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Abstract

Universal adversarial perturbations (UAPs), a.k.a.

input-agnostic perturbations, has been proved to exist and

be able to fool cutting-edge deep learning models on most

of the data samples. Existing UAP methods mainly focus

on attacking image classification models. Nevertheless, lit-

tle attention has been paid to attacking image retrieval sys-

tems. In this paper, we make the first attempt in attack-

ing image retrieval systems. Concretely, image retrieval at-

tack is to make the retrieval system return irrelevant images

to the query at the top ranking list. It plays an important

role to corrupt the neighbourhood relationships among fea-

tures in image retrieval attack. To this end, we propose a

novel method to generate retrieval-against UAP to break the

neighbourhood relationships of image features via degrad-

ing the corresponding ranking metric. To expand the attack

method to scenarios with varying input sizes or untouchable

network parameters, a multi-scale random resizing scheme

and a ranking distillation strategy are proposed. We eval-

uate the proposed method on four widely-used image re-

trieval datasets, and report a significant performance drop

in terms of different metrics, such as mAP and mP@10. Fi-

nally, we test our attack methods on the real-world visual

search engine, i.e., Google Images, which demonstrates the

practical potentials of our methods.

1. Introduction

Convolutional neural networks (CNN) have been the

state-of-the-art solution for a wide range of computer vi-

sion tasks, such as image classification, image segmenta-

tion and objective detection. Despite the remarkable suc-

cess, deep learning models have shown to be vulnerable to
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Feature shift RetrievalAttacking

Figure 1. When added to natural images, a single universal per-

turbation that is invisible to human eyes causes most images to

shift significantly in the feature space without preserving original

neighbourhood relationships. The top is the perturbation and dots

represent the features of images. (Best viewed in color.)

small perturbations to the input image. Various attack tech-

niques have been proposed, like model distillation [30, 42],

transfer learning [24, 45], and gradient updating [1]. In

contrast to previous methods called image-specific pertur-

bations having to perform computation every time to gener-

ate a particular perturbation for any given image, Moosavi-

Dezfooli et al. [25] proposed an image-agnostic perturba-

tion termed universal adversarial perturbation (UAP), which

can fool most images from a data distribution. Being univer-

sal, UAPs can be conveniently exploited to perturb unseen

datapoints on-the-fly without extra computation. Therefore,

UAPs are particularly useful in a wide range of applications.

However, existing methods regardless of whether image-

agnostic or not, mainly focus on image classification while
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no existing work has touched the topic of attacking im-

age retrieval systems. As a long-standing research topic

in computer vision [44], image retrieval aims to find rele-

vant images from a dataset given a query image. Despite

the extensive efforts in improving the search accuracy (e.g.,

new features like NetVLAD [2] and generalized-mean pool-

ing [33]) or efficiency (e.g., indexing schemes like Ham-

ming Embedding [17] or hashing [22, 41]), very little atten-

tion has been paid to the vulnerability of the state-of-the-art

retrieval systems. It is difficult, or even infeasible to ap-

ply existing UAPs methods in image retrieval directly. The

reasons come from four aspects.

• Different dataset label formats. Most existing UAP

methods designed for image classification work on

datasets labeled by categories [10], which need UAPs

pushing datapoints across decision boundary [25].

However, datasets in retrieval are usually labeled by

similarity [32], which require UAPs to capture com-

plex relationships among features instead.

• Different goals. The goal of existing UAP methods is

to disturb unary and binary model outputs for single

instance, e.g., to change the most likely predict label.

However, merely corrupting the top-1 result is still not

enough since the retrieval evaluation is usually done

on a ranking list. Thus, to attack retrieval systems, one

should disturb the ranking list via lowering the posi-

tions of positive samples there.

• Different sizes of model input. Generally, models

which existing UAPs trained on ask for fixed-size in-

put images, accordingly the size of UAPs is fixed as

the input. However, these UAPs are fragile and can be

defensed by varying the size of input [43]. Note that,

the size of images in retrieval usually vary, which re-

stricts the direct usage of the traditional UAPs and thus

poses a higher demand for generating UAP for the task

of image retrieval.

• Different model output and optimization methods. It

is often assumed predict confidence of each category

can be fetched [6, 9], and the confidences are a group

of continuous and floating numbers responding to the

changes of input rapidly. It indicates a way to esti-

mate gradient for optimization. However, the large-

scale discrete ranking list returned by retrieval systems

offers little guidance on approximating gradient. This

fact makes it infeasible to apply existing UAPs to re-

trieval systems with network parameters unaccessible.

