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Abstract

The image lines projected from parallel 3D lines inter-

sect at a common point called the vanishing point (VP).

Manhattan world holds for the scenes with three orthog-

onal VPs. In Manhattan world, given several lines in a cal-

ibrated image, we aim at clustering them by three unknown-

but-sought VPs. The VP estimation can be reformulated as

computing the rotation between the Manhattan frame and

the camera frame. To compute this rotation, state-of-the-

art methods are based on either data sampling or param-

eter search, and they fail to guarantee the accuracy and

efficiency simultaneously. In contrast, we propose to hy-

bridize these two strategies. We first compute two degrees

of freedom (DOF) of the above rotation by two sampled im-

age lines, and then search for the optimal third DOF based

on the branch-and-bound. Our sampling accelerates our

search by reducing the search space and simplifying the

bound computation. Our search is not sensitive to noise and

achieves quasi-global optimality in terms of maximizing the

number of inliers. Experiments on synthetic and real-world

images showed that our method outperforms state-of-the-

art approaches in terms of accuracy and/or efficiency.

1. Introduction

Vanishing point (VP) is the intersection of a set of image

lines projected from parallel 3D lines. It has been success-

fully applied to various fields such as structure from mo-

tion [15, 23], scene understanding [14] and SLAM [21, 22].

Structured environments (typically man-made scenes) ex-

hibit particular regularity like parallelism and orthogonal-

ity. Manhattan world [11] holds for the scenes with three

mutually orthogonal dominant directions that correspond

to three orthogonal VPs (shown in Fig. 1). In Manhattan

world, given several lines in a calibrated image, we aim at

clustering them by three unknown-but-sought VPs.

The Manhattan frame (MF) [30] is widely used to model

the structure of Manhattan world. Three axes of MF cor-

respond to three dominant directions of Manhattan world.
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Figure 1. We cluster a set of image lines into three groups (shown

in different colors) by three unknown-but-sought orthogonal VPs.

The VP estimation can be reformulated as computing the rotation

between the MF and the camera frame.

Fig. 1 shows that the camera center and VPs define three

orthogonal 3D directions aligned to the MF axes. Based

on this constraint, the VP estimation can be reformulated

as computing the rotation between the MF and the camera

frame (hereinafter called the “MF rotation”). To compute

this rotation, state-of-the-art methods are based on either

data sampling [4,25,35] or parameter search [5,6,24]. They

hypothesize MF rotations in different ways and retrieve the

optimal one fitting most image lines. The sampling-based

methods (typically using RANSAC [13]) hypothesize fi-

nite MF rotations by the sampled image lines. Due to the

sampling uncertainty, they fail to guarantee the global opti-

mality in terms of maximizing the number of inliers. The

search-based methods (typically using branch-and-bound

(BnB) [20]) directly face infinite MF rotations hypothesized

over the rotation space, and continuously narrow down the

search scope. While they achieve global optimality in terms

of maximizing the number of inliers, their efficiency is lim-

ited by high-dimensional search space and complex compu-

tation of the bounds of cost functions.

In contrast, we propose to hybridize the sampling and

search strategies to compute three degrees of freedom

(DOF) of the MF rotation. We first efficiently estimate two

DOF by two sampled image lines, and then employ BnB

to search for the optimal third DOF. The key advantage of

our method is that it achieves both high efficiency and high

accuracy. For efficiency, we exploit sampling to accelerate

our search by reducing the search space. Moreover, our ro-

tation parametrization contributes to efficiently computing

tight bounds of our cost function, which further speeds up
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our search. Therefore, our method is more efficient than

the pure search-based approaches [5, 6]. For accuracy, we

search for the optimal third DOF that maximizes the num-

ber of inliers. Thanks to our search, our estimated MF rota-

tion can be treated as the “quasi-globally” optimal solution

in terms of number of inliers. While the global optimal-

ity may not be achieved due to our sampling, our method

is less sensitive to noise and retrieves more inliers than the

pure sampling-based approaches [4, 25, 35].

Overall, we propose a quasi-globally optimal and effi-

cient VP estimation method by hybridizing sampling and

search strategies. Our main contributions are:

• We leverage two sampled image lines to efficiently

compute two DOF of the MF rotation. Our sampling

accelerates our search by reducing the search space

and simplifying the bound computation.

• We exploit BnB to search for the optimal third DOF of

the MF rotation by fixing the other two DOF, achieving

the quasi-global optimality. Our search is not sensitive

to noise and obtains a large number of inliers.

• For the cases that the pure search-based methods fail

to handle, our approach provides correct VPs and also

is more accurate than the pure sampling-based ones.

Experiments showed that our method outperforms state-of-

the-art approaches in terms of accuracy and/or efficiency.

2. Related Work

Existing VP estimation methods can be classified into

four main categories with respect to the used algorithms, i.e.

Hough transform [2, 28], expectation-maximization [1, 12],

data sampling [4, 25, 31, 35] and parameter search [3, 5, 6].

