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Abstract

The premise of training an accurate 3D human pose es-

timation network is the possession of huge amount of richly

annotated training data. Nonetheless, manually obtaining

rich and accurate annotations is, even not impossible, te-

dious and slow. In this paper, we propose to exploit monocu-

lar videos to complement the training dataset for the single-

image 3D human pose estimation tasks. At the beginning, a

baseline model is trained with a small set of annotations. By

fixing some reliable estimations produced by the resulting

model, our method automatically collects the annotations

across the entire video as solving the 3D trajectory comple-

tion problem. Then, the baseline model is further trained

with the collected annotations to learn the new poses. We

evaluate our method on the broadly-adopted Human3.6M

and MPI-INF-3DHP datasets. As illustrated in experi-

ments, given only a small set of annotations, our method

successfully makes the model to learn new poses from un-

labelled monocular videos, promoting the accuracies of the

baseline model by about 10%. By contrast with previous

approaches, our method does not rely on either multi-view

imagery or any explicit 2D keypoint annotations.

1. Introduction

Estimating the accurate 3D human pose from single im-

age is a key foundation to massive applications in com-

puter vision and graphics, which attracts lots of attentions

from both societies. Recently, great progress in 3D hu-

man pose estimation have been made by leveraging the deep

learning techniques. Despite the success, most of these ap-

proaches heavily rely on the availability of extensive train-

ing datasets. Nevertheless, using motion capture systems to

capture the 3D annotations is usually constrained in studio

environments. Furthermore, the manual annotation of 3D

∗These authors contributed equally to this work.

Figure 1. Two-stage 3D human pose estimation framework.

Unannotated image frames from video sequences are fed into the

initial 3D human pose estimation network which is trained by only

a few annotated data to get initial predictions. Next, a 3D tra-

jectory optimisation operation utilising the low rank property and

temporal smoothness of video sequences is applied to these predic-

tions to generate pseudo-annotations. These optimised predictions

are then applied to the initial network as pseudo supervision, plus

a geometry loss, to boost the performance of the network.

human pose is quite time-consuming and error-prone.

In the past few years, several approaches that employ un-

labelled multi-view imagery or 2D-annotated images have

been proposed to solve the problem of training data avail-

ability. The manual 2D keypoint annotation could be ac-

curate enough, but is still tedious. In addition, employ-

ing the multi-view images requires specific multi-camera

equipment. Nevertheless, a question still remains: How to

exploit merely the unlabelled monocular videos to comple-

ment the training datasets for single-image 3D human pose

estimation tasks? To this end, we propose an automatic

method that collects accurate annotations of human motions
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from monocular videos. As is shown in Figure 1, a baseline

model is pre-trained with a small set of annotations. Then

the outputs of this base model is optimised and exploited as

annotations for further training. Compared with the previ-

ous methods, capturing monocular videos does not require

any specific equipment, e.g. multi-camera system, and is

not constrained in controlled environments. Furthermore,

there is no manual intervention involved when complement-

ing the datasets with videos.

Specifically, the automatic collection of annotations can

be regarded as a problem of completing the consecutive 3D

human motions. Relying on low-rank representation and

temporal smoothness priors, we optimise the consecutive

poses across the entire video by fixing the reliable estima-

tions of the part of joints produced by the baseline model.

As a by-product, the accurate geometry information, e.g.

the individual limb length ratio of a specific subject, can be

easily estimated from the optimised poses. Incorporating

this geometry information encoded in loss function, we use

the optimised poses as annotations to fine-tune the baseline

model. Experiments show that our method significantly in-

creases the accuracy of the 3D human pose estimations.

In summary, we focus on the single-image 3D human

pose estimation tasks and propose a method to solve the

data scarcity problem. Different from the previous ap-

proaches that learn the poses from consecutive image se-

quences, for our method, the video data is only exploited

during training. Given a baseline model pre-trained with

only a small set of annotations, a matrix completion based

method is employed to automatically collect the 3D anno-

tations from monocular videos. In this process, except for

the small set of 3D annotations, our method does not re-

quire any human intervention such as manual annotation

of 2D poses or calibration of multi-camera system which

are usually employed by existing weakly-supervised ap-

proaches. As illustrated in the experiments on both Hu-

man3.6M and MPI-INF-3DHP datasets, our method suc-

cessfully fine-tunes the pre-trained model to novel actions

and subjects depicted in unlabelled monocular videos. Re-

lying on this fine-tuning process, the accuracy of the esti-

mated 3D human poses is promoted by about 10%.