In this paper, we make the first attempt in attacking im-

age retrieval, especially the cutting-edge image retrieval

model that are deployed upon deep features. In principle,
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Figure 2. The pipeline of the proposed method. Perturbation is

first resized to the same size of the input image which goes through

random resizing layer with a random scale. Then both the resized

input image and the sum of perturbation and input image are fed

into CNN model to corrupt three relationships. Only gradient of

the perturbation will be calculated during back propagation to up-

date the perturbation.

we aim to generate a UAP for corrupting neighbourhood re-

lationships in the feature space as depicted in Fig. 1. To ad-

dress the challenges mentioned above, we propose a novel

universal adversarial perturbation attack method for image

retrieval. In detail, we build a general model to craft the

UAP that breaks the neighborhood relationships among fea-

ture points by altering the input slightly. Pair-wise relation-

ship among neighborhood structures is first considered via

constructing tuples based on the nearest and farthest groups.

We corrupt this relationship by swapping the similarity re-

lationship in the tuples. Although corrupting pair-wise rela-

tionship is simple and efficient, the pair-wise information

focuses on the local relationship between query and two

data samples each time without considering global ranking

list which is more significant for retrieval. We argue it can

not solve the retrieval attack problem fundamentally. Even-

tually, we propose the approach to generate UAPs from list-

wise aspect that goes further to permutate the entire rank-

ing list via destroying the corresponding ranking metrics to

lower positions of relative references. In addition, we pro-

pose a multi-scale random resizing scheme to apply UAP to

input images at different resolutions, which shows better at-

tack performance than fixed-scale methods experimentally.

The pipeline of the proposed method is shown in Fig. 2.

Our scheme further enables attack without touching net-

work parameters via a coarse-to-fine strategy to distill vic-

tim model by regressing ranking list as depicted in Fig. 3.

First, we construct coarse-grained subsets which preserves

global ranking information sampled from the entire large-

scale ranking list, and prompt distilled model to fit the ordi-

nal relation in the subsets. Then from the fine-grained level,

we focus on the top-k most related instances for retrieval to

refine the distilled model.

The proposed method achieves high attack performance

substantially and leads to a large performance drop on stan-
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Figure 3. The pipeline of ranking distilling. First, ranking list of

the unknowable black-box retrieval systems for the dataset is ob-

tained and divided into groups ( 1© 2©). Then the datapoints of the

coarse-grained subset randomly sampled from each group and the

fine-grained top-k references are fetched from dataset ( 3©) to opti-

mize the distilled model via regressing ordinal information among

them ( 4© 5©).

dard image retrieval benchmarks, i.e., Oxford Buildings and

Paris with their revised versions. The retrieval performance

is tested on two CNN-based image representation [33, 34,

40] with three different CNN models [13, 20, 38]. Quanti-

tatively, the universal adversarial perturbation can drop the

performance such as mAP and mP@10 by at least 50%,

which reveals the cutting-edge image retrieval systems is

quite vulnerable to adversarial examples. Interestingly, we

further evaluate our universal perturbation on the real-world

image search engine, i.e., Google Images, and conclude that

the perturbation can also corrupt the output ranking list.

2. Related Work

Adversarial Examples. Szegedy et al. [39] have

demonstrated that neural networks can be fooled by ad-

versarial example, which is a clean image being intention-

ally perturbed, e.g. by adding adversarial perturbation that

is quasi-imperceptible to human eyes. Subsequently, vari-

ous methods have been proposed to generate such perturba-

tions [11, 12, 26]. An iterative scheme is proposed in [21]

to achieve better attack performance via applying gradi-

ent ascent multiple times. Besides, complex approaches

like [26] find perturbation from the perspective of classi-

fication boundary.

However, these methods compute perturbations for each

data point specifically and independently. More recently,

Moosavi-Dezfooli et al. [25] have shown that there exists

a single image-agnostic perturbation termed universal ad-

versarial perturbation (UAP) being able to corrupt most

natural images. UAP is a single adversarial noise that

is trained offline and can perturb the corresponding out-

puts of a given model online. Contrast to white-box at-

tack where victim model can be accessed, black-box at-

tack refers to the case that attackers have little knowledge

about victim. It is observed that perturbations crafted for

specific models or training sets can fool other models and

datasets [12, 39], referred as transfer attack, which is widely

adopted in black-box. Another popular method is knowl-

edge distillation [14], which obtains substitute model via

regressing output of victim and then applies white-box at-

tack methods [42].