The Hough transform-based methods [2,28] compute the

intersections of all pairs of image lines and generate a his-

togram of these intersections. The bins with large numbers

of entries correspond to VPs. However, they often lead to

multiple and/or false detections, and also neglect the or-

thogonality constraint of VPs. In addition, the expectation-

maximization-based methods [1,12] cluster image lines and

estimate VPs alternately. They assign each image line with

a label indicating which cluster it belongs to. They use the

lines with the same label to compute VPs, which in turn

updates labels. However, they are sensitive to the initial so-

lution and prone to converging to a local optimum.

The data sampling-based methods [4, 25, 31, 35] ex-

ploit RANSAC [13] and its variants [32, 36]. State-of-the-

art ones [4, 25, 35] first sample three image lines several

times to hypothesize finite VP triplets or MF rotations (ear-

lier works like [29] hypothesize VPs individually and have

lower accuracy and efficiency). Then they test each hypoth-

esis by counting the number of image lines fitting this hy-

pothesis. The fitness represents that the image line passes

a VP or its associated projection plane normal is orthogo-

nal to a MF axis up to a threshold. After that, they retrieve
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Figure 2. Illustration of different methods to obtain the opti-

mal line fitting most inliers, given the input points {xi} corrupted

by noise and outliers. The RANSAC line must pass through two

points (here x1 and x2), and treats x3 as an outlier since its dis-

tance is higher than the threshold, while the BnB line and our line

both treat x3 as an inlier.

the hypothesis fitting most inliers. In addition, Tardif [31]

used numerous hypotheses to define the image line descrip-

tors and clustered lines by J-Linkage [32], a variant of

RANSAC. However, it fails to enforce the orthogonality

of VPs when clustering image lines. Note that the above

sampling-based methods cannot guarantee the global opti-

mality in terms of maximizing the number of inliers due to

the sampling uncertainty.

The parameter search-based methods typically employ

BnB [5, 6]. They directly face infinite hypothesized MF ro-

tations over the rotation space parametrized by Euler angles

or axis–angle representation. They search for the optimal

rotation fitting most image lines by continuously narrowing

down the search scope. While they guarantee the global op-

timality, their efficiency is unsatisfactory (more than 5 sec-

onds per image in general). Joo et al. [18] recently proposed

a novel strategy to significantly improve the efficiency of

BnB, but it is not well applicable to image lines (it is in-

herently suitable for 3D plane normals). In addition, Bazin

et al. [3] proposed to sample numerous MF rotations over

the rotation space (i.e. the quasi-exhaustive search) and se-

lect the one maximizing the number of inliers. While it is

appropriate for smooth videos, it can be computationally

expensive, especially for single images or when no prior in-

formation regarding the camera orientation is available.

Overall, state-of-the-art VP estimation methods based on

the sampling or search cannot guarantee the accuracy and

efficiency simultaneously. In contrast, we propose to hy-

bridize these two strategies, achieving high accuracy and

high efficiency. Moreover, our method enforces the VP or-

thogonality thanks to the orthogonality of the MF rotation.

3. Algorithm Overview

We begin with taking the 2D line fitting for example to

show the idea and advantage of our method. As shown in

Fig. 2, given a set of points, we aim at obtaining the op-

timal line that fits most inliers (the direct least-squares fit-

ting is not suitable due to the presence of outliers). We ex-

press a line by a point lying on it (i.e. the line position)

and the line direction. RANSAC [13] hypothesizes a set

of lines by sampling two points several times. The line
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defined by the points x1 and x2 is its optimal hypothesis,

but fails to fit the inlier point x3. In addition, BnB [20]

searches over the parameter spaces with respect to both line

position and line direction (which correspond to infinite hy-

pothesized lines). While BnB obtains the globally optimal

line fitting all the inliers, its efficiency is unsatisfactory due

to its high-dimensional search space. In contrast, we pro-

pose to first sample only one point to fix the line position

and then search over the line direction space. We obtain the

optimal line that passes through the point x1 and also fits

all the inliers. In a sense, our strategy is “in between”, i.e.

we hybridize the data sampling and parameter search strate-

gies. For efficiency, we leverage sampling to accelerate our

search by reducing the full search space to the line direction

space. For accuracy, we search for the optimal line direction

that maximizes the number of inliers.

To compute the MF rotation, we propose a hybrid

method to estimate its three DOF. Specifically, given a set of

image lines, we first estimate two DOF by two sampled im-

age lines in Section 4. It is similar to the above estimation of

the line position. Then we search for the optimal third DOF

maximizing the number of inlier image lines in Section 5.

It is similar to the above search of the line direction.

4. Computing Two DOF by Sampling

In this section, we propose a novel method to compute

two DOF of the MF rotation by two sampled image lines,

and parametrize the MF rotation by a single parameter.

4.1. Twoline MF Rotation Parametrization

We assume the intrinsic matrix of the camera is known

from calibration [17]. As shown in Fig. 3, to compute two

DOF of the MF rotation, we leverage two sampled im-

age lines {l1, l2} whose associated 3D lines {L1,L2} are

aligned to two MF axes, i.e. l1 and l2 correspond to different

VPs. We normalize the image by the intrinsic matrix [35] to

compute 1) the normal n1 of the projection plane π1 by l1,

and 2) the bases {s2, e2} of the projection plane π2 by the

endpoints of l2. We parametrize the unknown 3D line di-

rections {d1,d2} of {L1,L2} as follows.