2. Related Works

Nowadays, 3D human pose estimation [4, 6, 20, 11, 17,

16, 15, 19, 21, 22, 24, 25, 26, 28, 29, 30] has grown to the

point where it can yield accurate poses even in realtime.

Nonetheless, estimating the motions without sufficiently la-

belled datasets still remains an open problem. In this sec-

tion, we briefly review the previous algorithms that focus

on the data scarcity problem.

Data augmentation. Learning with synthetic data [5,

23, 27] is an alternative to tackle the data scarcity problem.

With the advances in computer graphics, a number of meth-

ods synthetically generate the training images by replacing

the background or subject appearance. In [23], a collage

approach is introduced. They synthesise the training im-

ages with known 3D poses by composing human parts from

different images to generate more realistic results. How-

ever, the diversity of the appearance and motion is not ad-

equate, resulting in that the accuracy of the model trained

using such datasets is limited.

Multi-view approaches. There are several methods that

focus on learning the poses from synchronised multi-view

images via view consistency regardless of the availability

of the 3D ground truth. Given the generic 2D pose detector,

the method in [17] automatically collects the annotations

relying on the constraints from the calibrated multi-camera

system. In [12], a marker-less motion capture system is em-

ployed to record the multi-view images and the 3D ground

truth is estimated to each view. The weakly-supervised ap-

proach in [22] removes the requirement of calibration of

the multi-view system and achieves a good level of per-

formance. In [21], the amount of annotated training data

is further reduced by learning a latent representation that

can be integrated into semi-supervised learning. The main

drawback of such methods is their requirements of specific

devices to establish the multi-camera system. Moreover, for

most multi-view approaches, the multi-camera system is as-

sumed to be calibrated and synchronised.

Single-view approaches. There are also other au-

thors who explore methods of complementing the train-

ing datasets with single-view images. In [30], a weakly-

supervised approach is introduced, which aims to augment

the fully-supervised training data with 2D annotations only.

Furthermore, an adversarial learning method is presented

in [29] which adopts the estimator from [30] as the genera-

tor. Additionally, incorporating 2D annotations with depth

ordinal relation [15] is proved to be effective for learning

3D human poses. Though being more convenient than cap-

turing the accurate 3D ground truth, manually annotating

the 2D keypoints or depth ordinal relations is still labour-

consuming.

In this paper, we aim to solve the problem of the

scarcity of training data with neither multi-view imagery

nor 2D poses. In such a challenging scenario, the proposed

method effectively complements the training dataset with

only unannotated monocular videos. We empirically show

that the performance of the networks fine-tuned with the

produced datasets improves significantly.

3. Technical Approach

In this section, we present our approach for augmenting

the training datasets of single-image 3D human pose esti-

mation with monocular videos.

We design a framework to fine-tune the network ini-

tialised with a small set of annotated training data with un-
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Figure 2. Network architecture and the initialisation process.

Top: the 2D detection network (traditional stacked-hourglass net-

work), trained by existing 2D human pose estimation datasets.

Down: transfers feature extraction layers of the 2D detector to

a 3D reconstruction network. A volumetric hourglass network is

concatenated with the previously trained 2D detector (whose pa-

rameters are fixed) to lift the 2D features to 3D poses. A few an-

notated 3D data are used to perform the fully-supervised training.

annotated monocular video sequences. We firstly train a

deep network with a small number of 3D annotated data to

produce plausible 3D human poses. Then we use matrix

completion methods to optimise the 3D poses of unanno-

tated video sequences predicted by the insufficiently trained

network, utilising the low-rank representation and tempo-

ral smoothness property of 3D human pose sequences. In

the meantime, relatively accurate bone lengths per video

can be collected from the predicted 3D human poses. The

optimised predictions are then used as pseudo annotations

to further train (fine-tune) the initial network. To better

employ the accurate predictions and pass over the inac-

curate ones, we introduce the weighted fidelity loss to be

the pseudo-supervised term. In addition, we introduce the

bone-length consistency loss as the unsupervised term.

