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Abstract

Video salient object detection aims at discovering the

most visually distinctive objects in a video. How to effec-

tively take object motion into consideration during video

salient object detection is a critical issue. Existing state-

of-the-art methods either do not explicitly model and har-

vest motion cues or ignore spatial contexts within optical

flow images. In this paper, we develop a multi-task motion

guided video salient object detection network, which learns

to accomplish two sub-tasks using two sub-networks, one

sub-network for salient object detection in still images and

the other for motion saliency detection in optical flow im-

ages. We further introduce a series of novel motion guided

attention modules, which utilize the motion saliency sub-

network to attend and enhance the sub-network for still im-

ages. These two sub-networks learn to adapt to each other

by end-to-end training. Experimental results demonstrate

that the proposed method significantly outperforms existing

state-of-the-art algorithms on a wide range of benchmarks.

We hope our simple and effective approach will serve as a

solid baseline and help ease future research in video salient

object detection. Code and models will be made available.

1. Introduction

Video salient object detection aims at discovering the

most visually distinctive objects in a video, and identify-

ing all pixels covering these salient objects. Video saliency

detection tasks can be roughly categorized into two groups.

The first group focuses on predicting eye fixations of view-

ers in a video, which may help biologically understand the

inner mechanism of the human visual and cognitive sys-

tems. The second group requires the segmentation of the

most important or visually prominent objects from a poten-

tially cluttered background. In this paper, we attempt to ad-

dress the second problem, namely, video salient object de-

tection (SOD). A visual SOD model can serve as an impor-
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Figure 1. Effectiveness of our proposed network. An appearance

based saliency model and a motion based saliency model, which

take an RGB video frame and an optical flow image as their in-

put respectively, have their own advantages and weaknesses. Our

proposed method successfully complements an appearance branch

with a motion branch, and outperforms any one of them.

tant pre-processing component for many applications, for

examples, image and video compression [16], visual track-

ing [45] and person re-identification [50].

The most important difference between static images and

videos is that objects in videos have motion, which is also

a key factor that causes visual attention. That is, the motion

of certain objects may make the object more prominent than

others. How to effectively take object motion into consider-

ation during video salient object detection is a critical issue

for the following reasons. First, object saliency in a video is

not only determined by object appearance (including color,

texture and semantics), but also affected by object motion

between consecutive frames. Itti et al. [17] suggest that dif-

ferences between consecutive frames resulting from object

motion are more attractive to human attention. Second, ob-

ject motion provides an essential hint on spatial coherence.

Neighboring image patches with similar displacements very

possibly belong to the same foreground object, or the back-

ground region. Third, exploiting motion cues makes the

segmentation of salient objects in a video easier, and hence,

produces saliency maps of higher quality. For example, in

RGB frames, the background may contain diverse contents

with different colors and texture, and the foreground object

may be composed of parts with sharp edges and different

appearances. It is challenging to locate and segment com-

plete salient objects in such video frames without motion

cues.

Video saliency detection have attracted a wide range of

research interests in the field of computer vision. How-
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ever, existing video SOD algorithms have not sufficiently

exploited the properties of object motion. Graph based

methods [43, 4, 28] intend to combine appearance saliency

with motion cues on the basis of spatio-temporal coher-

ence, but they are limited by the use of handcrafted low-

level features and the lack of training data mining. Thus

such graph based algorithms fail to adaptively harvest ac-

curate features for motion patterns and object semantics in

complicated scenes. It is arduous for these methods to cap-

ture the contrast and uniqueness of object motion and high-

level semantics. Fully convolutional network based meth-

ods [35, 44] model temporal coherence by simply concate-

nating past frames or past predicted saliency maps with the

current frame to form the input of convolutional neural net-

works (CNN). These CNN based methods do not employ

explicit motion estimation, such as optical flow, and are

affected by the distractive and cluttered background from

the video appearance. Currently, state-of-the-art results of

video salient object detection are achieved by recurrent neu-

ral network based algorithms [23, 33], which exploit con-

volutional memory units such as ConvLSTM to aggregate

long-range spatio-temporal features. Some of these recur-

rent models [23] make use of flow warping to align previous

features with the current one, but overlook the spatial coher-

ence and motion contrast within an optical flow image.

Motivated by the above observations, in this paper, we

propose a multi-task motion guided video salient object de-

tection network, which models and exploits motion saliency

to identify the salient objects in a video. To explicitly in-

vestigate how motion contrast influences video saliency, we

partition the video salient object detection task into two sub-

tasks, salient object detection in a static image, and mo-

tion saliency inferred from an optical flow image. We first

carry out these two sub-tasks with two separate branches.