We first consider the 3D line direction d1. We define the

direction w orthogonal to the projection plane normal n1,

i.e. n⊤
1 w=0, and set w as any unit basis of the null space

of n1 (w is not unique). Then we rotate w around the

known rotation axis n1 by the unknown-but-sought angle

θ∈ [0, π] to align w to the direction d1 as

d1 = R̆(n1, θ)w, (1)

where R̆(·, ·) denotes the axis-angle representation [17].

Based on Eq. (1), we parametrize d1 by θ. Each element of

d1 is expressed by d1,i(θ) =ω
⊤
1,iα (i=1, 2, 3) where ω1,i

is a known 2D vector and α=[sin(θ), cos(θ)]⊤. The norm

of d1 is 1 since it is rotated from the unit vector w.

q

1d

2d

1n

1π
2π

w

1L

2L

q
dd

1π

w

Image plane

Camera frame

2l

1l 2s
2e

( )q®
R

®

x

y

zManhattan 
frame

Figure 3. The image lines {l1, l2} are associated with the 3D lines

{L1,L2} aligned to two MF axes. We use {l1, l2} to parametrize

the MF rotation R
M→C by the unknown-but-sought angle θ.

Then we parametrize the 3D line direction d2 by enforc-

ing two constraints. As shown in Fig. 3, first, d2 is parallel

to the plane π2. We thus express d2 as a linear combination

of the known bases {s2, e2} of π2, i.e. d2 = s2+λ · e2
where λ is the unknown combination coefficient. Second,

the 3D line directions d1 and d2 are mutually orthogonal,

i.e. d
⊤
1 d2 = 0. We combine these two constraints to ex-

press the coefficient λ by λ=−(d⊤
1 s2)/(d

⊤
1 e2). Then we

substitute λ back into the first constraint and obtain d2 as

d2 = s2 −
d
⊤
1 s2

d⊤
1 e2

e2 ∝ d
⊤
1 e2s2 − d

⊤
1 s2e2, (2)

where “∝” denotes the equality regardless of scale. By

substituting Eq. (1) into Eq. (2), we can parametrize d2

by θ. Each element of d2 is expressed by d2,i(θ) =ω
⊤
2,iα

(i = 1, 2, 3) where ω2,i is a known 2D vector. Note that

the elements of d1 and d2 are both composed of α =
[sin(θ), cos(θ)]⊤.

Let d3 denote the 3D direction orthogonal to both d1

and d2, and we compute it by d3 = d1×d2. Based on

Eqs. (1) and (2), d3 is also parametrized by θ. Each el-

ement of d3 is expressed by d3,i(θ) = ψ⊤
i β (i = 1, 2, 3)

where ψi is a known 3D vector and β = [sin2(θ), sin(θ) ·
cos(θ), cos2(θ)]⊤. The norms of d2 and d3 satisfy ‖d2‖=
‖d3‖ =

√

µ⊤β where µ is known. Note that unlike the

norm ‖d1‖ ≡ 1, ‖d2‖ and ‖d3‖ change with respect to

the unknown angle θ. We normalize d2 and d3 by d̄2 =
d2/

√

µ⊤β and d̄3=d3/
√

µ⊤β, respectively.

Based on the above orthogonal unit 3D directions

{d1, d̄2, d̄3}, we parametrize the MF rotation R
M→C from

the MF M to the camera frame C. As shown in Fig. 3,

the 3D lines L1 and L2 are aligned to two axes of M.

Without loss of generality, we associate d1, d̄2 and d̄3

with the x-, y- and z-axes of M, respectively. Accord-

ingly, their coordinates in M are d
M
1 = [1, 0, 0]⊤, d̄M

2 =
[0, 1, 0]⊤ and d̄

M
3 =[0, 0, 1]⊤. Based on the constraint that

R
M→C [dM

1 , d̄M
2 , d̄M

3 ]=[d1, d̄2, d̄3], we obtain the MF ro-

tation R
M→C as

R
M→C(θ)=

[ ω⊤
1,1α

ω⊤
1,2α

ω⊤
1,3α

︸ ︷︷ ︸

d1(θ)





ω⊤
2,1α

ω⊤
2,2α

ω⊤
2,3α

ψ⊤
1 β

ψ⊤
2 β

ψ⊤
3 β



· 1
√

µ⊤β
︸ ︷︷ ︸

d̄2(θ),d̄3(θ)

]

. (3)
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Eq. (3) shows that our MF rotation is composed of the 3D

directions {d1, d̄2, d̄3}. In essence, these directions en-

code three DOF of the MF rotation. We use the image

lines l1 and l2 to estimate its two DOF by Eqs. (1) and (2),

and parametrize the MF rotation by the single parameter θ
encoding its third DOF. Therefore, we reduce the rotation

space as a 1D space, which speeds up our search (see Sec-

tion 5.2). Moreover, our parametrization contributes to

computing tight bounds of our cost function efficiently,

which further accelerates our search (see Section 5.3).

4.2. Sampling Two Image Lines

In Section 4.1, to compute two DOF of the MF rotation,

we use two sampled image lines corresponding to two dif-

ferent VPs. However, we do not have the prior knowledge

regarding which two image lines among the extracted lines

satisfy this assumption. In addition, the extracted lines may

be corrupted by outliers that do not correspond to any VP.