Visual Features for Retrieval. Image retrieval is a long-

standing research topic in computer vision [44]. Given a

query image, the search engine retrieves related ones from

a large set of reference images. A typical setting refers to

extracting and comparing features between a query and ref-

erences, such as global descriptors [28] and local descriptor

aggregations [18, 36]. Nowadays, the most prominent re-

trieval methods are mostly based on CNNs [4, 5, 15, 19, 33,

34, 40]. They mainly use the pre-trained CNNs as a back-

bone to extract global representation for images. To that

effect, CNN models pre-trained with ImageNet [10] (e.g.

AlexNet [20], VGGNet [38] and ResNet [13]) already pro-

vide superior performance over hand-crafted features [5].

Babenko et.al. [5] further showed that fine-tuning the CNN

models can further boost the retrieval performance. In

this trend, many recent methods are proposed to construct

trainable pooling layers for better feature representation.

Representative methods include, but not limited to, maxi-

mum activations of convolutions (MAC) [34, 40], weighted

sum pooling (CroW) [19], and generalized-mean pooling

(GeM) [33]. In this paper, we mainly consider two state-of-

the-art pooling methods, i.e., MAC [34, 40] and GeM [33],

with three different CNN models, i.e., AlexNet, VGGNet,

and ResNet, to evaluate the performance of UAP attack.

3. The Proposed Method

Our method is aimed to seek a universal perturbation δ
with constraint of ‖δ‖∞ ≤ ǫ, to corrupt as much similarity

relationships as possible in the data distribution X . By do-

ing so, the originally similar features should be dissimilar

after adding a small perturbation.

For convenience, we denote the universal perturbation

by δ, denote the feature vectors of the i-th original image xi

and the adversarial one by:

fi = F
(

RI(xi)
)

,

f
′

i = F

(

max

(

0,min
(

255, RP

(

δ,RI(xi)
)

+RI(xi)
)

)

)

,

where F (·) is the function that outputs the feature vector

through a CNN model, RI(·) and RP (·, ·) are resizing op-

erators for input image and universal perturbation, respec-

tively. Resizing operators will be elaborated in Sec. 3.3.

The Euclidean distance between two feature vectors fi
and fj are characterized as a function d(fi, fj). To avoid

computational overhead caused by the large-scale dataset,

a landmark-based ordinal relation [3] that compares any
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Algorithm 1 Universal Perturbation Generating for Attack-

ing Image Retrieval.

Input: Data set X = {x1, x2, . . . , xn}, parameters λ.

Output: Universal perturbation vector δ.

1: Initialize δ ← 0
2: repeat

3: for each datapoint xi ∈ X do

4: Randomly resize xi then resize perturbation δ ac-

cordingly

5: Compute and update the gradients ∇L
6: Update the perturbation by optimizing Eq. 8

7: if δ gets saturated then

8: δ = δ/2
9: end if

10: end for

11: until convergence.

query point to the landmarks1 is calculated in advance.

3.1. Baseline

We first attempt to disturb retrieval systems using label-

wise information to validate whether UAPs against clas-

sification is suitable for retrieval. We define a classifier,

equipped by the cross-entropy loss function with FC layer

and softmax layer. We recognize the cluster index as

pseudo-label and use them for all experiments in order to re-

duce computational cost and to ensure every experiment is

conducted under the same setting. Pseudo-labels are crafted

with features from victim model, which include more vic-

tim attributes than exact labels and could benefit attack.

Furthermore, pseudo-labels can be easily extended to sce-

narios where exact labels are unavailable. The classifier is

trained via pseudo-labels and then fooled by minimizing the

widely-used classification attack loss [8] as follows:

L(δ) = [Z(x′)t −max
(

Z(x′)i : i 6= t
)

]
+
, (1)

where [x]+ is the max(x, 0) function, Z(·) is the output

before the softmax layer, t is the label of clean input and x′

is the input perturbed by δ.

3.2. The Proposed UAP

Image retrieval can be viewed as a ranking problem,

from which perspective the relationship between query and

references plays an important role [23]. Therefore, such re-

lationship should be fully utilized, that can further improve

the attack performance. To this end, we consider two rela-

tionships to be corrupted i.e., pair-wise and list-wise.