Then we integrate these two branches together to accom-

plish the overall task. Specifically, the proposed method

attends the branch for static images with motion saliency

produced from the branch for optical flow images to com-

pute the overall saliency of video objects. Moreover, to im-

plement the above attention mechanism, we develop a set

of novel motion guided attention modules, which aggregate

the advantages of residual learning as well as spatial and

channel-wise attention.

We claim that the proposed method is a strong baseline,

which does not need long-range historical features as Con-

vLSTM based algorithms [21, 44], but only requires short-

range contexts computed from the previous frame. In short,

the contributions of this paper are summarized as follows.

• We introduce a collection of novel motion guided at-

tention modules, which can attend and enhance ap-

pearance features with motion features or motion

saliency.

• We develop a novel network architecture for video

salient object detection. The proposed network is com-

posed of an appearance branch for salient object de-

tection in still images, a motion branch for motion

saliency detection in optical flow images, and our pro-

posed attention modules bridging these two branches.

• Extensive experiments are conducted to verify the ef-

fectiveness of the proposed attention modules and the

proposed network. Experimental results indicate that

our proposed method significantly surpasses existing

state-of-the-art algorithms on a wide range of datasets

and metrics.

2. Related Work

2.1. Video Salient Object Detection

Many video salient object detection methods [43, 42, 28,

44, 23, 33, 21, 10] have been studied recently. In particular,

deep learning based video SOD algorithms have achieved

significant success, and fall into two categories, region-

wise labeling, and pixel-wise labeling. STCRF [21] extracts

deep features for image regions, and proposes a spatiotem-

poral conditional random field to compute a saliency map

based on region-wise features. Dense labeling models for

video SOD are also divided into two main types, one using

fully convolutional network (FCN), and the other embrac-

ing recurrent neural network. FCNS [44] employs a static

saliency FCN that predicts a saliency map based on current

frame, and a dynamic saliency FCN which takes the pre-

dicted static saliency, the current and the next frame as in-

put to produce the final result. FGRNE [23] utilizes a Con-

vLSTM to refine former optical flows, warps former visual

features with refined flows, and adopts another ConvLSTM

to aggregate former and current features. PDB [33] employs

two parallel dilated bi-directional ConvLSTMs to implicitly

discover long-range spatio-temporal correlations, but disre-

gards explicit distinctive motions and how they affect object

saliency in a video.

2.2. Visual Attention Model

Attention mechanisms, which highlight different posi-

tions or nodes according to their importance, have been

widely adopted in the field of computer vision. Xu et al. de-

velop an image caption model [47] based on stochastic hard

attention and deterministic soft attention. Wang et al. pro-

pose a residual attention network [38] built on stacked resid-

ual attention modules, to solve image classification tasks.

Fu et al. introduce a recurrent attention convolutional neu-

ral network (RA-CNN) [11] which recursively explores dis-

criminative spatial regions and harvests multi-scale region

based features for fine-grained image recognition. Wu et

al. propose to employ a structured attention mechanism
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to integrate local spatial-temporal representation at trajec-

tory level [46] for more fine-grained video description. In

this paper, we are the first to explore the complementary

enhancement effect of motion information on appearance

contrast modeling from the perspective of various attention

schemes.

2.3. Motion based Modeling

Optical flow represents pixel-level motion between two

consecutive frames in a video. The following briefs some

popular optical flow estimation methods [8, 15, 34], and

their applications in motion based modeling [18, 36, 37].

Dosovitskiy et al. [8] calculate optical flows by concatenat-

ing two consecutive frames as input and harvesting patch-

wise similarities between two frames. FlowNet 2.0 [15]

employs two parallel streams to estimate small and large

displacements respectively, and fuses them at last. Fusion-

seg [18] adopts an appearance stream and a motion stream

to model video segmentation, but simply fuses them with

element-wise multiplication and maximum. Tokmakov

et al. [37] also utilize a dual-stream architecture and at-

tempt to fuse two streams via concatenation and a convo-

lutional memory unit (ConvGRU). Existing motion based

deep learning methods lack investigating how motion cues

(particularly, motion saliency) affect appearance features as

well as object saliency in an attention manner.

3. Method

3.1. Motion Guided Attention

Let us consider how to exploit motion information to em-

phasize some important positions or elements in an appear-

ance feature. We define an appearance feature as a feature

tensor generated by some hidden layers such as some ReLU

functions in the appearance branch. The motion informa-

tion can be categorized into two groups. The first group de-

notes motion saliency maps that are yielded by the last layer

in the motion branch. Such motion saliency maps can be

predicted with a Sigmoid activation function and hence their

elements are within the range of [0, 1]. The second group

represents motion features that are produced by some inter-

mediate ReLU functions inside the motion sub-network.

