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Abstract

In this paper, we propose a novel projector-camera sys-

tem for practical and low-cost acquisition of a dense object

3D model with the spectral reflectance property. In our sys-

tem, we use a standard RGB camera and leverage an off-

the-shelf projector as active illumination for both the 3D

reconstruction and the spectral reflectance estimation. We

first reconstruct the 3D points while estimating the poses of

the camera and the projector, which are alternately moved

around the object, by combining multi-view structured light

and structure-from-motion (SfM) techniques. We then ex-

ploit the projector for multispectral imaging and estimate

the spectral reflectance of each 3D point based on a novel

spectral reflectance estimation model considering the ge-

ometric relationship between the reconstructed 3D points

and the estimated projector positions. Experimental results

on several real objects demonstrate that our system can pre-

cisely acquire a dense 3D model with the full spectral re-

flectance property using off-the-shelf devices.

1. Introduction

The nature of an object is typically represented by two

properties: geometric and photometric properties. The geo-

metric property is determined by the 3D structure of the ob-

ject, while the photometric property is determined by how

the incident light is reflected at each 3D point of the object

surface. Among various photometric parameters, spectral

reflectance is one of the most fundamental physical quan-

tities, which defines the amount of reflected light over that

of the incident light at each wavelength. In this work, our

aim is to acquire the spectral 3D information of an object

using low-cost off-the-shelf devices (see Fig. 1). Practical

and low-cost acquisition of the spectral 3D information has

many potential applications in fields such as cultural her-

itage [9, 28], plant modeling [7, 31], spectral rendering [12],

and multimedia [33].

3D reconstruction is a very active research area in com-

puter vision. Structure from motion (SfM) [43, 46], multi-

view stereo [15, 44], and structured light [14, 16, 17, 30, 42]
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Figure 1. From multi-view structured light and multispectral im-

ages captured using an alternately moved projector and camera,

our system can reconstruct a dense object 3D model having the

spectral reflectance property for each 3D point.

are common approaches for the 3D shape acquisition. How-

ever, they usually focus on the geometric reconstruction.

Although some recent methods combine the geometric and

the photometric reconstruction [26, 34, 35], they still focus

on the estimation of RGB albedo, which is dependent on the

camera RGB sensitivity and not an inherent property of the

object unlike the spectral reflectance.

Multispectral imaging is another active research area.

Various hardware-based systems [6, 8, 10, 18, 36, 40, 48]

and software-based methods [2, 5, 13, 22, 38, 45] have been

proposed for recovering scene’s spectral reflectance. How-

ever, they usually assume a single-viewpoint input image

and do not consider the geometric relationship between the

object surface and the light source, only achieving scene

and viewpoint-dependent spectral recovery, where shading

or shadow is “baked in” the recovered spectral reflectance.

Some systems have also been proposed for spectral 3D

acquisition [19, 21, 27, 29, 39, 49]. However, they rely on a

dedicated setup using a multispectral camera [27, 39, 49] or

a multispectral light source [19, 21, 29], which makes the

system impractical and expensive for most users.

In this paper, we propose a novel projector-camera sys-

tem, named Pro-Cam SSfM, for structure and spectral re-

flectance from motion. In Pro-Cam SSfM, we use a stan-

dard RGB camera and leverage an off-the-shelf projector

for two roles: structured light and multispectral imaging.

For the data acquisition, structured light patterns (for ge-
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ometric observations) and uniform color illuminations (for

multispectral observations) are sequentially projected onto

the object surface while alternately moving the camera and

the projector positions around the object. Using the multi-

view structured light data, we first reconstruct the 3D points

while estimating the poses of all moved cameras and pro-

jectors. Using the multi-view multispectral data, we then

estimate the spectral reflectance of each 3D point consid-

ering the geometric relationship between the reconstructed

3D points and the estimated projector positions.

Technical contributions of this work are listed as below.

1. We propose an extended self-calibrating multi-view

structured light method, where we include the moved

projectors for feature correspondences and pose esti-

mation to realize denser 3D reconstruction. The esti-

mated projector positions are further exploited for the

following spectral reflectance estimation.

2. We propose a novel spectral reflectance estimation

model by incorporating the geometric relationship be-

tween the reconstructed 3D points and the estimated

projector positions into the cost optimization. Our

model leads accurate estimation of the inherent spec-

tral reflectance of each 3D point while eliminating the

baked-in effect of the shading and the shadow.