Corrupting Pair-wise Relationship. Here we use ordi-

nal relationship between the nearest and the farthest refer-

ences to approximate the pair-wise information, which can

1Landmarks are generated via K-means clustering.

be constructed directly via the classical triplet loss. For-

mally, an ordered relation set C can be written as follows:

ηij < ηik ⇒ d(fj , fi) > d(fk, fi)

⇒ d(fj , f
′

i ) < d(fk, f
′

i ), ∀(i, j, k) ∈ C. (2)

We define ηik = 1 as similar pairs of xi and xk that share

the same cluster. ηij = 0 means the distance between

clusters corresponding to samples xi and xj is the farthest.

Therefore, a set of tuples belonging to the subset of C can

be re-computed. To attack the retrieval system, we mini-

mize the traditional triplet loss as follows:

L(δ) =
∑

ηik=1,ηij=0
[α+ d1(fj , f

′

i )− d1(fk, f
′

i )]+,

(3)

where α is the parameter representing the margin between

the matched and unmatched samples.

Corrupting List-wise Relationship. Unlike corrupting

pair-wise one that focuses merely on the local relationship,

we further permutate the entire ranking list for list-wise re-

lationship to destroy the corresponding ranking metric.

Since the list is typically too large to be directly pro-

cessed, we re-use the landmark employed above and con-

struct a subset of the ranking list with suitable size by sam-

pling references from each landmark each time. We treat

the reversed ranking list of cluster centers as the ideal rank-

ing sequence, and destroy the normalized Discounted Cu-

mulative Gain (NDCG) metric [16] as it is the most classi-

cal measurement well suited to information retrieval [35].

NDCG is multilevel measures, which is aimed to measure

the instance’s gain based on its position in result list. The

gain is accumulated from the top of the list to the bot-

tom, and gain of reference at lower rank will be discounted.

Given any permutation g of the set S and its ratings sets

{yi}
|g|
i=1, DCG is defined as follows:

DCG(R) =

|g|
∑

i=1

2yi − 1

log2(i+ 1)
. (4)

NDCG divides DCG by value of ideal ranking sequence to

ensure a range of [0, 1].
However, the function in Eq. (4) is non-convex and non-

smooth, which makes the optimization problematic. To this

end, we approximate the gradient by accumulating the in-

fluence via swapping references. After sorting the images

by score for a given query image feature fi, if yj and yk
are the ideal rank indices of current the i-th and j-th images

feature fj and fk respectively, we have the tangent of the

distance function that has the property as follows:

∂d(fi, fj)

∂δ
−

∂d(fi, fk)

∂δ
≫ 0,

whenever j ≫ k and yj ≪ yk. (5)
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Therefore, given a ranking list, we can directly calculate the

sum of the gradient residuals in Eq. (5), which roughly ap-

proximate the gradient of the NDCG loss in Eq. (4). Due to

the discounted factor in DCG, following the similar strat-

egy in [7], we also introduce the λ parameter to weight the

gradient residual, whose gradient can be defined as follows:

∇δ =
∂NDCG(R)

∂δ
≈
∑

j 6=k

λjk(
∂d(f, fj)

∂δ
−

∂d(f, fj)

∂δ
),

λjk =
−1

1 + e(d(f,fj)−d(f,fk))
|∆NDCGjk|, (6)

where |∆NDCGij | is the change of NDCG metric if swap

positions of the i-th and the j-th references.

3.3. Random Resizing

Unlike classification models, where input images are

cropped and padded to a fixed size, retrieval model can ac-

cept inputs at different scales. Therefore, resizing is a mean

for defense attack [43], which not only affects the retrieval

performance, but also influences the attack quality.

To make the proposed universal perturbation be suit-

able for different scales, a random resizing process RI(·)
is employed, which resizes the original input image x with

size W × H × 3 to a new image RI(x) with random size

W
′

×H
′

× 3. Note that, W ′ along with H ′ is within a spe-

cific range, and |W
′

W
− H

′

H
| should be within a reasonably

small range to prevent image distortion. Then, the UAP δ is

resized to a new perturbation RP (δ,RI(x)) with the same

size as RI(x) to be added to the input image.

3.4. Rank Distillation

Above methods require accessing model parameters

which is not realistic in general. To overcome it, we pro-

pose a coarse-to-fine rank distillation method to build a sub-

stitute model. Note that the gap between different architec-

tures exists, and distillation can be viewed as an effective

defense [29, 31] as well. Therefore, distilling with diverse

architecture may not work. Similar to [42], we assume the

architecture of model is known.