Consider a simple case, utilizing a motion saliency map

to attend an appearance feature. The motion saliency map

is denoted as Pm (the Prediction of the Motion branch)

and the appearance feature is denoted as fa. A straightfor-

ward way for computing attended appearance feature f ′

a
is

f ′

a
= fa⊗Pm, where f ′

a
, fa and Pm are of size C×H×W ,

C ×H ×W and H ×W respectively. ⊗ denotes element-

wise multiplication, namely, applying element-wise multi-

plication between Pm and each channel slice of fa. Such

multiplication based attention is simple but has limitations.

Since the motion branch is trained with a motion saliency

(a) MGA-m

𝑓𝑎′𝑓𝑎
𝑃𝑚

1x1 conv

(b) MGA-t

𝑓𝑎′𝑓𝑎
𝑓𝑚

1x1 conv sigmoid

(c) MGA-tm𝑓𝑎′𝑓𝑎
𝑓𝑚

1x1 conv GAP

sigmoid 1x1 conv

(d) MGA-tmc

𝑓𝑎′𝑓𝑎
𝑓𝑚

𝑓𝑎′′
softmax

Figure 2. Motion Guided Attention Modules

detection task, image parts which has similar displacement

with the background are most likely predicted as 0 in Pm.

Consider that only some parts of a salient object move in

some video frame, as shown in Figure 1(i). Then the still

parts of the salient object could be 0 in Pm and hence their

corresponding features in f ′

a
are suppressed. In such case

the naive multiplication attention fails to maintain the com-

plete salient object. To alleviate the above issue, we propose

a variant that is not to ‘block out’ unsalient-motion regions

but only to highlight salient-motion regions, formulated as:

f ′

a
= fa ⊗ Pm + fa (1)

where + denotes element-wise additions. The multiplica-

tion based attention serves as a residual term in Eq (1). The

additional term +fa complements the features that may be

incorrectly suppressed by fa ⊗ Pm. Thus the residual for-

mulation is promising to attend salient-motion parts without

discarding still but salient areas. We name the proposed at-

tention module in Eq (1) and Figure 2(a) as MGA-m. MGA

denotes Motion Guided Attention and ‘-m’ means that the

motion input of the attention module is a map.

The following discusses how to employ a motion fea-

ture tensor fm to draw attentions to some elements in an

appearance feature fa. Consistent with MGA-m using a

multiplication-and-addition manner, we first propose a mo-

tion guided attention module with two tensor inputs in the

below:

f ′

a
= fa ⊗ g(fm) + fa (2)

where fa and fm are of size C ×H ×W and C ′ ×H ×W

respectively. g(·) is a 1 × 1 convolution which aligns the

shape of the motion feature with that of the appearance

feature. Then an attention mechanism in an element-wise

multiplication-and-addition way is applicable, between the

appearance feature and the output of g(·). The proposed

motion guided attention module shown in Eq (2) and Fig-
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ure 2(b) is dubbed as MGA-t in which ‘-t’ means that the

input from motion branch is a feature tensor.

Inspired by the MGA-m module that exploits the motion

information as spatial attention weights, we conceive a vari-

ant to attend a tensor with the other one, by converting the

motion feature into spatial weights beforehand. Such atten-

tion module can be formulated as :

f ′

a
= fa ⊗ Sigmoid(h(fm)) + fa (3)

where h(·) denotes a 1× 1 convolution with 1 output chan-

nel. Thus the output of Sigmoid(·) is an attention map of

size H ×W . The above module shown in Eq (3) and Fig-

ure 2(c) is named MGA-tm in which ‘-tm’ means that the

input feature tensor from motion branch is transformed to a

spatial map at the very beginning. Let us discuss the differ-

ence between the MGA-t module and the MGA-tm module.

The MGA-tm module can be viewed as applying spatial at-

tention with the motion feature, while in the MGA-t mod-

ule spatial and channel-wise attention is implemented at the

same time via a 3D tensor of attention weights. Note that in

our proposed method, the motion branch only takes an opti-

cal flow image as input, serves as passing messages towards

the appearance branch, and has no knowledge of appearance

information. Thus it may be not so promising to achieve

channel-wise attention with the motion feature alone. How-

ever, for the MGA-tm module, it lacks emphasizing impor-

tant channels that is closely associated with visual saliency

or salient-motion objects. Based on these considerations,

we come up with the fourth MGA module as:

f ′

a
= fa ⊗ Sigmoid(h(fm)), (4)

f ′′

a
= f ′

a
⊗ [Softmax(h′(GAP(f ′

a
))) · C] + fa (5)

where fa, f ′

a
and f ′′

a
all are tensors of size C×H×W . fm is

a C ′ ×H ×W tensor. Both h(·) and h′(·) are implemented

as 1 × 1 convolutions whose output channels are 1 and C

respectively. GAP(·) denotes global average pooling in the

spatial dimensions. C in Eq (5) is a single scalar and equals

to the number of elements in the output of the Softmax func-

tion. The proposed motion guided attention module shown

in Eq (4-5) and Figure 2(d) is named MGA-tmc where the

last ‘c’ represents channel-wise attention.