3. By integrating the above key techniques into one sys-

tem, we propose Pro-Cam SSfM, a novel projector-

camera system for practical and low-cost spectral 3D

acquisition. We experimentally demonstrate that Pro-

Cam SSfM can precisely reconstruct a dense object 3D

model with the spectral reflectance property. To the

best of our knowledge, Pro-Cam SSfM is the first spec-

tral 3D acquisition system using off-the-shelf devices.

2. Related Work

Structured light systems: Structured light is a well-

adopted technique to accurately reconstruct the 3D points

irrespective of surface textures by projecting structured light

patterns [4, 17, 42, 47]. While structured light methods

are generally based on a pre-calibrated projector-camera

system, some multi-view structured light methods [14, 16,

30] have realized self-calibrating reconstruction of the 3D

points. The key of these methods is that the structured

light patterns projected by one fixed projector is captured

from more than two camera viewpoints having viewing an-

gle overlaps, so that feature matching and tracking can be

made to connect all projectors and cameras. This setup can

be realized by simultaneously using multiple projectors and

cameras [14, 16] or alternately moving a projector and a

camera [30].

In Pro-Cam SSfM, we extend the method [30] for realiz-

ing denser 3D reconstruction, as detailed in Section 3.2. We

also exploit the estimated projector positions for modeling

the spectral reflectance, while existing methods [14, 16, 30]

only focus on the geometric reconstruction.

Multispectral imaging systems: Existing hardware-

based [6, 8, 10, 18, 36, 48, 40] or software-based [2, 5, 13,

22, 38, 45] multispectral imaging systems commonly apply

a single-viewpoint image-based spectral reflectance estima-

tion method ignoring scene’s or object’s geometric infor-

mation. This means that they only achieve scene-dependent

spectral reflectance estimation, where the viewpoint and

scene-dependent shading or shadow is baked in the esti-

mated spectral reflectance.

In Pro-Cam SSfM, we use an off-the-shelf RGB cam-

era and projector for multispectral imaging. Although this

setup is the same as [18], we propose a novel spectral re-

flectance estimation model for recovering the object’s in-

herent spectral reflectance considering the geometric infor-

mation that can be obtained at the 3D reconstruction step.

Spectral 3D acquisition systems: Existing systems for

spectral 3D acquisition are roughly classified into photo-

metric stereo-based [29, 39], SfM and multi-view stereo-

based [21, 49], and active lighting or scanner-based [19, 27]

systems. The photometric stereo-based systems [29, 39]

can acquire dense surface normals for every pixels of the

single-view image. However, they have a main limita-

tion that the light positions should be calibrated. The

SfM and multi-view stereo-based systems [21, 49] enable

self-calibrating 3D reconstruction using multi-view images.

However, they only can provide a sparse point cloud es-

pecially for a texture-less object. The active lighting or

scanner-based systems [19, 27] can provide an accurate and

dense 3D model based on the active sensing. However, they

require burdensome calibration of the entire system. Fur-

thermore, all of the above-mentioned systems rely on a ded-

icated setup using a multispectral camera [27, 39, 49] or a

multispectral light source [19, 21, 29] for achieving mul-

tispectral imaging capability. Those limitations make the

existing system impractical and expensive for most users,

narrowing the range of applications.

Pro-Cam SSfM overcomes those limitations because (i)

it uses a low-cost off-the-shelf camera and projector, (ii) it

does not require geometric calibration, and (iii) it generates

a dense 3D model based on the structured light.

3. Proposed Pro-Cam SSfM

Pro-Cam SSfM consists of three parts: data acquisition,

self-calibrating 3D reconstruction, and spectral reflectance

estimation. Each part is detailed below.

3.1. Data acquisition

Figure 2 illustrates the data acquisition procedure of Pro-

Cam SSfM. We use an off-the-shelf projector as active illu-
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mination and a standard RGB camera as the imaging de-

vice to capture the object illuminated by the projector. As

shown in Fig. 2(a), the projector is used to project a se-

quence of structured light patterns and uniform color illumi-

nations to acquire geometric and photometric observations.

As the structured light patterns, we use the binary gray

code [17, 42]. As the uniform color illuminations, we use

the seven illuminations: red, green, blue, cyan, magenta,

yellow, and white illuminations, which are generated using

the binary combinations of the RGB primaries as (R,G,B)

= (1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0), (1,1,1),

respectively. The sequence of active projections are effec-

tively exploited in the 3D reconstruction and the spectral

reflectance estimation.

