial stream and

temporal stream, and the multi-headed attention helps the

model to attend more on useful time instances. This spatio-

temporal attention changes the original HCN design where

the spatial and temporal path interact with each other only

using late fusion. Our experiments show that the spatio-

temporal attention module not only helps increase the action

detection accuracy on skeletons predicted from wireless sig-

nals, but also helps increase the performance on benchmark

visual action recognition datasets. This further shows the

proposed attention module helps to combine spatial and

temporal representations more effectively, and would lead

to better feature representations.

4.2.2 Multi-Proposal Module

Most previous action recognition datasets have only one

action (or interaction) at any time, regardless of the num-

ber of people present. As a result, previous approaches

for skeleton action recognition cannot handle the scenario

where multiple people perform different actions simultane-

ously. When there are multiple people in the scene, they

simply do a max over features extracted from each of them,

and forward the resulting combined feature to output one

action. Thus, they can only predict one action at a time.

However, in our dataset, when there are multiple peo-

ple in the scene, they are free to do any actions or interact

with each other at any time. So there are many scenarios

where multiple people are doing actions and interacting si-

multaneously. We tackle this problem with a multi-proposal

module. Specifically, denote N to be the number of people

appearing at the same time. Instead of performing max-

pooling over N features, our multi-proposal module outputs

N+
(

N

2

)

proposals from these N features, corresponding to

N possible single-person actions and
(

N

2

)

possible interac-

tions between each two people. Our multi-proposal module

enables us to output multiple actions and interactions at the

same time. Finally, we adopt a priority strategy to prior-

itize interactions over single person actions. For instance,

if there are predictions for ‘pointing to something’ (single

person) and ‘pointing to someone’ (interaction) at the same

time, our final prediction would be ‘pointing to someone’.

4.3. Multimodal End­to­end Training

Since we want to train our model in an end-to-end man-

ner, we can no longer use argmax to extract 3D keypoint

locations, as in past work on RF-based pose estimation [45].

Thus, we use a regressor to perform the function of the

argmax to extract the 3D locations of each keypoint. This

makes the model differentiable and therefore the action la-

bel can also act as supervision on the skeleton prediction

model.

Our end-to-end architecture uses 3D skeletons as an in-

termediate representation which enables us to leverage pre-

vious skeleton based action recognition datasets. We com-

bine different modalities to train our model in the following

manner: for wireless signal datasets, gradients back propa-

gate through the whole model, and they are used to tune the

parameters of both the skeleton prediction model and the ac-

tion recognition model; for previous skeleton-based action

recognition datasets, the gradients back propagate till the

skeleton, and they are used to tune the parameters for the ac-

tion recognition module. As shown in the experiments sec-

tion, this multi-modality training significantly increases the

data diversity and improves the performance of our model.

5. Experiments

5.1. Dataset

Since none of the available action detection datasets pro-

vide RF signals and the corresponding skeletons, we collect
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Figure 5: Qualitative Results. The figure shows RF-Action’s output in various scenarios. The top two rows show our model’s performance in visible

scenes. The bottom two rows show our model’s performance under partial/full occlusions and poor lighting conditions. The skeletons shown are the 2D

projection of the intermediate 3D skeletons generated by our model.

our own dataset which we refer to as RF Multi-Modality

Dataset (RF-MMD). We use a radio device to collect RF

signals, and a camera system with 10 different viewpoints to

collect video frames. The radio device and the camera sys-

tem are synchronized to within 10 ms. Appendix A includes

a more detailed description of our data collection system.

We collected 25 hours of data with 30 volunteers in

10 different environments, including offices, lounges, hall-

ways, corridors, lecture rooms, etc. We choose 35 actions

(29 single actions and 6 interactions) from the PKU-MMD’s

action set [26]. For every 10-min data, we ask up to 3 volun-

teers to perform different actions randomly from the above

set. On average, each sample contains 1.54 volunteers, each

volunteer performs 43 actions within 10 minutes, and each

action takes 5.4 seconds. We use 20 hours of our dataset for

training and 5 hours for testing.

The dataset also contains 2 through-wall scenarios,

where one is used for training and one for testing. As for

these through-wall environments, we put cameras on each

side of the wall so that the camera system can be calibrated

with the radio device, and use those cameras which can see

the person to label the actions. All test result on RF-MMD

use only radio signals without vision-based input.

We extract 3D skeleton sequences using the multi-view

camera system [45]. We first apply AlphaPose [12] to the

videos collected by our camera system to extract multi-view

2D skeletons. Since there may be multiple people in the

scene, we then associate the 2D skeletons from each view to

get the multi-view 2D skeletons for each person. After that,

since our camera system is calibrated, we can triangulate

the 3D skeleton of each person. These 3D skeletons act as

the supervision for the intermediate 3D skeletons generated

by our model.