Let us present more rationales behind the MGA-tmc

module. f ′

a
is an appearance feature already spatially high-

lighted by a motion feature. GAP(f ′

a
) harvests a global rep-

resentation of f ′

a
and outputs a single vector of C elements.

Based on the global representation, h′(·) predicts a vector

of C scalar weights for channels. These channel-wise atten-

tion weights aim at selecting or strengthening the responses

of essential attributes such as some kind of edges, bound-

aries, colors, texture and semantics. Softmax(·) · C nor-

malizes the output of h′(·) such that the mean value of the

attention weights equals to 1. For simplicity, Softmax(·) ·C

is denoted as ‘softmax’ in Figure 2(d), and multiplying by

C is omitted. f ′

a
⊗ [·] in Eq (5) is to multiply the feature

column at each spatial position of f ′

a
by the normalized at-

tention vector. To summarize, the MGA-tmc module first

emphasizes the spatial locations with salient motions, then

selects attributes which is potential to model saliency condi-

tioned on the motion-attended appearance features, and fi-

nally adds the input feature as a complement. The effective-

ness of our proposed attention modules (MGA-m, MGA-t,

MGA-tm and MGA-tmc) will be validated in Section 4.

3.2. Network Architecture

As shown in Figure 3, our proposed network architecture

consists of an appearance branch, a motion branch, a pre-

trained flow-estimation network and a set of motion guided

attention modules bridging the appearance and the motion

branch. The flow-estimation network denoted as ‘optical

flow estimation’ in Figure 3 is implemented as [15]. The

architectures of the appearance sub-network and the motion

sub-network are quite similar but different. The motion sub-

network utilizes a lighter design than the appearance one,

since the optical flow image does not contain as much high-

level semantics and subtle boundaries as the RGB image.

The proposed method divides a video salient object de-

tection task into two sub-tasks, appearance based static-

image saliency detection and motion saliency detection.

We first introduce the architectures of the appearance sub-

network and the motion sub-network during separate train-

ing. Both the appearance branch and the motion branch are

composed of three parts, an encoder, an atrous spatial pyra-

mid pooling (ASPP) module and a decoder. The encoder

works by extracting low-level to high-level visual features

and reducing the resolution of feature maps. The encoder

includes five layers: a head-convolution and four residual

layers denoted as residual-i (i ∈ {1, 2, 3, 4}). The head-

convolution has 64 output channels, 7× 7 kernel size and a

stride of 2, followed by a batch normalization and a ReLU

function. For the appearance branch, these four residual

layers contain 3, 4, 23 and 3 residual learning based ‘bot-

tlenecks’ [12], and have 256, 512, 1024 and 2048 output

channels respectively. For the motion branch, its residual

layers adopt 3, 4, 6 and 3 basic residual learning blocks [12],

and have 64, 128, 256 and 512 output channels respectively.

The strides of these four residual layers are set as 2, 2, 1

and 1 respectively in both sub-networks. Thus the encoder

reduces the spatial size of input feature map as 1/8 of the

original size.

The ASPP module harvests long-range dependencies

within a feature map via dilated convolutions, and integrates

them with local and global representations, which could im-

plicitly capture long-range contrast for saliency modeling.

As shown in Figure 3, the ASPP module passes the input

feature through five parallel layers which are a 1× 1 point-
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Figure 3. Motion Guided Attention Network. The blue parts denote the appearance branch while the green parts represent the motion
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lines are linked when the motion branch alone is trained on the motion-image SOD sub-task. The orange parts are the proposed motion

guided attention modules, and work only while addressing the video SOD task. BCE loss denotes binary cross-entropy loss.

wise convolution, three 3×3 convolutions with dilation rate

of 12, 24 and 36 respectively, and a global average pooling

layer. The outputs of these five parallel layers are concate-

nated along with the dimension of depth, which yields a

single feature map.