To scan the whole object, we follow the data acquisition

procedure of [30]. The data acquisition starts with initial

projector and camera positions (e.g., position 1 in Fig. 2(b)).

Then, the camera and the projector are alternately moved

around the object (e.g., motion 1, motion 2, and so on,

in Fig. 2(b)). This acquisition procedure enables to con-

nect the structured light codes (i.e., feature points) between

successive projectors and cameras. All connected feature

points using all projector and camera positions are used as

correspondences for the SfM pipeline, which enables self-

calibrating reconstruction of the 3D points while estimating

the poses of all moved projectors and cameras.

3.2. Self-calibrating 3D reconstruction

Given the structured light encoded images, we first per-

form self-calibrating reconstruction of the 3D points while

estimating the poses of all moved cameras and projectors.

This is performed by extending [30] as below.

3.2.1 Feature correspondence

By projecting gray code patterns as shown in Fig. 2(a), the

projector can add features on object surfaces. Those fea-

tures have different codes whose number is the same as the

projector resolution. By decoding the code for each pixel

and calculating the center position of the pixels having the

same code, we can obtain features at sub-pixel accuracy po-

sitions in each image.

The feature correspondences for camera-projector pairs

(e.g., camera1-projector1 and camera2-projector1 pairs in

Fig. 2(b)) and camera-camera pairs (e.g., camera1-camera2

pair) sharing the same projector code are obvious. The fea-

tures from different projectors can be connected using a

common camera (e.g., camera2 for projector1 and projec-

tor2), i.e., the features from different projectors are regarded

as identical, if their positions are close enough (less than 0.5

pixels in our experiments). Once they are connected, corre-

spondences can be made for all combinations of cameras

and projectors (e.g., even correspondence for a projector-

Uniform color
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Figure 2. Data acquisition procedure of Pro-Cam SSfM. (a) The

projector projects a sequence of structured light patterns (gray

code) and uniform color illuminations to acquire geometric and

photometric observations. (b) The camera and the projector are

alternately moved around the object, so that the structured light

codes can be connected among all camera and projector positions.

projector pair can be made). In contrast to the fact that the

method [30] only uses the correspondences of all camera-

camera pairs, we use all correspondences including projec-

tors, which results in denser 3D points as shown in Fig. 5.

3.2.2 3D point and projector-camera pose estimation

The set of all obtained correspondences is then fed into a

standard SfM pipeline [43, 46] to estimate the 3D points, the

projector poses, and the camera poses. In the SfM pipeline,

we modify the bundle adjustment formulation [32] so as to

minimize the following weighted reprojection errors.

E =
∑

i

∑

k

wi‖xk,i −Hi(pk)‖
2, (1)

where pk is the 3D coordinate of point k, xk,i is the corre-

sponding pixel coordinates in i-th viewpoint (camera or pro-

jector), and Hi(p) is a function that projects the 3D point

to i-th viewpoint (camera or projector) using intrinsic and

extrinsic parameters for each projector and each camera. In

Eq. (1), we set a larger weight to impose higher penalties

for the reprojection errors of the projector as

wi =

{

1, if viewpoint i is a camera

wp, if viewpoint i is a projector
, (2)

where wp > 1, because it can be regarded that “feature”

positions of projectors have almost no errors. Through the

bundle adjustment, 3D points and whole system parame-

ters, including projector and camera positions and intrinsic

parameters for both projectors and cameras are estimated

without any pre-calibration.
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3.3. Spectral reflectance estimation

Given the estimated 3D points, projector positions, and

camera poses, we next estimate the spectral reflectance of

each 3D point. For this purpose, we use multispectral im-

ages captured under the uniform color illuminations. In

what follows, we first introduce our proposed rendering

model and then explain cost optimization to estimate the

spectral reflectance using multi-view multispectral images.