3.1. Baseline Models

To reconstruct 3D human poses from monocular images,

accurate 2D representations are usually required. The net-

work architecture in [13], namely Stacked Hourglass net-

work, is effective for extracting 2D features from images

for the use of predicting 3D poses. Furthermore, inspired

by [12], existing 2D human pose estimation datasets can be

used to train a 2D human pose detector whose feature ex-

traction layers can then be transferred to a 3D human pose

estimation network.

To get accurate 3D poses directly from monocular im-

ages, we refer to the work of [16] which introduces a vol-

umetric version of the stacked hourglass network. The 2D

features extracted by the previously trained 2D detector can

then be fed into a 3D hourglass network that requires only a

small amount of 3D annotated data to get plausible 3D pre-

dictions on unannotated video sequences. Different from

the network settings in [18], our 3D network directly out-

puts the 3D poses from single-frame images, without re-

quiring the 2D poses to be the intermediate results, thus no

2D keypoint data is needed either to fine-tune the 2D detec-

tor or to train the 3D network. Figure 2 shows our network

architecture and the whole process of initialising the net-

work.

3.2. Auto­collecting the 3D Annotations

The network trained by only a few annotated 3D data

gives initial predictions on unannotated video sequences.

These predictions can be saved and augmented to perform

as pseudo annotations for further (unsupervised) training of

the network. However, due to the insufficient training of

the 3D hourglass, the initial predictions cannot be precise

enough. As human poses in video sequences are non-rigid

and have properties such as being low-rank and temporally

smooth, we can optimise the initial predictions by methods

of matrix completion applied to 3D trajectories.

Formulations. The optimisation can be regarded as a

matrix completion problem in which we utilise some of the

poses with high confidence in one video and fill in the ones

with low confidence. We combine the low-rank constraint

of human poses in videos and their temporal smoothness

property to get the following problem formulation:

min
∥

∥X♯
∥

∥

∗
+λd ‖XD‖

2
F +λc ‖C‖

∗
+λe ‖E‖1

s.t. X = XB+E, PΩ(X) = PΩ(S),

B = C, X♯ = X.

(1)

In Eq. 1, λe, λc and λd are the weights for ‖E‖1, ‖C‖
∗

and ‖XD‖
2
F , respectively. X ∈ R

3P×F (P for number

of joint points per person and F for number of frames per

video sequence) contains the 3D poses (one matrix for one

subject per video). S ∈ R
3P×F is a constant matrix that

equals to the pre-processed version of the initial pose pre-

dictions, in which the low-confidence elements are set to

0, with PΩ(·) representing the operation of picking out the

elements with high confidence. The confidence here can

be expressed by the scores extracted from the heatmap out-

puts of the network, and we have the threshold score value

τ ∈ [0, 1]. B ∈ R
F×F is the self-representation coefficient

matrix inspired by [10] and [31], and E ∈ R
3P×F is the

error matrix. D ∈ R
F×(F−1) is a block-diagonal sparse

matrix composed of 1 and −1 for computing the temporal

smoothness of pose sequences. The matrices X♯ ∈ R
3P×F

and C ∈ R
F×F equal to X and B respectively, which per-
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form as the auxiliaries for minimising the nuclear norm in

the process of the optimisation.

Optimisation. Eq.1 can be solved by the Augmented La-

grangian Methods (ALMs) [2]. By converting Eq.1 in to

the augmented Lagrangian form, the converted cost func-

tion can be split into five subproblems, the variables inside

which can be efficiently solved by the ALM, minimising

the cost function L by iteratively updating individual vari-

able while the other variables are fixed. Each of the sub-

problems is solvable individually following some developed

techniques such as the Singular Value Thresholding (SVT)

operation[3], the Shrinkage Operator[9] or simply solving

the linear equations. In our settings, X and X♯ are ini-

tialised by the predicted poses. B and C are initialised by

identity matrices. The elements in E are all set to zero at the

beginning. After the convergence of the ALM, we take X

as the optimised results who will further be used as pseudo

supervision in the network fine-tuning step.