Since regressing large-scale ranking indices is very com-

putational and memory intensive, we turn to adopt a hierar-

chical strategy that first considers coarse-grained subset and

then focuses on fine-grained top-k references.

For coarse-grained part, a subset of the entire ranking list

which preserves the global ranking information for distilled

model to regress is considered. Concretely, a large ranking

list is divided into many bins according to the indices, and a

subset is constructed by sampling one reference from each

bin. We optimize the distillation model on the subset to fit

the ordinal relation between the corresponding bins. For-

mally, the ordinal regression objective is defined as follows:

min
∑

i

∑

m>n

λm[d(qi, rim)− d(qi, rin) + β]+, (7)

where qi is the feature from the distilled model of the i-th
query, rim is the feature of the m-th similar reference in

subset for the i-th query, λm is the discount factor ensuring

top references have more importance, and β is the margin

to avoid all features falling into a single point.

Subsequently, for fine-grained part, a refined procedure

focusing on the top-k references are conducted. We adopt

the similar strategy as coarse part with decreasing argu-

ments (e.g. learning rate and margin), while rim in Eq. (7)

refers to the m-th similar feature in top-k list instead.

Then, the same attack strategy as described in Sec. 3.2

is carried out on the distilled model, and the learned pertur-

bation is transferred to attack the true target victim.

3.5. The Optimization

Since the gradient of δ can be got easily, we adopt the

stochastic gradient descent with momentum [11] to update

the perturbation vector at the i-th iteration:

gi = µ · gi−1 +
∇δ

‖∇δ‖1
,

δi = δi−1 + λ · sign(gi),

δi = min
(

max(−ǫ, δi), ǫ
)

,

(8)

where gi is the momentum of the i-th iteration and λ is

the learning rate. The clipping operation that ensures con-

straint ‖δ‖ ≤ ǫ may invalidate the update after δ reaches

a constraint. We tackle this issue by following [27], which

rescales δ to half when the perturbation gets saturated. The

detailed algorithm is provided in Alg. 1.

4. Experiments

In this section, we present quantitative results and anal-

ysis to evaluate the proposed attack schemes. We train our

universal perturbations on the 30k Structure-of-Motion Re-

construction dataset. Two recent CNN-based image de-

scriptors (i.e., MAC [34, 40] and GeM [33]) with three

different CNN models (e.g. AlexNet [20], VGGNet [38]

and ResNet [13]) are used, forming six CNN models that

are trained on the 120k Structure-of-Motion Reconstruction

dataset. We use Oxford5k and Paris6k with their revised

versions [32] to evaluate the attack performance.

Training datasets. The SfM dataset [37] consists of 7.4
million images downloaded from Flickr. It contains two

large-scale training sets named SfM-30k and SfM-120k, re-

spectively. We utilize K-Means clustering on 6,403 valida-

tion images from SfM-30k to obtain the list-wise relation-

ship, and use the clustering index as pseudo-label to train
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Oxford5k
ROxford5k