The decoder recovers the spatial size of feature maps to

predict high-resolution saliency maps with accurate object

boundaries, by fusing the low-level feature and the high-

level one together. As Figure 3 displays, the high-level

output of the ASPP module is shrinked to a 256-channels

feature via a 1 × 1 convolution ‘conv-1’ in the decoder,

while the low-level output from residual-1 is reduced to a

48-channels feature by another 1 × 1 convolution ‘conv-

2’. After concatenating the low-level feature with the high-

level one, two 3 × 3 convolutions denoted as ‘conv-3’ and

‘conv-4’ with 256 output channels follows. Next, a 1 × 1
convolution ‘conv-5’ followed by a Sigmoid function pre-

dicts the final single-channel saliency map. For simplicity,

the decoder of motion branch uses three layers similar to

conv-{3-5} to directly infer a motion saliency map.

Importantly, let us introduce how to adapt the appear-

ance branch and the motion branch to our proposed motion

guided attention modules for video salient object detection.

As can be seen in Figure 3, MGA-i (i ∈ {0, 1, 2, 3, 4, 5})

represents six attention modules in our proposed multi-

task network. MGA-0 takes the outputs of two head-

convolutions from the appearance sub-network and the mo-

tion sub-network, as its inputs. MGA-i takes the output

features of residual-i from the two branches, as its inputs.

Note that in the appearance sub-network, the direct linkages

among five layers within its encoder are removed. The out-

put of MGA-0 replaces that of the head-conv to be passed

into the residual-1 layer in the appearance branch. Sim-

ilarly, residual-i in the appearance branch uses the output

produced by MGA-(i-1) instead of residual-(i-1), as its in-

put. MGA-4 takes the place of residual-4 to be connected

with the ASPP module in the appearance sub-network. Dif-

ferent from the appearance branch, the encoder in the mo-

tion branch still maintains its internal linkages and provides

side-outputs as the input of MGA-{0-4}. MGA-{0-4} are

located at the encoder side while MGA-5 works at the de-

coder side. MGA-5 employs the final output of the motion

branch, and the fusion of the low and high-level features in

the appearance branch, as its inputs. The output of MGA-

5 also replaces the fused feature to be passed into ‘conv-

3’ in the appearance sub-network. Since the motion input

of MGA-5 is a single-channel saliency map, it only can be

instantiated with the MGA-m module. As for MGA-{0-

4}, their implementations could be selected among MGA-t,

MGA-tm and MGA-tmc.

3.3. Multi-task Training Scheme

We develop a multi-task pipeline to train our proposed

motion guided attention network. First, we initialize the ap-

pearance sub-network using a ResNet-101 [12] pretrained

on ImageNet [6, 31], and then fine-tune the appearance

branch on a static-image salient object detection dataset.

Second, we implement the ‘optical flow estimation’ [15],

and employ it to render optical flow images according to [3]

on our training set of video salient object detection. The

optical flow images are computed as a forward flow from

the previous frame to the current frame. Third, the motion

sub-network is initialized using an ImageNet-pretrained

ResNet-34 [12] model, and then is trained on these synthe-
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Methods Year
DAVIS FBMS ViSal

MAE S-m maxF MAE S-m maxF MAE S-m maxF

Amulet [48] ICCV’17 0.109 0.748 0.719 0.133 0.753 0.746 0.058 0.874 0.888

UCF [49] ICCV’17 0.164 0.698 0.742 0.195 0.708 0.718 0.119 0.798 0.880

SRM [40] ICCV’17 0.040 0.840 0.795 0.073 0.805 0.792 0.028 0.914 0.916

DSS [13] CVPR’17 0.047 0.827 0.773 0.081 0.799 0.785 0.026 0.927 0.921

MSR [22] CVPR’17 0.062 0.798 0.762 0.081 0.810 0.792 0.045 0.892 0.890

NLDF [29] CVPR’17 0.059 0.803 0.760 0.085 0.794 0.771 0.022 0.925 0.920

R3Net [7] IJCAI’18 0.064 0.786 0.746 0.090 0.790 0.759 0.025 0.921 0.911

C2SNet [26] ECCV’18 0.052 0.813 0.771 0.073 0.811 0.782 0.023 0.922 0.924

RAS [5] ECCV’18 0.057 0.785 0.729 0.078 0.816 0.807 0.019 0.930 0.925

DGRL [41] CVPR’18 0.056 0.812 0.763 0.057 0.829 0.802 0.022 0.916 0.917

PiCANet [27] CVPR’18 0.044 0.842 0.801 0.059 0.845 0.819 0.022 0.937 0.932

GAFL [43] TIP’15 0.122 0.697 0.658 0.199 0.615 0.575 0.101 0.774 0.759

SAGE [42] CVPR’15 0.137 0.648 0.569 0.192 0.624 0.598 0.094 0.781 0.771

SGSP [28] TCSVT’17 0.143 0.678 0.707 0.211 0.590 0.601 0.171 0.694 0.682

FCNS [44] TIP’18 0.056 0.802 0.750 0.103 0.775 0.763 0.041 0.897 0.892

FGRNE [23] CVPR’18 0.044 0.838 0.797 0.078 0.814 0.794 0.049 0.871 0.845

PDB [33] ECCV’18 0.029 0.879 0.862 0.070 0.846 0.829 0.021 0.928 0.936

ours 0.022 0.913 0.902 0.027 0.907 0.910 0.015 0.944 0.947

Table 1. Comparisons with state-of-the-art video salient object detection algorithms. The three best performing algorithms are marked in

red, green, and blue respectively.