3.3. Fine­tuning the Initial Network

In the previous steps, image frames from unannotated

video sequences are fed into the initial network to get 3D

predictions, then these predictions are optimised and saved.

In the fine-tuning step, these saved predictions are used with

augmentation to “supervise” the further training of the ini-

tial network. These operations are like automatically col-

lecting “annotations” for unannotated videos.

However, in the optimised predictions there are still

many errors, and these errors are very likely to mislead the

further training of the network. To alleviate the erroneous

impact caused by these errors, we propose to weight the

pseudo-supervision term in the loss function by the con-

fidence score of each prediction, and add a constraint on

bone-length consistency for the same person in the same

video. The complete loss function for fine-tuning the initial

network is as follows:

L(θ) = Sw(θ;p, s) + γU(θ;b), (2)

where Sw(·) is the weighted fidelity pseudo-supervision

term of the loss function and U(·) is the unsupervised one

(bone-length consistency loss). θ denotes the set of network

parameters, p represents the matrix of human poses, s are

the confidence scores for the corresponding predictions and

b denotes the bone lengths. γ is a weight which can be

empirically set to balance the two terms.

Weighted Fidelity Loss. The optimised predictions of

the unannotated images are utilised in the network fine-

tuning process as pseudo-supervision. As we regard the ini-

tial predictions with high confidence as precise ones, we do

not want the corresponding outputs of the fine-tuned net-

work to drift too much from their initially predicted val-

ues. Since our network outputs volumetric heatmaps, we

can directly extract heatmap confidence scores for the pre-

dicted joints. Therefore, we make use of these confidence

scores and propose a weighted fidelity pseudo-supervised

loss function, written as:

Sw(θ;p, s) =
∑F

i=1

∑P
j=1 W (sij) · ‖p̂ij − pij‖

2
, (3)

where F denotes the number of frames and P denotes the

number of joints per skeleton. W (·) is the weight function

which is defined as:

W (s) =

{

1, s > τ

s, s ≤ τ
, (4)

where τ ∈ [0, 1] denotes the threshold value defined to

judge whether the predicted joint is reliable enough to su-

pervise the network fine-tuning.

Bone-length Consistency Loss. The unsupervised ge-

ometry term, namely bone consistency loss, is defined as

follows:

U(θ;b) =
∑F

i=1

∑B
k=1

∥

∥

∥
b̂ik − bik

∥

∥

∥

2

, (5)

where B is the number of bones of one skeleton. The bone

length b can be calculated and collected through the initial

predictions. In this paper we adopt 11 bones (right and left

lower and upper limbs, pelvis to left and right hips, chin

to headtop) whose lengths are basically invariant while the

subjects are moving.

As our initial network outputs volumetric heatmaps in-

stead of coordinates of each joint, during the training in the

network initialisation step (which has only the supervised

loss), the L2 loss is applied to the heatmaps. To perform

network inference and validation, we can extract joint coor-

dinates from the predicted heatmaps by argmax operations.

However, during network fine-tuning, as the argmax oper-

ation is not differentiable, our bone-length consistency loss

whose calculation requires coordinates cannot be directly

applied. To back-propagate the network outputs through di-

rect coordinates, we replace the argmax operation with a

3D version of the peak finding operation in [7], in which

the weighted sum of heatmap confidence scores within the

cube centred around the coarse location of the maximum

score serves as the predicted joint coordinate.

4. Experiments

In this section, we conduct experiments in various set-

tings to analyse the performance of our trajectory optimisa-

tion and its ability on boosting the insufficiently trained 3D

pose estimation network.
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4.1. Experimental Configurations