3.3.1 Rendering model

We here introduce our rendering model for each 3D point

using a single projector-camera pair. Suppose the object

surface is modeled by Lambertian reflectance and the cam-

era response is linear, the camera’s pixel intensity y for k-th

3D point captured by m-th camera channel and n-th pro-

jected illumination is modeled as

yk,m,n(xk) = sk

∫

Ωλ

cm(λ)ln(λ)r(pk, λ)dλ, (3)

where xk is the projected pixel coordinate for k-th point,

r(pk, λ) is the spectral reflectance of k-th point, ln(λ) is the

spectral power distribution of n-th projected illumination,

cm(λ) is the camera spectral sensitivity of m-th channel,

sk is the shading factor for k-th point, and Ωλ is the target

wavelength range. In practice, the continuous wavelength

domain is discretized to Nλ dimension (typically, sampled

at every 10nm from 400nm to 700nm, i.e., Nλ=31). Sup-

pose the camera has three (i.e., RGB) channels and Nl il-

luminations are projected, the observed multispectral inten-

sity vector for k-th point yk ∈ R
3Nl can be expressed as

yk = skC
TLrk, (4)

where rk ∈ R
Nλ represents the spectral reflectance, L =

[L1; · · · ;LNl
] ∈ R

NlNλ×Nλ is the illumination matrix,

where Ln ∈ R
Nλ×Nλ is the n-th diagonal illumination ma-

trix, and CT = blockdiag(CT
rgb, · · · ,C

T
rgb) ∈ R

3Nl×NlNλ

is the block diagonal matrix, where CT
rgb ∈ R

3×Nλ is the

camera sensitivity matrix. In this work, we assume that the

spectral power distributions of the projected illuminations

and the camera sensitivity (i.e., CT and L) are known or

preliminarily estimated (e.g., by [23, 48]).

3.3.2 Spectral reflectance model

It is known that the spectral reflectance of natural objects is

well represented by a small number of basis functions [41].

Based on this observation, we adopt a widely used basis

model [18, 40], where the spectral reflectance is modeled as

rk = Bαk, (5)

where B ∈ R
Nλ×Nb is the basis matrix, where Nb is the

number of basis functions, and αk ∈ R
Nb is the coefficient

Projector 

Camera

Figure 3. Geometric relationship between the projector ppro and

the 3D point pk to calculate the shading factor. We assume that the

point has Lambertian reflectance and the projected illumination

follows the inverse-square law.

vector. The basis model can reduce the number of param-

eters (since Nb < Nλ) for spectral reflectance estimation.

Using the basis model, Eq. (4) is rewritten as

yk = skC
TLBαk. (6)

3.3.3 Shading model

Different from common single-view image-based methods

(e.g., [18, 19, 48, 40]), we take the shading factor into ac-

count for spectral reflectance estimation, which results in

more accurate model and estimation. Figure 3 illustrates

the relationship between the projector position ppro, k-th

3D point pk, and the point normal nk (which can be calcu-

lated using [20]). Since the shading factor is wavelength in-

dependent and determined by the geometric relationship be-

tween the projector and the 3D point (under the Lambertian

reflectance assumption), we rewrite the illumination power

as l(λ) = l in the following derivation. Then, the shading

factor at k-th point is modeled as

sk = Irefk /l, (7)

where Irefk is the irradiance of the reflected light incoming

to the camera. In our model, the shading factor determines

how much the amount of the projected illumination reaches

the camera, irrespective of the spectral reflectance. If we

assume Lambartian reflectance, Irefk is independent of the

camera position and expressed as

Irefk = Iinck ×
ppro − pk

‖ppro − pk‖
· nk, (8)

where Iinck is the irradiance of the incident light at k-th

point and (ppro − pk)/‖p
pro − pk‖ · nk represents the in-

ner product of the normalized lighting vector and the point

normal (see Fig. 3). Based on the near-by light model and
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the inverse-square law, Iinck is inversely proportional to the

square of the distance from the projector to the 3D point as

Iinck =
l

‖ppro − pk‖2
. (9)

If we assume that the ambient light is negligible and omit

interreflection from the model, the shading factor is mod-

eled from Eqs. (7)–(9) as

sk =
ppro − pk

‖ppro − pk‖3
· nk. (10)

Based on this model, the shading factor can be calculated

from the 3D point, the point normal, and the projector po-

sition that we have already obtained by the self-calibrating

3D reconstruction. The final rendering model is derived by

substituting Eq. (10) into Eq. (6).

3.3.4 Visibility calculation

To estimate the spectral reflectance using multi-view im-

ages, we need to calculate the visibility of each 3D point.

For this purpose, the object surface is reconstructed using

Poisson surface reconstruction [24, 25]. Then, for each

projector-camera pair, a set of 3D points that are visible

from both the camera and the projector is calculated. By

calculating the visibility, we discount the effects of cast

shadows for spectral reflectance estimation.