To solve these problems, we randomly sample two image

lines S times to guarantee at least one sampling satisfying

our assumption (called the “valid” sampling). We compute

S following RANSAC [13] as S = log(1−c)
log(1−p) where c is the

confidence level, and p is the probability that two sampled

lines correspond to two different VPs. We set c as 0.99 and

set p as 15%, and thus S≈28.

We also propose a method to improve the efficiency and

robustness of sampling. Fig. 4 shows that in numerous prac-

tical cases, at least one VP corresponds to a set of nearly

parallel image lines [35]. We generate a histogram of the

image line directions. If the bin with the highest cardinal-

ity corresponds to a sharp peak (see red bin in Fig. 4), we

sample the first line from this bin and the second line from

the remaining bins (otherwise we use the random sampling).

Accordingly, we set p as 30% and S≈13. After S iterations,

we hypothesize S MF rotations {RM→C
s (θ)}Ss=1 (with the

unknown third DOF θ) by Eq. (3). Note that we may gener-

ate more than one valid and several invalid hypotheses. We

efficiently identify the optimal one in Section 5.

5. Searching for the Third DOF

In this section, we search for the third DOF of the MF

rotation. We model the search as the inlier set maximiza-

tion and solve it by BnB. Moreover, we propose an efficient

method to compute tight bounds of our cost function.

5.1. Inlier Set Maximization

In Section 4.2, we hypothesized S MF rotations R =
{RM→C

s (θ)}Ss=1 (with the unknown third DOF θ). To obtain

the optimal MF rotation, two challenges exist: 1) among R,

how to identify the optimal hypothesis R̂
M→C(θ); 2) for

R̂
M→C(θ), how to obtain its optimal parameter θ̂. We tackle

these two challenges as an inlier set maximization prob-

lem [13]. Given a set of image lines, we aim at finding

-π/2 0 π/2 -π/2 0 π/2

Figure 4. Image lines and histograms of their directions. Several

nearly parallel image lines, which are associated with a bin with

high cardinality, correspond to the same VP.

the optimal MF rotation R̂
M→C(θ̂) maximizing the number

of inlier image lines whose associated 3D lines are aligned

to the MF axes.

We present the mathematical formulation as follows. We

denote the m-th column of the MF rotation R
M→C(θ) (i.e.

the m-th MF axis) by [RM→C(θ)]m (m = 1, 2, 3). In the

noise-free case, for an inlier image line lk, its associated

unit projection plane normal nk is orthogonal to a MF axis

[RM→C(θ)]m (see Fig. 3). Under the presence of noise, we

define the residual as

ǫmk (θ)=
∣
∣n

⊤
k [R

M→C(θ)]m
∣
∣. (4)

Accordingly, we define the line lk as an inlier if its resid-

ual ǫmk (θ) is smaller than the threshold τ = cos
(
π
2 − π

90

)
,

i.e. the angle error is smaller than 2◦. For the s-th hypoth-

esized MF rotation R
M→C
s (θ)∈R, we compute its number

of inliers Ns(θ) among K extracted lines as

Ns(θ)=

K∑

k=1

3∑

m=1

f
(
ǫmk (θ)

)
, (5)

where f
(
ǫmk (θ)

)
represents the inlier function, i.e.

f
(
ǫmk (θ)

)
=

{
1, if ǫmk (θ) 6 τ ;
0, otherwise.

(6)

Let N̊s(θ) denote the unknown maximum of Ns(θ). We

aim at finding 1) the optimal hypothesis R̂M→C(θ)∈R (i.e.

ŝ ∈ {1,· · ·, S}), and 2) its optimal parameter θ̂ ∈ [0, π] to

achieve the global maximum of {N̊s(θ)}Ss=1 as

R̂
M→C(θ̂)=argmax

s,θ
{N̊s(θ)}Ss=1. (7)

Compared with the algebraic error used by [25, 35], our

residual ǫmk (θ) in Eq. (5) corresponds to the geometric error

that is known to be more meaningful [17]. Note that while

we simplify the MF rotation by computing its two DOF,

solving Eq. (7) is still relatively challenging. First, both

the line clusters and the parameter θ are unknown, which

constitutes a non-convex problem [10]. Second, we reduce

the search space at the cost of hypothesizing several invalid

(or sub-optimal) MF rotations. In theory, testing each hy-

pothesis and exhaustively searching over the interval [0, π]
of θ could find the optimal solution, but it is not practical

due to high complexity. In addition, the gradient descent

method [7] is sensitive to the initialization of the hypothesis

and parameter, and may get stuck into a local optimum.

5.2. Search Based on BnB

We employ BnB to solve Eq. (7) by searching for the

optimal hypothesized MF rotation and its optimal parame-

ter. BnB is a popular method to provide the globally opti-

mal solution maximizing the number of inliers. It has been
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used for various applications such as camera pose estima-

tion [10, 16, 27] and point set registration [8, 9, 34]. It di-

vides the search space into several sub-spaces, and com-

putes the upper and lower bounds of the cost function for

each sub-space. A sub-space is discarded if its associated

bounds prove it does not contain the optimal solution (tight

bounds thus accelerate discarding sub-spaces). Remaining

sub-spaces are further divided and discarded until the op-

timal solution is found. In our context, the search space

represents the interval [0, π] of the parameter θ, and the cost

function represents the number of inliers in Eq. (7).