Datasets. Our methods are firstly tested on the well-

known Human3.6M (H36M)[8] dataset. It contains video

sequences of totally 3.6 million frames of 11 human sub-

jects performing different actions, in which subjects 1, 5,

6, 7, 8, 9 and 11 are annotated with 3D poses. The orig-

inal videos are recorded at a frame rate of 50fps, and we

downsample them to 10fps. Due to the fact that our 2D fea-

ture extraction layers are trained on MPII 2D human pose

dataset[1], we adopt the 16-joint skeleton of this dataset

for H36M as well. Subjects 1, 5, 6, 7 and 8 are treated

as training subjects (fully-supervised or semi-supervised),

and subjects 9 and 11 are for validation. We also test

our methods on the more recent MPI-INF-3DHP (3DHP)

dataset[12]. The training set of 3DHP is similar to H36M

but with more challenging actions, containing 8 subjects

acting in the same indoor scenes with green screen. The

original videos are recorded at 25 or 50fps, and we down-

sample them to 12.5fps. The test set of 3DHP is much

smaller, containing roughly 3k image frames in total of 6

subjects. The two of the 6 sequences are in the same green

screen indoor scene as the training set, two are in different

indoor scenes (without green screen), and the other two are

outdoors. Our network only requires the 3D pose annota-

tions in camera coordinates, and we train a single model for

all actions.

Training protocols. We split the training datasets into

two parts: the labelled one and the unlabelled one. The

baseline models are trained with the labelled data, and the

annotations of the unlabelled data are automatically col-

lected and exploited for the further fine-tuning stage. To

illustrate the effectiveness of our approach, we design dif-

ferent data split patterns on the H36M and 3DHP datasets.

a) Subject-wise protocols. We split the training datasets

according to different subjects. For H36M, we mainly use

the annotations of subject 1 as the labelled set and S5,6,7,8

as the unlabelled set; for 3DHP, we use labelled S1 to train

initially and unlabelled S2-8 to fine-tune (subject-wise pro-

tocol S1). While testing the influence of varying number of

labelled subjects on network performance with H36M, we

progressively increase the number of subjects in the labelled

set (subject-wise protocol S1, S15, S156 and S1567). b)

Action-wise protocols. We evaluate the framework’s abil-

ity of learning new actions by splitting the H36M dataset

according to different actions. Firstly, regardless of the dif-

ferent degrees of difficulties of the actions, we use the first

half of the actions (Directions, Discussion, Eating, Greet-

ing, Phoning, Photo, Posing and Purchases) as the labelled

set and the rest as unlabelled set (action-wise protocol half ).

Then, to illustrate that our auto-collected annotations can

enhance the network’s performance on hard poses, we use

the 11 easier poses to train fully-supervised and the rest 4

unlabelled, harder poses (Photo, Purchases, Sitting, Sitting-

Down) to fine-tune (action-wise protocol hard).

Evaluation Metrics. The accuracy of the predicted 3D

poses are commonly evaluated in terms of the mean per-

joint position error (MPJPE), namely the average per-joint

distance from the predictions centred around the root joints

(pelvis) to the ground-truth annotations (in mm). In addi-

tion, inspired by [22], we adopt another two metrics – nor-

malised mean per-joint error (NMPJPE) and mean per-joint

position error after Procrustes alignment (PMPJPE). NM-

PJPE is set to avoid the dependence of subjects height, in

which a scale factor is applied to the predictions so as to

minimise the squared distance between annotations and pre-

dictions. When Procrustes alignment is applied to the pre-

dictions before calculating the mean per-joint error, the met-

ric becomes PMPJPE, which is independent to both scale

and orientation. In this paper, all of the three evaluation

metrics are demonstrated in mm.

Implementation Details. As is described in section 3.1,

our initial 3D human pose estimation network is a 3 stack

volumetric hourglass network, with the first 2 stacks ini-

tialised by transfer learning of a 2D detector trained on the

MPII 2D human pose dataset. The parameters of these two

stacks are then fixed (without fine-tuning with the 2D an-

notations from the 3D datasets), therefore no explicit 2D

keypoint annotations of the 3D datasets are required in

the training of the 3D network. For the fully-supervised

training on subsets of the datasets, we train with batch

size 2 at a learning rate of 2.5 × 10−4. For the network

fine-tuning, we train for 2 epochs on the whole unanno-

tated image sequences with batch size 4 at learning rate

2.5×10−5. Both the annotations for fully-supervised train-

ing and the pseudo-annotations (optimised predictions) for

network fine-tuning are augmented with 50% chance flip-

ping, −30◦ ∼ +30◦ rotation and 0.75 ∼ 1.25 times scal-

ing.