3.3.5 Cost optimization

Using the rendering model of Eq. (6), we solve an optimiza-

tion problem to estimate the spectral reflectance of each 3D

point from multi-view images obtained from all projector-

camera pairs. The cost function is defined as

argmin
αk

Eren(αk) + γEssm(αk), (11)

where Eren is the rendering term and expressed as

Eren(αk) =
∑

c∈V(k)

‖yobs
k,c − yk,c(αk)‖

2

|V(k)|
, (12)

where yobs
k,c ∈ R

3Nl is the observed multispectral intensity

vector obtained from c-th projector-camera pair, yk,c(αk) is

the estimated intensity vector based on the rendering model,

and V(k) is the visible set for k-th point. This term evalu-

ates the data fidelity between the observed and the rendered

intensities. Essm is a commonly used spectral smoothness

term [18, 40, 48], which is defined by

Essm(αk) = DBαk, (13)

where D ∈ R
Nλ×Nλ is the operation matrix to calculate

the second-order derivative [40]. This term evaluates the

smoothness of the estimated spectral reflectance. The bal-

ance of Eren and Essm is determined by the parameter γ.
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Figure 4. Camera spectral sensitivity and spectral power distribu-

tion of each uniform color illumination.

4. Experimental Results

4.1. Setup and implementation details

We used an ASUS P3B projector and a Canon EOS

5D Mark-II digital camera. The sequence of the struc-

tured light patterns was captured using a video format with

1920×1080 resolution, while the color illuminations were

captured using a RAW format, which has a linear camera

response, with a higher resolution. The RAW images were

then resized to have the same resolution with the video for-

mat. As shown in Fig. 4, the camera spectral sensitivity of

Canon EOS 5D Mark-II was obtained from the camera sen-

sitivity database [23] and the spectral power distributions of

the color illuminations were measured using a spectrometer.

For the 3D reconstruction, we used Colmap [43] to run

the SfM pipeline and Poisson surface reconstruction [24,

25], which is integrated with Meshlab [11], to visualize the

obtained 3D model. For the spectral reflectance estimation,

we set the target wavelength range as 410nm to 670nm with

every 10nm intervals because the used projector illumina-

tions only have the spectral power within this range. We

used eight basis functions, which were calculated using the

spectral reflectance data of 1269 Munsell color chips [1]

by principal component analysis. The spectral smoothness

weight in Eq. (11) was determined by an empirical manner

and set as γ = 0.06 for the intensity range [0,1]. The C++

Ceres solver [3] was used to solve the non-linear optimiza-

tion problem of Eq. (11).

4.2. 3D reconstruction results

Figure 5 shows the self-calibrating 3D reconstruction re-

sults of a clay sculpture with roughly 30 centimeter height.

To schematically show the layout of the moved projector

and camera positions, we show a synthesized top-view im-

age of Fig. 5(a). The estimated projected and camera po-

sitions by our method are overlaid as the red and the green

triangular pyramids using a manually aligned scale. It is

demonstrated that the projector and the camera positions are

correctly estimated by our method.
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(a) Synthesized top view (b) Method [30] (c) Ours w/o weight (d) Our method (e) 3D surface result of our method

Figure 5. 3D reconstruction results: (a) The synthesized top-view image to schematically show the layout of the moved projector and

camera positions. The estimated projector and camera positions are overlaid as the red and the green triangular pyramids; (d) Our method

generates 210,523 points, while (b) the method [30] generates 105,915 points; (c) The result of our method without the bundle adjustment

weight, which leads to reconstruction errors; (e) The 3D surface result reconstructed from the 3D points (d).
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Figure 6. Evaluation of 3D point cloud density. Left: The den-

sity histogram of reconstructed points. Right: Visualization of its

spacial distribution.

Figure 5(b) and 5(d) show the 3D point cloud results of

the method [30] and our method, which were reconstructed

using exactly the same setup and images. The difference is

that our method uses both camera and projector images for

SfM computation, while the method [30] uses only camera

images. Our method can reconstruct the 210,523 points,

which are almost double of the 105,915 points reconstructed

by the method [30]. To quantitatively evaluate the point

cloud density, we counted the number of reconstructed 3D

points within a certain radius from each point. Figure 6

shows the density histogram of reconstructed points (left)

and the visualization of its spacial distribution (right), where

our method achieves much denser 3D reconstruction.