Paris6k
RParis6k

E M H E M H E M H E M H

Eval mAP mP@10 mAP mP@10 mDR

A-MAC

O 57.11 45.23 32.96 10.43 57.25 55.43 15.36 65.64 63.99 46.93 20.06 88.00 91.29 58.29

C 46.99 36.13 27.89 7.86 49.58 48.36 12.71 57.91 52.96 40.33 16.27 80.86 83.00 48.86 15.47%

P 29.61 24.52 17.99 4.92 32.06 30.86 6.67 42.89 38.71 30.43 11.13 52.86 54.71 29.14 44.35%

L 27.88 21.59 16.31 4.06 28.33 28.57 7.50 41.15 37.40 29.28 10.00 49.29 51.43 25.00 48.33%

A-GeM

O 59.86 50.21 36.72 14.29 58.10 53.60 23.32 73.66 70.65 51.89 22.80 87.71 88.86 57.86

C 35.49 30.07 22.00 7.03 33.62 31.71 10.16 48.27 42.60 33.80 12.55 46.57 50.00 27.00 43.51%

P 29.31 22.85 17.57 5.56 25.65 24.79 8.36 40.71 35.17 29.44 10.71 38.86 41.71 20.14 54.12%

L 26.48 22.45 17.12 5.29 25.78 24.25 8.03 37.17 32.28 27.42 10.23 34.86 37.14 18.29 56.88%

V-MAC

O 81.45 75.07 57.15 29.96 78.60 78.33 45.57 88.31 86.39 69.60 44.97 93.57 96.86 84.71

C 42.70 37.15 30.14 14.87 35.59 36.14 20.43 34.15 29.88 27.37 12.48 18.57 18.86 12.43 61.80%

P 37.60 32.33 26.99 14.49 35.15 35.29 20.57 23.76 21.02 20.12 9.21 13.86 15.57 9.86 66.94%

L 35.57 29.83 24.97 13.13 32.79 32.29 19.71 25.38 22.13 20.99 9.23 15.29 17.14 10.43 67.96%

V-GeM

O 85.24 76.43 59.17 32.26 80.52 81.29 49.71 86.28 84.66 67.06 42.40 95.14 97.57 83.00

C 46.08 38.98 31.59 14.20 36.45 36.29 19.57 44.51 38.05 34.44 15.39 27.14 27.29 17.57 57.60%

P 43.71 37.84 30.92 15.36 36.76 37.00 21.86 30.92 28.12 25.78 11.91 17.43 17.43 12.86 62.64%

L 41.94 37.13 30.00 15.39 34.40 34.00 21.43 32.29 27.39 25.95 11.69 16.86 16.86 10.86 63.72%

R-MAC

O 81.69 73.85 56.14 29.80 78.33 79.86 46.57 83.55 81.56 63.91 39.06 93.52 96.71 79.57

C 58.52 50.65 37.50 15.59 56.47 54.29 24.71 67.57 61.51 49.43 25.01 70.00 72.43 49.57 31.27%

P 35.31 30.34 24.73 13.37 36.62 36.43 20.71 35.66 32.61 27.23 12.12 32.57 34.86 21.29 59.71%

L 34.08 28.68 23.30 12.09 34.26 32.95 19.86 34.63 30.71 26.16 11.50 28.00 29.71 18.43 62.60%

R-GeM

O 86.24 80.63 63.13 38.51 82.72 83.14 54.57 90.66 90.33 74.06 51.69 94.96 98.29 88.29

C 68.45 59.30 45.57 21.38 66.25 62.52 34.86 79.00 73.48 59.05 33.36 84.00 87.00 68.71 23.76%

P 34.81 30.50 24.33 13.79 28.97 28.43 19.71 33.76 31.67 26.54 11.28 27.86 29.43 17.00 66.69%

L 31.73 29.21 23.17 13.01 27.21 27.29 18.00 32.07 29.60 25.18 10.35 27.86 28.86 16.14 68.47%

Table 1. The attack results with different relationships: Original Results (O), Label-wise (C), Pair-wise (P), and List-wise (L). We evaluate

the performance with six retrieval models on four evaluated datasets. The ROxford5k along with RParis6k is annotated with three protocol

setups: Easy (E), Medium (M), Hard (H). Lower mAP or mP@10 and higher mDR(mean dropping rate) mean better performance in attack.

A-MAC A-GeM V-MAC V-GeM R-MAC R-GeM

A-MAC 48.33 34.94 13.60 10.78 8.57 11.27

A-GeM 38.18 56.88 14.31 12.00 7.64 12.22

V-MAC 14.68 15.26 67.96 60.16 18.46 19.32

V-GeM 15.66 16.30 66.16 63.72 18.24 19.87

R-MAC 16.38 15.53 23.59 19.62 62.60 58.25

R-GeM 14.27 14.29 23.94 22.35 67.91 68.47

Table 2. Results of transfer attack. The mean dropping rates are

reported, where a larger number means better attack performance.

a classification model to obtain the label-wise relationship.

Our universal perturbations are trained on 1,691 query im-

ages from the SfM-30k.

Test Datasets. The Oxford5k dataset [32] consists of 5,062

images and the collection has been manually annotated

to generate a comprehensive ground truth for 11 differ-

ent landmarks, each of which is represented by 5 possible

queries. Similar to Oxford5k, the Paris6k dataset [32] con-

sists of 6,412 images with 55 queries. Recently, Raden-

ovi´c et al. [32] have revisited these two datasets to revise

the annotation error, the size of the dataset, and the level

of challenge. The Revisited Oxford5k and Revisited Paris6k

datasets are referred as ROxford5k and RParis6k, respec-

tively. We report our results on both the original and revis-

ited datasets.