video GAFL SAGE SGSP FCNS DSS DGRL FGRNE PiCANet PDB ours GT

Figure 4. Qualitative comparison with state-of-the-art video salient object detection methods.

sized optical flow images and their corresponding saliency

maps in the video salient object detection dataset. Lastly,

the proposed MGA modules integrate the two branches to

form our proposed network, which is tuned with a mixture

of static-image and video salient object detection datasets.

Since training samples of a static image or the first frame

in an video have no corresponding motion images, we as-

sume that their previous frame are as the same as them-

selves. That is to say, objects in these samples are not in

motion and no salient motions exist. For such cases, we

simply fill zeros in the motion inputs of the MGA modules.

4. Experiments

In this paper, we choose the train set of DUTS [39],

DAVIS [30] and FBMS [2] as our training set. We evaluate

video salient object detection methods on DAVIS, FBMS

and ViSal [43] benchmark. DUTS is a commonly used

static-image salient object detection dataset. ViSal dataset

can be used to rate the generalization of video salient ob-

ject detection models, since all video SOD algorithms are

not trained with any subsets of ViSal. Mean absolute er-

ror (MAE), structure-measure (S-m) [9], max F-measure

(maxF) [1], Precision-Recall (P-R) curves and Fmeasure-

Threshold curves are selected as criteria. The results of PR

curves and Fmeasure-Threshold curves can be found in the

supplemental materials. SGD algorithm is used to train the

proposed network with an initial learning rate of 10−8, a

weight decay of 0.0005 and an momentum of 0.9. The pro-

posed method costs about 0.07 seconds for a single frame,

regardless of flow estimation.

4.1. Comparison with the state-of-the-art

As shown in Table 1, our proposed method is com-

pared with 11 existing static-image salient object detec-

tion models including Amulet [48], UCF [49], SRM [40],

DSS [13], MSR [22], NLDF [29], R3Net [7], C2SNet [26],

RAS [5], DGRL [41], PiCANet [27], and 6 state-of-the-art

video SOD algorithms including GAFL [43], SAGE [42],

SGSP [28], FCNS [44], FGRNE [23], PDB [33]. Our pro-

posed method is implemented by adopting MGA-tmc mod-

ule at the positions of MGA-{0-4}, and MGA-m module at

the position of MGA-5. The results of our method in Table 1
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are obtained without any post-processing. We utilize the

public released code and pretrained weights of PDB whose

performance is slightly higher than its original paper [33].

As Table 1 displays, the proposed method achieves the low-

est MAE, the highest S-m and maxF on all three bench-

marks DAVIS, FBMS and ViSal. On the DAVIS dataset, the

proposed method considerably outperforms the second best

model PDB by 3.4% S-m and 4.0% maxF. On the FBMS

benchmark, our algorithm significantly surpasses the sec-

ond best method PDB by 6.1% S-m and 8.1% maxF. The

proposed network also obtains 3.0% MAE smaller than the

second best algorithm DGRL on FBMS. As for the ViSal

dataset, our proposed method demonstrates 0.7% S-m and

1.1% maxF higher than the second best models PiCANet

and PDB respectively. Since ViSal is a relatively small and

easy benchmark in comparison to DAVIS and FBMS, the

numeric results of state-of-the-art methods including ours

are close. ViSal does reflect the generalization capacity of

video SOD models for none of existing methods is trained

with videos from the ViSal dataset. Thus, our proposed

method not only establishes a new state-of-the-art for the

video salient object detection task, but is also promising to

enjoy superior generalization in real applications. Figure 4

presents a qualitative comparison between the state-of-the-

art algorithms and the proposed network. More qualitative

results are placed in the supplemental materials.

As displayed in Table 2, the proposed method is com-

pared with 9 latest unsupervised video segmentation al-

gorithms including SAGE [42], LVO [37], FSEG [18],

ARP [19], PDB [33], MSGSTP [14], MBN [25], IET [24]

and MotAdapt [32]. To assess the performance of these

models, we resort to widely used evaluation metrics,

J Mean, F Mean for the DAVIS dataset and mean

Intersection-over-Union (mIoU) for the FBMS benchmark.