4.2. 3D Trajectory Optimisation Results

The baseline network trained on the labelled part of the

datasets yields plausible 3D pose predictions on the unla-

belled part of the datasets, and the predictions are then op-

timised using our trajectory completion method. Table 1

and Table 2 gives the 3D trajectory optimisation results of

H36M S5-8 and 3DHP S2-8 under subject-wise protocol

S1. Table 1 and 2 show obvious improvements in all of

the evaluation metrics after optimisation. In addition, it can

be observed that reliable predictions and optimisations can

be selected using the heatmap score values. As the optimi-

sation imposes temporal smoothness property to the video

sequences, some of the erroneous joints are corrected by the

preceding or subsequent poses. Figure 3 visualises some 3D

pose examples before and after optimisation, showing that

the optimised predictions (the blue skeletons) are closer to

the ground truth, especially for those occluded joints.
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MPJPE NMPJPE PMPJPE

Predictions (all) 91.20 86.83 75.52

Optimisations (all) 81.67 77.36 66.88

Preds (scores > τ ) 71.12 68.77 62.92

Optis (scores > τ ) 64.16 60.88 57.79

Table 1. H36M optimisation results under subject-wise proto-

col S1. The predictions (all) are the direct outputs of S5-8 of

H36M by the network trained on S1, and the optimisations (all)

are the optimised results. There are 86.38% predictions whose

scores are greater than the threshold τ = 0.7.

MPJPE NMPJPE PMPJPE

Predictions (all) 132.25 128.87 109.15

Optimisations (all) 125.97 123.53 98.41

Preds (scores > τ ) 100.24 101.57 86.65

Optis (scores > τ ) 98.63 98.32 81.08

Table 2. 3DHP optimisation results under subject-wise proto-

col S1. The predictions (all) are the direct outputs of S2-8 of 3DHP

by the network trained on S1, and the optimisations (all) are the

optimised results. There are 80.96% predictions whose scores are

greater than the threshold τ = 0.5.

Figure 3. Qualitative H36M optimisation results under subject-

wise protocol S1. Visualisations of some 3D poses on H36M S5-

8 before and after 3D trajectory optimisation. The green dashed

skeletons are the ground truth poses, the red ones are the initial

network predictions, and the blue ones are the optimised predic-

tions.

4.3. Network Fine­tuning Results

Subject-wise results. Table 3 shows the prediction er-

rors of the network trained on H36M under subject-wise

protocol S1, fine-tuned with different loss settings and

MPJPE NMPJPE PMPJPE

Rhodin[22] baseline 99.6 91.5 -

Rhodin[22] semi-sup 98.5 88.8 -

Pavllo[18] baseline 98.6 93.8 70.3

Pavllo[18] semi-sup 119.3 113.7 92.8

Ours baseline 97.7 93.4 75.6

original supervision 94.5 89.7 69.3

+ weighted fidelity 93.0 88.6 69.0

+ bone consistency 92.6 87.7 68.8

optimised supervision 91.0 82.1 67.6

+ weighted fidelity 90.5 81.4 67.1

+ bone consistency 88.8 80.1 66.5

Table 3. H36M fine-tuning results under subject-wise proto-

col S1. The network (initialised by H36M, S1) is fine-tuned with

unannotated S5-8 images under different loss configurations. Re-

sults are generated on the H36M validation set.

their comparison with some state-of-the-arts methods. The

data splitting pattern of our experiment, i.e. S1 for fully-

supervised training (baseline) and S5-8 for network fine-

tuning (fine-tune), without 2D fine-tuning, is the same as

that of Rhodin et al. [22], who utilise multi-view informa-

tion to perform the semi-supervised training. Our baseline

is comparative to theirs, but our network fine-tuning results

significantly outperforms theirs with the usage of the same

amount of data. Pavllo et al. [18] design a deep network

which accepts 2D annotations (or detections) as input to re-

construct 3D poses, and their semi-supervised training is

performed via reprojecting the predicted 3D poses to 2D

annotations. Their results in Table 3 are generated with the

provided stacked hourglass detections without fine-tuning

(SH PT), in single frame setting. The baselines are also

comparative to ours, but their semi-supervised training fails

when there are no ground truth 2D annotations available

to fine-tune the 2D detector (i.e. the 2D detections are

not highly accurate). Under the same configurations, our

two-stage training framework works well, and the network

works in single frame, which is much easier and faster to

train and does not require consecutive image frames during

training or in test time.