Another improvement can be achieved by introducing

the weight of Eq. (1) for bundle adjustment, which poses

larger penalties to the projector’s reprojection errors. In our

experiments, we set as wp = 100, though a larger value more

than 10 does not make a big difference. We experimen-

tally observed that the estimation of the projector’s posi-

tions and internal parameters often fails if we do not use the

weight, which leads to reconstruction errors as can be seen

in Fig. 5(c). Figure 5(e) shows the final reconstructed sur-

face result for our method, where the detail structures of the

sculpture are precisely reconstructed.

4.3. Spectral reflectance estimation results

To evaluate the performance of our spectral reflectance

estimation method, we used a standard colorchart with the

3 4 5 6 7 8
The number of band

0.026
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Figure 7. RMSE for the 24 patches of the colorchart when using

the selected best band set for each number of spectral bands.

24 patches. We first show the effect of the number of spec-

tral bands. In our experiment, seven color illuminations and

RGB camera channels, as shown in Fig. 4, were used, re-

sulting in a total of 21-band measurements. To select the

best band set, we evaluated all possible band sets for each

number of spectral bands. Figure 7 shows RMSE for the 24

patches of the colorchart when using the selected best band

set for each number of spectral bands. We can observe that

RMSE is reduced by using multispectral information and

becomes very close when more than six bands are used. The

six-band set of (light, camera) = (Lgreen, Cblue), (Lblue,

Cgreen), (Lblue, Cblue), (Lcyan, Cred), (Lmagenta, Cred),

(Lyellow, Cgreen) provides the minimium RMSE among the

evaluated all possible band sets.

We next demonstrate the effectiveness of our spectral re-

flectance estimation model considering the geometric infor-

mation. As shown in Fig. 8(a), we laid the colorchart on

a table and captured the structured light and multispectral

data by four projector-camera pairs according to the data ac-

quisition procedure of Pro-Cam SSfM. The estimated pro-

jector positions, camera positions, and 3D points of the col-

orchart are shown in Fig. 8(b). The example captured im-

ages (under white illumination) by four projector-camera

pairs are shown in Fig. 8(c). Figure 8(d) compares the es-

timated spectral refletance results for the 24 patches, where

the blue line is the ground truth, the red line is our result (av-

erage withing each patch) using all projector-camera pairs,

and the yellow and purple dashed lines are the results of two
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(d) Comparison of the estiamted spectral reflectance results by our method (red line) and two existing

single-view methods (yellow line [18] and purple line [5]) using the projector-camera pair 4
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Figure 8. Spectral reflectance estimation results on the 24 patches of the colorchart. As can be seen in (d) and (e), the existing single-view

image-based methods [18, 5] fail to correctly estimate the spectral reflectance of each patch (including relative scales between patches)

due to the shading effect apparent in the colorchart setup, as shown in (c). In contrast, our method can accurately estimate the spectral

reflectance including the relative scales by considering the geometric relationship between the 3D points and the projector positions.

existing single-view image-based methods [18, 5] (average

withing each patch) only using the projector-camera pair 4.

Figure 8(e) shows the corresponding RMSE comparison for

each patch, where we can confirm that our method achieves

much lower RMSE than the existing methods.

As can be seen in Fig. 8(d) and 8(e), the single-view

methods fail to correctly estimate the spectral reflectance

including the relative scales between the patches. This is

due to the shading effect appeared in the colorchart setup,

as shown in Fig. 8(c). In contrast, our method can provide

accurate estimation results with correct relative scales. The

benefit of our method is to estimate the spectral reflectance

while considering the shading effect, which is ignored in

the single-view methods. With this essential difference, our

method is especially beneficial when the shading exists in

the scene. If the shading does not exist, the accuracy of

our method could be similar to that of the existing meth-

ods. However, such no-shading condition is very special

and possible only under fully controlled illumination.

4.4. Spectral 3D acquisition results

Figure 9 shows the spectral 3D acquisition result on the

clay sculpture. Figure 9(a) shows the spectral reflectance re-

sults for some 3D points. It is demonstrated that our method

can accurately estimate the spectral reflectance compared

with the ground truth measured by a spectrometer. Fig-

ure 9(a)–(c) compare the sRGB results converted from

the estimated spectral reflectances by our method and the

single-view method [18]. We can observe that our spectral

reflectance estimation model considering the geometric in-

formation can effectively remove the baked-in effect of the

shading and the shadow, which is apparent in the sRGB re-

sult of the single-view method.