As Table 2 shows, ‘ours+CRF’ denotes the proposed net-

work with conditional random field (CRF) [20] refinement

which achieves the best J Mean and F Mean on DAVIS,

and the best mIoU on FBMS. Our proposed method alone

also demonstrate remarkable performance, the second best

F Mean on DAVIS and the second best mIoU on FBMS.

4.2. Effectiveness of the proposed network architec-
ture

In Table 3, we verify the effectiveness of the proposed

dual-branch network architecture which deploys the pro-

posed attention modules at both the encoder and the de-

coder side. ‘Appearance branch’ denotes the appearance

sub-network in Figure 3 while ‘motion branch’ represents

the motion sub-network. ‘Dual branch+MGA-D’ is a model

bridging two branches with the MGA module only at the

decoder side, namely, the MGA-5. ‘Dual branch+MGA-E’

consists of two branches with the MGA modules at the en-

coder side, namely, MGA-{0-4}. As Table 3 indicates, the

Methods Year
DAVIS FBMS

J Mean F Mean mIoU

SAGE [42] CVPR’15 41.5 36.9 61.2

LVO [37] ICCV’17 75.9 72.1 65.1

FSEG [18] CVPR’17 70.7 65.3 68.4

ARP [19] CVPR’17 76.2 70.2 59.8

PDB [33] ECCV’18 74.3 72.8 72.3

PDB+CRF ECCV’18 77.2 74.5 74.0

MSGSTP [14] ECCV’18 77.6 75.0 60.8

MBN [25] ECCV’18 80.4 78.5 73.9

IET [24] CVPR’18 78.6 76.1 71.9

MotAdapt [32] ICRA’19 77.2 77.4

ours 80.2 80.8 82.6

ours+CRF 81.4 81.0 82.8

Table 2. Comparisons with state-of-the-art unsupervised video

segmentation algorithms. The three best performing algorithms

are marked with red, green and blue colors respectively.

Methods
DAVIS FBMS

MAE S-m maxF MAE S-m maxF

appearance branch 0.031 0.882 0.865 0.094 0.833 0.867

motion branch 0.035 0.859 0.813 0.083 0.755 0.767

dual branch+MGA-D 0.024 0.900 0.889 0.029 0.899 0.891

dual branch+MGA-E 0.021 0.913 0.899 0.030 0.903 0.893

ours 0.022 0.913 0.902 0.027 0.907 0.910

Table 3. Effectiveness of the proposed network architecture.

dual branch+MGA-D outperforms the appearance branch

by 6.6% S-m and the motion branch by 14.4% S-m on

FBMS. The dual branch+MGA-E exceeds the appearance

sub-network by 3.4% maxF and the motion one by 8.6%

maxF on DAVIS. The above statistics suggest that plac-

ing the attention modules at either the encoder or the de-

coder side can improve our proposed dual-branch archi-

tecture. The proposed network with attention modules at

both the encoder and the decoder side surpasses the dual

branch+MGA-D by 1.9% maxF and the dual branch+MGA-

E by 1.7% maxF on FBMS. It implies that deploying MGA

modules at encoder and decoder can slightly complements

each other, and further enhances the performance.

4.3. Effectiveness of the proposed motion guided
attention

To explore the effectiveness of our proposed motion

guided attention modules, we compare the MGA modules

with some naive fusions including concatenation, element-

wise multiplication and addition which are denoted as ‘Con-

cat’, ‘Mul’ and ‘Add’ respectively in Table 4. Specifically,

The Concat fusion first concatenates a C-channel appear-

ance feature and a C ′-channel motion feature/map along the

depth dimension, and then applies a 1× 1 convolution with

C output channels. To fuse two tensors, the Mul module

first adjust a C ′-channel motion feature to be C-channel via

a 1 × 1 convolution, and then elementwisely multiplies the

motion feature with a C-channel appearance feature. To

fuse a tensor and a map, the Mul module multiplies each

channel slice of an appearance feature by a motion saliency
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Methods
DAVIS FBMS

MAE S-m maxF MAE S-m maxF

Concat 0.030 0.876 0.844 0.068 0.815 0.822

Mul 0.030 0.877 0.847 0.079 0.785 0.810

Add 0.027 0.891 0.864 0.040 0.888 0.898

ours 0.022 0.913 0.902 0.027 0.907 0.910

Table 4. Comparison with naive fusions.