Visual Features. For CNN-based image representation, we

use AlexNet (A) [20], VGG-16 (V) [38] and ResNet101

(R) [13] pre-trained on ImageNet [10] as our base models to

fine-tune the CNN models on the SfM-120k dataset. For the

fine-tuned features, we consider two cutting-edge features,

i.e., the generalized mean-pooling (GeM) [33] and the max-

pooling (MAC) [34, 40]. As a result, we obtain a total of 6

features to evaluate the attack performance, termed as A-

GeM, V-GeM, R-GeM, A-MAC, V-MAC and R-MAC.

Evaluation Metrics. To measure the performance of uni-

versal perturbation for retrieval, we mainly consider three

evaluation metrics, i.e. ,mAP, mP@10, and the fooling rate.

Unlike classification, the fooling rate of top-1 label pre-

diction can not be computed directly for image retrieval.

Therefore, we define a new metric to evaluate the fooling

rate for retrieval, termed dropping rate (DR) as follows:

DR(M,x, x̂) =
M(x)−M(x̂)

M(x)
× 100%, (9)

where x̂ is an adversarial example of the original feature x,

and M is the metric used in retrieval such as mAP. Dropping

rate characterizes the attack performance by measuring the

performance degeneration of retrieval systems. The higher

the dropping rate is, the more successful the attack is.

4.1. Results of UAP Attack

We evaluate the performance of six state-of-the-art deep

visual representations against universal adversarial pertur-

bation, the quantitative results of mean DR, mAP and

mP@10 are shown in Tab. 1. Poor dropping rates (except

ones for VGG16) prove limited ability of UAPs against

classification on retrieval. Although they achieve consider-

able results for VGG16, they are still worse than our pro-
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Random Pre-trained Distillation

A-GeM 5.53% 32.98% 39.72%

V-GeM 1.66% 28.85% 44.68%
Table 3. Results about distillation attack. Random refers to Per-

turbations on randomly initialized model, pre-trained means the

one from model trained on the ImageNet dataset, and distillation

is obtained via distilled model.

posed methods. Clearly, for all deep visual features, all

kinds of our universal perturbations achieve very high drop-

ping rates on the validation set. Most of them achieve a

dropping rate of more than 50%, which means that most

relevant images will not be returned on top of the ranking

list. Specifically, the universal perturbations computed for

V-MAC and R-GeM achieve nearly 68% dropping rate. No-

tably, list-wise relationship plays an important role in gener-

ating universal perturbations. We owe it to more ranking in-

formation employed during optimization. We conclude that

both the pair-wise and list-wise relationships are suitable for

universal perturbation generation, and list-wise relationship

achieves better performance.

4.2. Results of Transfer Attack

As mentioned in Sec. 2, transfer attack is to fool models

or dataset with a perturbation generated on another model

or dataset. Tab. 2 shows the results about the transfer at-

tack across different visual features, in which we report the

mDR calculated on all four evaluation datasets. Each row in

Tab. 2 shows the mDRs for perturbation crafted by a given

model, and each column shows the transfer dropping rates

on the target model. The universal perturbation is trained on

one architecture (e.g., V-GeM), whose attack ability is eval-

uated to fool the retrieval system based on the other deep

features (e.g., R-MAC or V-MAC2). It is interesting to find

that universal perturbations generated from the same net-

work architecture can be transferred well to related models

with different pooling methods.

We also measure the power of distillation in Tab. 3 for the

case that the architecture is known beforehand. It’s clear

that perturbations from randomly initialized models make

no sense in spite of using the same architecture. As all

the retrieval models are fine-tuned from the ImageNet pre-

trained models, perturbations generated from pre-trained

models achieve considerable results compared with trans-

fer attack from other architectures in Tab. 2. However, per-

turbations from distilled model overmatch ones from pre-

trained models by at least 6%, showing the power of ranking

distillation. We conclude that our proposed ranking distilla-

tion attack is practical, when the model parameters can not

be touched.

2We consider that different CNN architecture with the same pooling

method as different features.

Range
[362,
362]

[1024,
1024]

[128,
1024]

[256,
1024]

[512,
1024]

[768,
1024]

A-GeM 16.89% 24.69% 53.21% 56.88% 51.41% 39.21%

V-GeM 25.87% 30.42% 61.93% 63.72% 55.02% 42.08%

Table 4. The effect of resizing in attack.