Fig. 5(a) shows that each hypothesized MF rotation cor-

responds to a binary tree. We continuously divide the origi-

nal interval [0, π] of θ and treat the sub-intervals as the child

nodes. For the node Θ of the s-th tree, we assign it with the

number of inliers Ns(Θ) (see Eq. (5)). Note that Θ rep-

resents an interval of θ rather than a number. Therefore,

we compute the bounds rather than the specific value of

Ns(Θ). We denote the lower and upper bounds of Ns(Θ)
by Ns(Θ) and Ns(Θ) respectively, and introduce how to

compute them in Section 5.3. We adopt the best-first search

strategy [34], i.e. the interval whose upper bound is high

has a high priority. In the following, we take some trees for

example to explain how we search for the optimal hypothe-

sis and its optimal parameter.

As shown in Fig. 5(a), we use the red tree (“r”) to show

our search of the optimal parameter. Nr(ΘIII-2) is lower

than Nr(ΘIII-1), proving that the optimal solution of θ is not

within the interval ΘIII-2. Therefore, we discard ΘIII-2. To

accelerate the search, we also compute the midpoint of the

interval ΘIII-1, which is denoted by Θ̌III-1. While Nr(ΘII-2)
is higher than Nr(ΘIII-1), we still discard the node ΘII-2

since Nr(ΘII-2) is lower than Nr(Θ̌III-1). In addition, as

shown in Fig. 5(b), we use the green tree (“g”) and the

blue tree (“b”) to show our search of the optimal hypoth-

esis. For the remaining intervals of each tree, we compute

the bounds of their associated numbers of inliers (see Sec-

tion 5.3). Then we compute the maximum of these upper

bounds and the minimum of these lower bounds, which are

called the local maximum and minimum respectively. The

local maximum Nb(ΘIV-1) is lower than the local minimum

Ng(ΘIV-2), proving that the hypothesis RM→C
b (θ) is less ac-

curate than the hypothesis R
M→C
g (θ). Therefore, we dis-

card the blue tree and only search over the red and green

trees. In addition, for all these trees, we compute the maxi-

mum of their local maxima, which is called the global max-

imum. As shown in Fig. 5(c), the interval ΘV-1 of the red

tree satisfies our stopping criterion. Specifically, the num-

ber of inliers computed by its midpoint Θ̌V-1 equals to the

global maximum. We treat RM→C
r (Θ̌V-1) as the optimal MF

rotation since it maximizes the number of inliers. We do

not consider the green tree since its local maximum is not

higher than (at most equals to) the global maximum.

( )N Q
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-1Q
-2Q -2Q

r ( )q®
R

®

......

[0, ]q pÎ
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local maximum

-1Q -2Q

local minimum

global maximum

-1Q -2Q

global maximum

(a) (b) (c)
Figure 5. (a) Dividing the parameter interval Θ associated with

the number of inliers N(Θ). {I,II,III...} denote the numbers of

divisions. (b) Discarding the invalid (or sub-optimal) hypothesized

MF rotation. (c) Stopping criterion. The red point in (a) or (c)

denotes the number of inliers computed by an interval midpoint.

Overall, we search for the third DOF of the MF rota-

tion by fixing its two DOF computed by sampling, and

thus obtain the quasi-globally optimal MF rotation effi-

ciently. Moreover, for the cases with “fake” MF(s) defined

by outliers, the pure search-based methods fail, and the pure

sampling-based methods may not be accurate. In contrast,

our approach provides accurate VPs thanks to our hybrid

strategy, as will be shown in the experiments.

5.3. Bounds of the Number of Inliers

We propose a novel method to efficiently compute tight

bounds of the number of inliers, i.e. Ns(Θ) and Ns(Θ)
used in Section 5.2. We begin with computing the bounds

of the residual ǫmk (θ) in Eq. (4). By substituting Eq. (3) into

Eq. (4), we rewrite ǫmk (θ) as three different types:

ǫmk (θ)=







∣
∣ ξ⊤α
︸︷︷︸

Lξ

∣
∣, m=1 (x-axis of MF);

∣
∣ ζ⊤α
︸︷︷︸

Lζ

/
√

µ⊤β
︸ ︷︷ ︸√

Qµ

∣
∣, m=2 (y-axis of MF);

∣
∣ϕ⊤β
︸ ︷︷ ︸

Qϕ

/
√

µ⊤β
︸ ︷︷ ︸√

Qµ

∣
∣, m=3 (z-axis of MF).

(8)

where the known ξ, ζ and ϕ are computed by the known

{ω1,i}3i=1, {ω2,i}3i=1 and {ψi}3i=1 in Eq. (3), respectively;

α and β composed of sin(θ) and cos(θ), as well as the

known µ, are defined in Section 4.1. Eq. (8) shows that the

elements of ǫmk (θ) satisfy two forms: 1) a·sin(θ)+b·cos(θ)
that is called the “linear trigonometric polynomial” and de-

noted by “L”; 2) c · sin2(θ)+d · sin(θ) · cos(θ)+e · cos2(θ)
that is called the “quadratic trigonometric polynomial” and

denoted by “Q”. We reformulate computing the bounds of

the residual ǫmk (θ) as computing the bounds of its elements,

i.e. the trigonometric polynomials L and Q.