Finally, we leverage the PKU-MMD dataset [26] to

provide additional training examples. The dataset allows

for action detection and recognition. It contains almost

20,000 actions from 51 categories performed by 66 sub-

jects. This dataset allows us to show how RF-Action learns

from vision-based examples.

5.2. Setup

Metric. As common in the literature on video-based ac-

tion detection [25, 47, 3] and skeleton-based action de-

tection [26, 22, 23], we evaluate the performance of our

model using the mean average precision (mAP) at differ-

ent intersection-over-union (IoU) thresholds θ. We report

our results on mAP at θ = 0.1 and θ = 0.5.

877



Ground Truth Labels. To perform end-to-end training

of our proposed RF-Action model, we need two types of

ground truth labels: 3D human skeletons to supervise our

intermediate representation, and action start-end time and

category to supervise the output of our model. The 3D

skeletons are triangulated using AlphaPose and the multi-

view camera system described earlier. As for actions’ dura-

tion and category, we manually segment and label the action

of each person using the multi-view camera system.

5.3. Qualitative Results

Figure 5 shows qualitative results that illustrate the out-

put of RF-Action under a variety of scenarios. The figure

shows that RF-Action correctly detects actions and inter-

actions, even when different people perform different ac-

tions simultaneously, and can deal with occlusions and poor

lighting conditions. Hence, it addresses multiple challenges

for today’s action recognition systems.

5.4. Comparison of Different Models

We compare the performance of RF-Action to the state-

of-the-art models for skeleton-based action recognition and

RF-based action recognition. We use HCN as a represen-

tative of a top performant skeleton-based action detection

system in computer vision. It currently achieves the best

accuracy on this task. We use Aryokee [33] as a representa-

tive of the state-of-the-art in RF-based action recognition.

To our knowledge, this is the only past RF-based action

recognition system that performs action detection in addi-

tion to classification.1 All models are trained and tested on

our RF action recognition dataset. Since HCN takes skele-

tons as input (as opposed to RF signals), we provide it with

the intermediate skeletons generated by RF-Action. This

allows us to compare RF-Action to HCN in terms of action

recognition based on the same skeletons.

Methods

Visible scenes Through-wall

mAP mAP

θ=0.1 θ=0.5 θ=0.1 θ=0.5

RF-Action 90.1 87.8 86.5 83.0

HCN [23] 82.5 80.1 78.5 75.9

Aryokee [33] 78.3 75.3 72.9 70.2

Table 1: Model Comparison on RF-MMD dataset. The table shows

mAP in visible and through-wall scenarios under different IoU threshold

θ. Since HCN operates on skeletons, and for fair comparison, we provide

it with the RF-based skeletons generated by RF-Action.

Table 1 shows the results for testing on visible scenes

and through-wall scenarios, with wireless signals as the in-

put. As shown in the table, RF-Action outperforms HCN in

both testing conditions. This shows the effectiveness of our

proposed modules. Further, we can also see that RF-Action

outperforms Aryokee by a large margin on both visible and

1The original Aryokee code is for two classes. So we extended to sup-

port more classes.

through-wall scenarios. This shows that the additional su-

pervision from the skeletons, as well as RF-Action neural

network design, are important for delivery of accurate per-

formance using RF data.

5.5. Comparison of Different Modalities

Next, we investigate the performance of RF-Action when

operating on RF-based skeletons versus vision-based skele-

tons. We train RF-Action on the training set, as before.

However, when performing inference, we either provide it

with the input RF signal from the test set, or we provide it

with the visible ground truth skeletons obtained using our

camera system. Table 2 shows the results for different input

modalities. The table shows that for visible scenes, oper-

ating on the ground truth skeletons from the camera system

leads to only few percent improvements in accuracy. This is

expected since the RF-skeletons are trained with the vision-

based skeleton as ground truth. Further, as we described in

our experimental setting, the camera-based system uses 10

viewpoints to estimate 3D skeletons while only one wire-

less device is used for action recognition based on RF. This

result demonstrates that RF-based action recognition can

achieve a performance close to a carefully calibrated cam-

era system with 10 viewpoints. The system continues to

work well in through-wall scenarios though the accuracy is

few percents lower due to the signal experiencing some at-

tenuation as it traverses walls.

Method / Skeletons

Visible scenes Through-wall

mAP mAP

θ=0.1 θ=0.5 θ=0.1 θ=0.5

RF-Action / RF-MMD 90.1 87.8 86.5 83.0

RF-Action / G.T. Skeleton 93.2 90.5 - -

Table 2: RF-Action’s Performance (mAP) with RF-Based Skeletons (RF-

MMD) and Vision-Based Skeleton (G.T. Skeleton) under different IoU

threshold θ.

5.6. Action Detection

In Figure 6, we show a representative example of our ac-

tion detection results on the test set. Two people are enrolled

in this experiment. They sometimes do actions indepen-

dently, or interact with each other. The first row shows the

action duration for the first person, the second row shows

the action duration of the second person, and the third row

shows the interactions between them. Our model can detect

both the actions of each person and the interactions between

them with high accuracy. This clearly demonstrates that our

multi-proposal module has good performance in scenarios

where multiple people are independently performing some

actions or interacting with each other.