4.3. On the Effect of Resizing

As mentioned before, the retrieval system can accept var-

ious size of input image, which inspire us to investigate the

effect of resizing when attacking the systems. Quantitative

results are shown in Tab. 4. We first set the resizing scale

to a fixed 362 × 362 and 1024 × 1024, considering that

362 × 362 is the scale used to training the retrieval model.

The dropping rates for A-GeM and V-GeM are lower than

half of our multi-scale random resizing method. Finally, we

evaluate the influence of the range for our multi-scale ran-

dom resizing and observe that too broad or narrow range

damages attack performance.

4.4. Visualization

Fig. 4 shows the retrieval results for R-GeM features

from the Oxbuild5k and Paris6K evaluation set. In details,

to attack the label-wise relationship, the model aims to learn

the perturbation to push the original image to other cate-

gories. In the second row, we observe that the top 5 re-

trieved images are relevant to the category of dogs, instead

of the true category of building. This phenomenon exists for

pair-wise relationship and list-wise relationship that both

pursues the farthest landmark to some degree, e.g., most

retrieved images are relevant about sculptures or oil paint-

ings. Note that, retrieved images for pair-wise relationship

and list-wise are similar since list-wise relationship includes

pair-wise information.

We then visualize the perturbations that are trained from

different models in Fig. 5. Perturbations in the first row are

generated from MAC pooling and the ones in second row

are from GeM pooling. The first three perturbation each

row generated from different networks show large differ-

ence, while perturbations from same column share similar

appearances. This is consistent with the result of transfer

attack. Besides, perturbations crafted from pair-wise rela-

tionship and list-wise relationship are more similar than the

one from label-wise, which may also indicate the gap be-

tween attack of classification and retrieval.

4.5. The Real­world System Attack

Fig. 6 shows the attack results on a real-world image re-

trieval system, i.e., Google Image. The even rows show

the perturbed images along with the retrieved images and

the predicted keywords provided by Google Image, which

are completely different from the original ones at the odd

rows. For example, the original input is categorized to

monochrome, while the adversarial example changes to be

tree. Note that it is unable to quantize the mAP drop due to
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(a) Oxford5k (b) Paris6k

Figure 4. The visualization results on Oxford5k and Paris6K for ResNet101-GeM. All the images in red box are the queries, and the

retrieved pictures are sorted from left to right. The 4 rows show the retrieval results by using the original images and perturbed images via

the label-wise relationship, pair-wise relationship and list-wise relationship, respectively. (Best viewed in color.)

A-MAC  List

A-GeM List

V-MAC  List

V-GeM List

R-MAC  List

R-GeM List

R-MAC Label

R-GeM Label

R-MAC  Pair

R-GeM Pair

Figure 5. Universal adversarial perturbations crafted by the pro-

posed method for multiple architectures trained on SfM. Corre-

sponding features and deep architectures are mentioned below

each image. (Best viewed in color and zoom in.)

the lack of ground truth ranking list. Therefore, we quan-

tize how often the retrieved images from clean query are

absent in the retrieved list of the corrupted one for 100

images randomly sampling from Oxbuild5k and Paris6K

datasets. For this metric, our model has a 62.85% absent

rate achieved. The attack results have demonstrated that

the proposed method can generate universal perturbations

to fool the real-world search engine.

5. Conclusion

In this paper, we are the first to propose a set of universal

attack methods against image retrieval. We mainly focus

on attacking the point-wise, pair-wise, and list-wise neigh-

borhood relationships. We further analyze the impact of

resizing operations in generating universal perturbation in

details, and employ a multi-scale random resizing method

to improve the success rate of the above attack schemes.

A coarse-to-fine distillation strategy is also been proposed

for black-box attack. We evaluate our proposed method

on widely-used image retrieval datasets, i.e., Oxford5k, and

Query

monochrome

tree

Similar Images List via Goolge Image Keywords

ashmolean 

museum

palace

Original

Original

Adversarial

Adversarial

Figure 6. Example retrieval results on Google Images. The odd

rows and even rows show the images retrieved by original query

and the corrupted ones by our universal perturbation, respectively.

The predicted keywords via Google Image are also given.

Paris6K, in which our method shows high attack perfor-

mance that leads to a large retrieval metrics drop in a serial

of models. Finally, we also attack the real-world system,

i.e., Google Images, which further demonstrates the efficacy

of our methods. Last but not least, our work can therefore

serve as an inspiration in designing more robust and secure

retrieval models against the proposed attack schemes.
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