Since Pro-Cam SSfM can accurately estimate both the

3D points and the spectral reflectance, it is possible to per-

form the spectral 3D relighting of the object for synthesiz-

ing the appearance illuminated under an arbitrary light ori-

entation and spectral distribution. Figure 9(d) shows the

result of spectral relighting under the projector-cyan illu-
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Figure 9. Results of the spectral 3D acquisition on a clay sculpture.

mination, where we can confirm that our relighting result is

close to the reference actual image taken in the same illumi-

nation orientation and spectral distribution. The differences

at the concave skirt regions are due to the effect of inter-

reflections, which is not considered in our current model.

Figure 9(e) shows the more complex relighting result under

two mixed light sources (projector cyan and halogen lamp),

which are located at different sides of the object. Figure 9(f)

shows the 3D relighting results under different illumination

orientations. As shown in those results, we can effectively

perform the spectral 3D relighting based on the estimated

3D model and spectral refletance.

Figure 10(a)–(c) show the spectral reflectance and the

sRGB results, the 3D shape results, and the spectral pat-

terns at each wavelength for stuffed toy. Those results

demonstrate the potential of Pro-Cam SSfM for accurate

spectral 3D scanning and rendering. Additional results

can be seen in the supplemental video or our project page

(www.ok.sc.e.titech.ac.jp/res/PCSSfM/).
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(c) Spectral patterns at each wavelength

Figure 10. Results of the spectral 3D acquisition on a stuffed toy.

5. Concluding Remarks

In this paper, we have proposed Pro-Cam SSfM, the fist

spectral 3D acquisition system using an off-the-shelf pro-

jector and camera. By effectively exploiting the projector

as active lighting for both the geometric and the photo-

metric observations, Pro-Cam SSfM can accurately recon-

struct a dense object 3D model with the spectral reflectance

property. We have validated that our proposed spectral

reflectance estimation model can effectively eliminate the

shading effect by incorporating the geometric relationship

between the 3D points and the projector positions into the

cost optimization. We have experimentally demonstrated

the potential of Pro-Cam SSfM through the spectral 3D ac-

quisition results on several real objects.

Pro-Cam SSfM has several limitations. First, we cur-

rently assume that the illumination spectrum is known. Sec-

ond, our spectral reflectance estimation model currently ig-

nores interreflections. Possible future research directions

are to address each limitation by simultaneously estimating

the spectral reflectance and the illumination spectrum [48]

or separating direct and global components by using pro-

jected high frequency illumination [37].
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Plümer. Generation and application of hyperspectral 3D

plant models: Methods and challenges. Machine Vision and

Applications, 27(5):611–624, 2016.

[8] Xun Cao, Hao Du, Xin Tong, Qionghai Dai, and Stephen

Lin. A prism-mask system for multispectral video acquisi-

tion. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, 33(12):2423–2435, 2011.

[9] Camille Simon Chane, Alamin Mansouri, Franck Marzani,

and Frank Boochs. Integration of 3D and multispectral data

for cultural heritage applications: Survey and perspectives.

Image and Vision Computing, 31(1):91–102, 2013.

[10] Cui Chi, Hyunjin Yoo, and Moshe Ben-Ezra. Multi-spectral

imaging by optimized wide band illumination. Int. Journal

of Computer Vision, 86:140–151, 2010.

[11] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-

teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.

Meshlab: An open-source mesh processing tool. Proc. of

Eurographics Italian Chapter Conference, pages 129–136,

2008.

[12] Kate Devlin, Alan Chalmers, Alexander Wilkie, and Werner

Purgathofer. Tone reproduction and physically based spectral

rendering. Eurographics State of The Art Report, pages 1–

23, 2002.

[13] Ying Fu, Yongrong Zheng, Lin Zhang, and Hua Huang.

Spectral reflectance recovery from a single RGB image.

IEEE Trans. on Computational Imaging, 4(3):382–394,

2018.

[14] Ryo Furukawa, Ryusuke Sagawa, Hiroshi Kawasaki,

Kazuhiro Sakashita, Yasushi Yagi, and Naoki Asada. One-

shot entire shape acquisition method using multiple projec-

tors and cameras. Proc. of Pacific-Rim Symposium on Image

and Video Technology (PSIVT), pages 107–114, 2010.

[15] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and

robust multiview stereopsis. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 32(8):1362–1376, 2010.

[16] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Fran-
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