To compute the bounds of L, we transform it as

L=a·sin(θ)+b·cos(θ) = u1 ·sin(θ +v1), (9)

where u1 =
√
a2+b2 and v1 = arctan(b/a). To compute

the bounds of Q, we transform it as

Q=c·sin2(θ) + d·sin(θ)·cos(θ) + e·cos2(θ)
=(d/2)·sin(2θ)+

(
(e−c)/2

)
·cos(2θ)+(c+e)/2

=u2 ·sin(2θ+v2)+w2,

(10)
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Figure 6. Curves of the trigonometric polynomials expressed by

the sine functions: (left) linear trigonometric polynomial L in

Eq. (9); (right) quadratic trigonometric polynomial Q in Eq. (10).

where u2 =
√

d2+(e−c)2/2, v2 = arctan
(
(e−c)/d

)
and

w2=(c+e)/2. We thus express L and Q by sin(θ+v1) and

sin(2θ+v2), respectively. The sign (“+” or “-”) of u1 and u2

depends on the sign of a and d, respectively. Without loss

of generality, we introduce the case that u1>0 and u2>0.

Recall that the unknown parameter θ is within [0, π], and

v1 in Eq. (9) and v2 in Eq. (10) are both within [−π
2 ,

π
2 ].

Accordingly, θ+v1 of L is within [−π
2 ,

3π
2 ], and 2θ+v2 of

Q is within [−π
2 ,

5π
2 ]. Fig. 6 shows the curves of L and Q,

and we use it to compute the bounds of L and Q as follows.

Given an interval of θ denoted by Θ = [θ, θ], we first

compute 1) the domain of L, i.e. D1 = [θ+v1, θ+v1] ∈
[−π

2 ,
3π
2 ] (denoted by [D1,D1]), and 2) the domain of Q,

i.e. D2=[2θ+v2, 2θ+v2]∈ [−π
2 ,

5π
2 ] (denoted by [D2,D2]).

Then we efficiently obtain the ranges, i.e. the strict bounds

of L and Q. Specifically, as shown in Fig. 6(left), we ob-

tain the strict bounds of L by judging whether the stationary

point π
2 is within its domain D1 as







L=u1 ·min
(
sin(D1), sin(D1)

)
;

L=

{
u1 if π

2 ∈ D1;
u1 ·max

(
sin(D1), sin(D1)

)
otherwise.

(11)

As shown in Fig. 6(right), we obtain the strict bounds of Q

by judging whether the stationary points {π
2 ,

3π
2 } are within

its domain D2 as






{
Q=−u2+w2

Q=u2+w2
if

{
π
2 ∈D2
3π
2 ∈D2

;

{
Q=u2 ·min

(
sin(D2), sin(D2)

)
+w2

Q=u2+w2
if

{
π
2 ∈D2
3π
2 /∈D2

;

{
Q=−u2+w2

Q=u2 ·max
(
sin(D2), sin(D2)

)
+w2

if

{
π
2 /∈D2
3π
2 ∈D2

;

{
Q=u2 ·min

(
sin(D2), sin(D2)

)
+w2

Q=u2 ·max
(
sin(D2), sin(D2)

)
+w2

if

{
π
2 /∈D2
3π
2 /∈D2

.

(12)

Based on the bounds of L and Q obtained by Eqs. (11)

and (12), we compute the bounds of the residual ǫmk (Θ)
in Eq. (8). Specifically, for ǫ1k(Θ), we use the bounds of

Lξ; for ǫ2k(Θ), we use the bounds of {Lζ ,Qµ}; for ǫ3k(Θ),
we use the bounds of {Qϕ,Qµ}. Our residual bound com-

putation exploits the absolute value operation of a single

interval1 and/or the division operation between two inter-

1
∣

∣[x, y]
∣

∣ =
[

min(|x|, |y|),max(|x|, |y|)
]

, if x · y > 0;
∣

∣[x, y]
∣

∣ =
[

0,max(|x|, |y|)
]

, if x ·y 6 0 where x and y represent the lower and

upper bounds of an interval, respectively.

Algorithm 1: MF rotation computation

Input: extracted lines {lk} in a calibrated image.

1 Step one — estimating two DOF by sampling:

2 Sample two image lines S times (see Section 4.2);

3 for each pair of the sampled lines do

4 Parametrize a hypothesized MF rotation using the

rotation angle θ by Eq. (3);

5 end

6 Step two — searching for the third DOF (θ):

7 repeat

8 for each hypothesized MF rotation R
M→C
s (θ) do

9 Divide a remaining interval of θ (best-first);

10 for each sub-interval do

11 for each image line lk do

12 Compute the bounds of the polynomials

by Eqs. (11) and (12);

13 end

14 Compute the bounds of the number of inliers

by Eq. (13);

15 end

16 Discard sub-optimal intervals of θ (see Fig. 5);

17 end

18 Discard invalid MF rotation hypotheses (see Fig. 5);

19 until satisfy our stopping criterion (see Section 5.2).