It can also be observed from Table 3 how our trajec-

tory optimisation, weighted fidelity loss and bone length

consistency loss incrementally improve the baseline net-

work. Each component improves the network a little fur-

ther, and finally the initial network gains about 10% perfor-

mance boost in all of the three evaluation metrics. Table 4

provides a more detailed, action-wise results of this abla-

tive experiments. For all of the actions, results supervised

by optimised predictions outperform the baseline, demon-

strating the effectiveness of our annotation auto-collecting

scheme. For most of the actions, optimised supervision with

weighted fidelity plus bone length consistency loss obtain

the best results. Figure 4 visualises the predictions of the

2197



Direct Discuss Eat Greet Phone Photo Pose Purchase

Baseline 78.90 92.80 82.09 86.34 94.10 113.21 83.75 110.55

+ optimised supervision 71.47 87.45 77.36 79.94 87.96 107.69 74.47 108.40

+ weighted fidelity 70.86 85.55 77.40 78.92 87.93 108.48 73.53 107.03

+ bone consistency 70.44 83.61 76.59 77.91 85.43 106.14 72.26 102.93

Sit SitDown Smoke Wait WalkDog Walk WalkPair Average

Baseline 125.45 185.76 90.57 82.24 99.83 67.04 79.86 97.72

+ optimised supervision 118.34 168.85 84.25 77.28 94.71 60.97 72.71 91.05

+ weighted fidelity 117.91 171.93 83.52 75.82 93.55 60.52 71.15 90.50

+ bone consistency 115.79 164.99 82.43 74.34 94.61 60.15 70.65 88.77

Table 4. Ablative H36M fine-tuning results under subject-wise protocol S1. Network fine-tuning results shown in MPJPE, evaluated

by actions on H36M validation set under different loss configurations. Best in bold.

Figure 4. Qualitative fine-tuning results under subject-wise protocol S1. Visualisations of some of the final network fine-tuning results

on the validation set, under subject-wise protocol S1. The first 8 columns are H36M results, and the last 4 are 3DHP results (of green

screen studio, studio without green screen, and outdoors). The green skeletons are the ground truth poses, the red ones are the baseline

network predictions, and the blue ones are the finial results of the fine-tuned network.

initial network and the network fine-tuned with weighted fi-

delity optimised supervision with bone length consistency

loss, in which obvious improvements can be observed. The

joints which are undetected or wrongly detected (inter-

changed with other joints) are effectively corrected through

network fine-tuning.

We further test our method with varying number of la-

belled subjects. With the varying of the labelled and un-

labelled subjects, our method still works well in boosting

the performance of the baseline network. Figure 5 shows

the network fine-tuning results under subject-wise protocol

S15, S156 and S1567. It is demonstrated that our frame-

work consistently improves the network with varying la-

belled subjects.

Action-wise results. To test our framework’s ability of

learning new actions, we perform action-wise training on

H36M under action-wise protocol half and action-wise pro-

tocol hard. Table 5 compares the baseline and the fine-tuned

results of the half of unlabelled actions on the H36M vali-

dation set under action-wise protocol half. Table 6 gives the

results on the H36M validation set of the 4 unlabelled hard

actions under action-wise protocol hard. It can be observed

Sit SitDown Smoke Wait

Baseline 111.88 254.42 69.25 66.80

Fine-tune 101.08 215.02 64.71 61.57

WalkDog Walk WalkPair Average

Baseline 75.95 57.65 61.36 98.92

Fine-tune 71.95 53.63 56.75 88.75

Table 5. H36M fine-tuning results under action-wise protocol

half. The difficulties of labelled and unlabelled actions are similar.

Results are generated on the part of unlabelled training actions in

H36M validation set, shown in MPJPE.

Photo Purch. Sit SitDown Avg.