5.7. Ablation Study

We also conduct extensive ablation studies to verify the

effectiveness of each key component of our proposed ap-
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Figure 6: Example of action detection results on the test set, where two

people are doing actions as well as interacting with each other. Ground

truth action segments are drawn in blue, while detected segments using our

model are drawn in red. The horizontal axis refers to the frame number.

proach. For simplicity, the following experiments are con-

ducted on the visible scenes in RF-MMD and mAP are cal-

culated under 0.5 IoU threshold.

Attention Module. We evaluate the effectiveness of our

proposed spatial-temporal attention module in Table 3. We

show action detection performance with or without our at-

tention module on both RF-MMD and PKU-MMD. The re-

sults show that our attention is useful for both datasets, but

is especially useful when operating on RF-MMD. This is

because skeletons predicted from RF signals can have in-

accurate joints. We also conduct experiments on the NTU-

RGB+D [31] dataset. Unlike PKU-MMD and RF-MMD

which allow for action detection, this dataset is valid only

for action classification. The table shows that our attention

module is useful in this case too.

Datasets (Metric) RF-Action RF-Action w/o Attention

RF-MMD (mAP) 87.8 80.1

PKU-MMD (mAP) 92.9/ 94.4 92.6/ 94.2

NTU-RGB+D (Acc) 86.8/ 91.6 86.5/ 91.1

Table 3: Performance of RF-Action on Different Datasets With and With-

out Attention. For PKU-MMD and NTU-RGB+D (cross subject /cross

view), we test the action recognition network (without the skeleton gener-

ation network). Tests on RF-MMD are across subjects and environments.

Multi-Proposal Module. We propose a multi-proposal

module to enable multiple action prediction at the same

time. We evaluate our model’s performance with or with-

out the multi-proposal module. As shown in Table 4, the

added multi-proposal module significantly increase the per-

formance. This is because our dataset includes a lot of in-

stances when people are performing different actions at the

same time. Our model will get very poor accuracy at these

scenarios with single-proposal, while with multi-proposal

our model can achieve much higher performance.

Methods RF-MMD

Multi-Proposal 87.8

Single-Proposal 65.5

Table 4: Benefits of Multi-proposal Module. The table shows adding

multi-proposal module largely improves the performance on RF-MMD

Multimodal Training. As explained earlier, the use

of skeletons as an intermediate representation allows the

model to learn from both RF datasets and vision-based

skeleton datasets. To illustrate this advantage, we perform

multimodal training by adding PKU-MMD’s training set

into the training of our RF-Action model. More specifically,

we use our dataset to train the whole RF-Action end-to-end

model, and use the PKU-MMD dataset to train RF-Action’s

activity detection model. These two datasets are used al-

ternatively during training. As shown in Table 5, compar-

ing the detection results with the model trained on either

dataset separately, we find multimodal training can increase

the model performance since it introduces more data for

training and thus can get better generalization ability.

Training set \ Test set RF-MMD PKU-MMD

RF-MMD+PKU-MMD 87.8 93.3/ 94.9

RF-MMD 83.3 60.1/ 60.4

PKU-MMD 77.5 92.9/ 94.4

Table 5: Benefits of Multimodal Training. The table shows that adding

PKU-MMD to the training set significantly improves the performance on

RF-MMD. The mAP of RF-MMD+PKU-MMD on RF-MMD are achieved

using the cross-subject training set of PKU-MMD. Using only RF-MMD

for training has a poor performance on PKU-MMD because the action set

of RF-MMD is only a subset of PKU-MMD’s action set.

End-to-End Model. RF-Action uses an end-to-end model

where the loss of action recognition is back propagated

through the skeleton generation network. Here we show

that such an end-to-end approach improves the skeleton it-

self. Table 6 reports the average error in skeleton joint lo-

cation, for two systems: our end-to-end model and an alter-

native model where the skeleton is learned separately from

the action –i.e., the action loss is not propagated through

the skeleton generation network. The table shows that the

end-to-end model not only improves the performance of the

action detection task, but also reduces the errors in estimat-

ing the location of joints in RF-based skeletons. This is be-

cause the action detection loss provides regularization for

3D skeletons generated from RF signals.

Methods mAP Skeleton Err. (cm)

end-to-end 87.8 3.4

separate 84.3 3.8

Table 6: mAP and intermediate 3D skeleton error on testing data with and

without end-to-end training.

6. Conclusion

This paper presents the first model for skeleton-based ac-

tion recognition using radio signals, and demonstrates that

such model can recognize actions and interactions through

walls and in extremely poor lighting conditions. The new

model enables action recognition in settings where cameras

are hard to use either because of privacy concerns or poor

visibility. Hence, it can bring action recognition to people’s

homes and allow for its integration in smart home systems.
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