Output: the optimal MF rotation R̂
M→C(θ̂).

vals2 [26]. Compared with [5, 6], we obtain tighter bounds

of the residuals in a more efficient way. The reasons are:

1) our bounds of the trigonometric polynomials are strict

(without any relaxation) and computed by simple algebraic

operations; 2) we relax our residual bounds (by the division

operation) only once for ǫ2k(Θ) and ǫ3k(Θ), and do not relax

our residual bounds for ǫ1k(Θ).
Based on our tight bounds of the residuals and Eq. (5),

we finally compute the bounds of the number of inliers

Ns(Θ) and Ns(Θ) used in Section 5.2 as

[Ns(Θ), Ns(Θ)]=

K∑

k=1

3∑

m=1

[
f
(
ǫmk (Θ)

)
, f

(
ǫmk (Θ)

)]
, (13)

where [f, f ] has three types of values based on Eq. (6): 1)

[f, f ]= [1, 1] if ǫ(Θ)6τ , i.e. the image line lk is definitely

an inlier; 2) [f, f ]=[0, 0] if τ6ǫ(Θ), i.e. lk is definitely an

outlier; 3) [f, f ]= [0, 1] if ǫ(Θ)<τ <ǫ(Θ), i.e. whether lk
is an inlier is uncertain.

Our full MF rotation computation method for VP esti-

mation is described in Algorithm 1.

6. Experiments

We have conducted experiments on both synthetic and

real-world images. Source codes and supplementary mate-

rials are available on our project website3. We list the state-

2[x, y]/[x′, y′]=
[

min( x
x′
, x
y′
, y

x′
, y

y′
),max( x

x′
, x
y′
, y

x′
, y

y′
)
]

.
3https://sites.google.com/view/haoangli/projects/iccv-vp
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ours

BnB [5]

J-Linkage [32]

RANSAC [35]

92 94 96 98 100

precision (%)
92 94 96 98 100

recall (%)

Figure 7. Accuracy comparison in an outlier-free case: (left) pre-

cision; (right) recall. We show mean and median in blue and cyan,

respectively (we run BnB [5] once and show its results in gray).

10 20 30 40 50 60

outlier ratio (%)

50

60

70

80

90

100

p
re
ci
si
o
n
(%

)

RANSAC [35]
J-Linkage [32]
BnB [5]
ours

10 20 30 40 50 60

outlier ratio (%)

50

60

70

80

90

100

re
ca
ll
(%

)

RANSAC [35]
J-Linkage [32]
BnB [5]
ours

Figure 8. Accuracy comparison with respect to the outlier ratio:

average precision (left) and recall (right).

of-the-art methods introduced in Section 2 for comparison:

• RANSAC that retrieves the optimal MF rotation hy-

pothesized by three sampled image lines [35].

• J-Linkage that clusters image lines by the descriptor

similarity [31].

• BnB that searches for the optimal MF rotation over the

rotation space [5].

We compute the number of iterations of RANSAC based on

the valid sampling probability 0.1 (smaller than our proba-

bility 0.15 in Section 4.2 due to its stronger assumption on

the configuration of three 3D lines). We set the times of

sampling of J-Linkage as 500 (recommended by [31]). We

also conduct experiments by adjusting the time budgets of

various methods. For a more unbiased comparison of the

original accuracy, we report the raw results without iterative

refinement. All the methods are implemented in MATLAB

and tested on an Intel Core i7 CPU with 3.60 GHz.

Evaluation criteria. We evaluate the VP estimation ac-

curacy in terms of the precision and recall of the image

line clustering [19]. The precision is defined by N c/(N c+
Nw) where N c and Nw are the numbers of correctly and

wrongly clustered lines, respectively. The recall is defined

by N c/(N c+Nm) where Nm is the number of missing in-

liers. For the efficiency evaluation, in addition to comparing

the absolute run time of various methods, we compare BnB

with our method in terms of the number of interval divi-

sions [5, 20].

6.1. Synthetic Images

We synthesize two or three sets of parallel 3D lines. Each

two lines from different sets are mutually orthogonal. We

project them by a synthetic camera, obtaining two or three

sets of image lines. We perturb the endpoints of these im-

age lines by a zero-mean Gaussian noise whose standard

deviation is σ pixels. We generate outlier image lines by

randomizing their positions and directions. We aim at clus-

tering these image lines by unknown-but-sought VPs.
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Figure 9. Efficiency comparison in terms of the number of itera-

tions: (left) evolution of the upper and lower bounds of the number

of inliers (we report the local maxima and minima of hypotheses);

(right) evolution of the proportion of remaining intervals.

Table 1. Computational time comparison

RANSAC [35] J-Linkage [31] BnB [5] ours

time (s) 0.011 0.187 3.501 0.276

1/20X 1/15X 1/10X 1/5X 1/2X 1X

time cost w.r.t. our method

0.6

0.7

0.8

0.9

1

F
1
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o
re

RANSAC [35]
J-Linkage [32]
our

Figure 10. F1-score comparison by fixing the time budget for our

method and changing it for RANSAC [35] and J-Linkage [31].