Baseline 85.00 85.01 107.85 252.06 138.09

Fine-tune 83.22 82.76 97.44 200.32 119.76

Table 6. H36M fine-tuning results under action-wise protocol

hard. The 4 unlabelled actions are more challenging. Results are

generated on this 4 hard actions in H36M validation set, shown in

MPJPE.

that the performance of the networks under both protocols

are boosted on the new actions, showing that our two-stage

framework has the ability to help with learning new actions

from the unsupervised data, especially for challenging ac-
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Figure 5. Training with varying number of labelled H36M sub-

jects. MPJPEs, NMPJPEs and PMPJPEs under subject-wise pro-

tocol S1, S15, S156 and S1567.

MPJPE NMPJPE PMPJPE

Studio GS
Baseline 124.52 121.33 98.41

Fine-tune 113.49 111.65 90.85

Studio no GS
Baseline 151.45 149.15 122.46

Fine-tune 138.25 136.43 103.52

Outdoors
Baseline 187.06 180.46 158.67

Fine-tune 171.16 167.18 148.89

All
Baseline 149.79 146.07 122.07

Fine-tune 136.76 134.40 109.84

Table 7. Results of different scenes on 3DHP. Network fine-

tuning results on 3DHP validation set under subject-wise protocol

S1. All of the videos in the training set are recorded in an indoor

studio with green screen (Studio GS). Results are generated on the

validation set, in which all of the three scenes (Studio GS, Studio

no GS, and Outdoors) are presented.

tions.

In addition, recent studies on semi-supervised learn-

ing [14] addresses the problem of “class distribution mis-

match”, which refers to whether labelled and unlabelled

data coming from different classes limits the performance

of semi-supervised learning of classification tasks. To vali-

date our framework in this setting, we choose actions con-

tained in labelled and unlabelled part as dissimilar as possi-

ble. We train an initial model with annotated data of H36M

“discussion” (mainly standing), and fine-tune with unanno-

tated “phoning” (mainly sitting). After fine-tuning, both

the actions get MPJPE drop: Discussion from 82.2mm to

79.2mm, Phoning from 144.5mm to 134.2mm, showing that

our framework is valid despite class distribution mismatch.

Generalising to new scenes and outdoor captures. As

both the training and the validation set of H36M are indoors,

we also test our two-stage training scheme on a more re-

cent and more challenging dataset – MPI-INF-3DHP, whose

validation set contains images of not only the same indoor

scenes as of the training set, but also new indoor scenes and

outdoor captures. The experiments on 3DHP are conducted

under subject-wise protocol S1. Table 7 shows the results

of different scenes on 3DHP validation set. It can be ob-

served that our two-stage training framework improves the

results in all of the scenes on all the three evaluation metrics,

showing that the framework generalises to different scenes

and outdoor captures. Some results are visualised in Figure

4. Obvious improvements can be observed from the recon-

structed 3D poses for all of the three types of scenes.

Cross-dataset validation. To validate our framework in

a more real-world like scenario, we conduct experiments

of cross-dataset transfer learning, transferring the model

trained on one dataset to a new dataset using only the un-

labelled data of the new dataset. We use unlabelled data

from 3DHP to fine-tune the model trained fully supervised

on H36M. We randomly select 5 videos from 3DHP s1-5 as

unannotated training data, and 3 videos from s6-8 for test-

ing. The optimisation makes MPJPE on s1-5 drops from

192.6mm to 176.6mm; after using the optimised predic-

tions to fine-tune the network, results on s6-8 drop from

206.8mm to 153.8mm, showing that the initial network is

promoted by 25.6% on the 3DHP dataset without introduc-

ing any 3DHP annotation.

5. Conclusion

In this paper, we introduce a two-stage framework for

single-image 3D human pose estimation to boost the neu-

ral network’s performance by auto-collecting annotations

for unannotated monocular videos. Extensive experiments

demonstrate the effectiveness of our framework, showing

that it can successfully assist the learning of new 3D human

poses from unannotated monocular videos. This framework

can be applied when there are not enough annotated data to

train a 3D human pose estimation network while a lot of

unannotated monocular videos are available, which is often

the case in real world scenarios.
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