Methods
DAVIS FBMS

MAE S-m maxF MAE S-m maxF

E-Concat 0.030 0.880 0.845 0.060 0.828 0.841

E-Mul 0.032 0.873 0.846 0.082 0.786 0.804

E-Add 0.026 0.895 0.876 0.038 0.890 0.893

E-MGA-t 0.023 0.907 0.899 0.030 0.906 0.901

E-MGA-tm 0.026 0.902 0.893 0.028 0.906 0.907

E-MGA-tmc 0.022 0.913 0.902 0.027 0.907 0.910

D-Concat 0.024 0.904 0.894 0.030 0.902 0.894

D-Mul 0.021 0.913 0.900 0.029 0.904 0.900

D-Add 0.023 0.907 0.899 0.033 0.898 0.902

D-MGA-m 0.022 0.913 0.902 0.027 0.907 0.910

Table 5. Effectiveness of the proposed motion guided attention

modules at encoder and decoder side.

map. The Add fusion works in a way similar to the Mul

fusion. For the Concat, Mul and Add fusion in Table 4,

their corresponding fusion operator respectively replaces

the MGA-{0-5} in Figure 3 to form their own model. As

can be seen in Table 4, our proposed motion guided atten-

tion modules surpasses the best naive fusion ‘Add’ by 2.4%

S-m and 3.8% maxF on DAVIS, which suggests that the

proposed MGA modules effectively integrate the appear-

ance and the motion branch.

As shown in Table 5, we separately verify the effec-

tiveness of the proposed MGA-m, MGA-t, MGA-tm and

MGA-tmc. ‘E-∗’ denotes deploying the attention or fu-

sion module ∗ at the encoder, specifically, the positions of

MGA-{0-4}. ‘D-∗’ refers to placing the module ∗ at the

decoder side, namely, the position of MGA-5. ‘*-Concat’,

‘*-Mul’ and ‘*-Add’ are implemented as the same way as

those in Table 4. For ‘E-∗’ models, their attention module

at the decoder side is chosen as MGA-m. For ‘D-∗’ mod-

els, their attention type at the encoder side is MGA-tmc.

As Table 4 displays, all of our proposed MGA modules

outperform the naive fusions. For examples, E-MGA-tm

surpasses E-Add by 1.7% maxF on DAVIS and E-MGA-t

obtains 1.6% S-m higher than E-Add on FBMS. At the en-

coder side, the MGA-tmc module achieve the best results.

As for the decoder side, the MGA-m achieves the highest

accuracy, which exceeds D-Add by 0.9% S-m and 0.8%

maxF on FBMS.

4.4. Effectiveness of the proposed training scheme

We investigate whether it is beneficial to divide the video

SOD task into two sub-tasks, and to solve these sub-tasks

in advance. As shown in Table 6, T0 denotes a training

scheme that do not train the appearance branch on static-

Methods
pretrain

appearance ?

pretrain

motion ?

DAVIS FBMS

MAE S-m maxF MAE S-m maxF

T0 × × 0.043 0.870 0.859 0.036 0.893 0.879

Tm × X 0.026 0.892 0.873 0.059 0.835 0.856

Ta X × 0.025 0.897 0.885 0.035 0.896 0.881

Tma X X 0.022 0.913 0.902 0.027 0.907 0.910

Table 6. Effectiveness of the proposed multi-task training scheme.

image salient object detection or train the motion branch

on motion saliency detection beforehand. The T0 method

initializes the encoders with pretrained image classification

models [12], randomizes other parameters, and trains the

whole proposed network on the video SOD task. Differ-

ent from T0, the Tm scheme pretrains the motion branch

alone on the motion saliency detection sub-task, while the

Ta method pretrains the appearance branch on static-image

SOD sub-task. Tma represents our proposed multi-task

training scheme which separately tunes the two branches

on their corresponding sub-task before end-to-end training

the whole network. As Table 6 displays, Tma exceeds the

second best Ta by 1.7% maxF on DAVIS and 1.9% maxF on

FBMS, which suggests that our proposed multi-task train-

ing scheme helps capture more accurate features. Note that

Tm demonstrates better results on DAVIS but worse per-

formance on FBMS, in comparison to T0. It may be due to

that the videos from FBMS usually contains multiple salient

objects and not all these objects have discriminative motion

pattern. Thus the Tm model, which only has been pretrained

to locate salient motions, could be over-reliant on the mo-

tion cues to some degree, and struggles to harvest more ac-

curate appearance contrast.

5. Conclusions

This paper introduces a novel motion guided attention

network which sets up a new state-of-the-art baseline for

the video salient object detection task. To the best of our

knowledge, the proposed network is the first to successfully

model how salient motion patterns affect object saliency in

an attention scheme. The proposed motion guided attention

modules effectively instantiate such attention mechanism to

model the influence from salient motions to visual saliency.

Using motion cues resulting from the previous frame, our

proposed method sufficiently exploits temporal context, su-

perior to existing long-range memory based models.
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