Accuracy evaluation. Due to the sampling uncertainty,

we conduct 1000 trials for RANSAC, J-Linkage and our

method. Fig. 7 shows a representative comparison with 3

VPs and 150 inlier lines. The noise level is σ=5. RANSAC

fails to completely retrieve inliers due to the effect of noise.

J-Linkage mistakenly clusters several lines since its line

descriptors may be contaminated by noise. BnB success-

fully retrieves all the inliers. Our method achieves high pre-

cision and recall thanks to our hybrid method for MF rota-

tion computation. In addition, Fig. 8 shows the comparison

under the presence of outliers. Given 150 lines, we fix the

noise level as σ = 3 and vary the outlier ratio from 10%

to 60%. High outlier ratios increase the difficulty of valid

sampling. RANSAC and J-Linkage obtain unsatisfactory

results for more than 30% outliers. In contrast, our method

is more robust since it requires less samples. Note that BnB

becomes unstable for high outlier ratios since it may retrieve

a “fake” MF defined by numerous outliers, which will be

fully analyzed in Section 6.2.

Efficiency evaluation. We report the result of a repre-

sentative test with 2 VPs and 100 inliers. The noise level

is σ = 4. We first compare BnB with our method in terms

of the number of iterations. We hypothesize 13 MF rota-

tions by 2 valid and 11 invalid samplings (the validity is

identified by the ground truth cluster labels). Fig. 9(left)

shows the evolution of the bounds of the number of inliers.

Without loss of generality, we randomly select 5 invalid hy-
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lines extracted manually RANSAC [35] J-Linkage [31] BnB [5] ours

3 VPs, 54 lines (100%, 88.89%) (96.29%, 100%) (100%, 100%) (100%, 100%)

Figure 11. VP estimation using the manually extracted image lines on the York Urban Database [12]. Different image line clusters are

shown in respective colors. The pair of numbers below each image represents the precision and recall of image line clustering.
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Figure 12. Accuracy comparison on 102 images of YUD [12]:

precision (left) and recall (right).

potheses to report. At the 7-th iteration, for all the invalid

hypotheses, their local maxima of upper bounds are smaller

than the local minimum of lower bounds of our second valid

hypothesis, and thus they are discarded. At the 9-th itera-

tion, an interval associated with our second valid hypothesis

satisfies our stopping criterion (see Section 5.2). Therefore,

our method takes only 9 iterations to obtain all the inliers.

In contrast, BnB requires 318 iterations.

Fig. 9(right) shows the evolution of the proportion of re-

maining intervals (with respect to the length for our method

or volume for BnB). At convergence, our method discards

most intervals thanks to our tight bounds, but BnB still

keeps numerous intervals. In addition, we conduct 500 in-

dependent trials using the above data and present the aver-

age run time of various methods in Table 1. RANSAC is

efficient at the cost of sacrificing accuracy. Our method is

significantly faster than BnB and is similar to J-Linkage. In

addition, we fix the time cost t of our method as about 0.2s,

and vary the time budget of RANSAC and J-Linkage from
t
20 to t under the outlier ratio 40%. As shown in Fig. 10,

while RANSAC and J-Linkage improve their accuracy as

their time budgets increase, our method achieves the highest

F1-score [7] given the same time budget t.

6.2. Realworld Images

To evaluate various methods on real-world images, we

conduct experiments on the York Urban Database [12]. It

is composed of 102 calibrated images of 640×480 pixels,

and each image contains a set of manually extracted lines.

These lines are outlier-free and correspond to 2 or 3 VPs.

Fig. 11 shows a representative comparison, and Fig. 12 re-

ports the precision and recall of various method on all the

images. RANSAC and J-Linkage fail to guarantee the pre-

cision and recall simultaneously. BnB stably obtains all the

inliers. Our method is less sensitive to noise than RANSAC

and J-Linkage, and achieves similar accuracy to BnB. In

addition, Fig. 13 shows the clustering result of a set of im-

lines extracted by LSD [33] RANSAC [35] (59 true inliers)

BnB [5] (81 fake inliers) ours (69 true inliers)

Figure 13. VP estimation using the image lines corrupted by out-

liers. The connection between a clustered line and its correspond-

ing VP is shown in dotted line (the angle between its projection

plane normal and its corresponding MF axis is 90±2◦).

age lines automatically extracted by LSD [33]. Numerous

outliers and partial inliers define a “fake” MF that is as-

sociated with more image lines than the ground truth MF.

BnB retrieves the fake MF and mistakenly clusters numer-

ous lines. In contrast, RANSAC and our method obtain cor-

rect clusters by sampling three and two image lines associ-

ated with the ground truth MF, respectively. Moreover, our

method obtains a larger number of inliers than RANSAC

thanks to our search of the third DOF of the MF rotation.

7. Conclusion

We proposed a hybrid MF rotation computation ap-

proach to estimate VPs in Manhattan world. We first com-

pute two DOF by two sampled image lines and then search

for the third DOF by BnB. Our sampling speeds up our

search by reducing the search space and simplifying the

bound computation. Our search is not sensitive to noise and

achieves quasi-global optimality. Experiments on synthetic

and real-world images showed that our approach outper-

forms state-of-the-art methods in terms of accuracy and/or

efficiency. In the future, we will focus on computing one

DOF by sampling and two DOF by search.
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