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Abstract

This paper is about labeling video frames with action
classes under weak supervision in training, where we have
access to a temporal ordering of actions, but their start
and end frames in training videos are unknown. Following
prior work, we use an HMM grounded on a Gated Recur-
rent Unit (GRU) for frame labeling. Our key contribution
is a new constrained discriminative forward loss (CDFL)
that we use for training the HMM and GRU under weak su-
pervision. While prior work typically estimates the loss on
a single, inferred video segmentation, our CDFL discrimi-
nates between the energy of all valid and invalid frame la-
belings of a training video. A valid frame labeling satisfies
the ground-truth temporal ordering of actions, whereas an
invalid one violates the ground truth. We specify an efficient
recursive algorithm for computing the CDFL in terms of the
logadd function of the segmentation energy. Our evaluation
on action segmentation and alignment gives superior results
to those of the state of the art on the benchmark Breakfast
Action, Hollywood Extended, and 50Salads datasets.t

1. Introduction

This paper presents an approach to weakly supervised
action segmentation by labeling video frames with action
classes. Weak supervision means that in training our ap-
proach has access only to the temporal ordering of actions,
but their ground-truth start and end frames are not provided.
This is an important problem with a wide range of applica-
tions, since the more common fully supervised action seg-
mentation typically requires expensive manual annotations
of action occurrences in every video frame.

Our fundamental challenge is that the set of all possi-
ble segmentations of a training video may consist of mul-
tiple distinct valid segmentations that satisty the provided
ground-truth ordering of actions, along with invalid seg-
mentations that violate the ground truth. It is not clear how
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to estimate loss (and subsequently train the segmenter) over
multiple valid segmentations.

Motivation: Prior work [8, 12, 20, 7, 22] typically uses
a temporal model (e.g., deep neural network, or HMM) to
infer a single, valid, optimal video segmentation, and takes
this inference result as a pseudo ground truth for estimat-
ing the incurred loss. However, a particular training video
may exhibit a significant variation (not yet captured by the
model along the course of training), which may negatively
affect estimation of the pseudo ground truth, such that the
inferred action segmentation is significantly different from
the true one. In turn, the loss estimated on the incorrect
pseudo ground truth may corrupt training by reducing, in-
stead of maximizing, the discriminative margin between the
ground truth and other valid segmentations. In this paper,
we seek to alleviate these issues.

Contributions: Prior work shows that a statistical lan-
guage model is useful for weakly supervised learning and
modeling of video sequences [17, 9, 19, 22, 3]. Follow-
ing [22], we also adopt a Hidden Markov Model (HMM)
grounded on a Gated Recurrent Unit (GRU) [4] for label-
ing video frames. The major difference is that we do not
generate a unique pseudo ground truth for training. Instead,
we efficiently account for all candidate segmentations of a
training video when estimating the loss. To this end, we
formulate a new Constrained Discriminative Forward Loss
(CDFL) as a difference between the energy of valid and in-
valid candidate video segmentations. In comparison with
prior work, the CDFL improves robustness of our train-
ing, because minimizing the CDFL amounts to maximizing
the discrimination margin between candidate segmentations
that satisfy and violate ground truth, whereas prior work
solely optimizes a score of the inferred single valid segmen-
tation. Robustness of training is further improved when the
CDFL takes into account only hard invalid segmentations
whose edge energy is lower than that of valid ones. Along
with the new CDFL formulation, our key contribution is a
new recursive algorithm for efficiently estimating the CDFL
in terms of the logadd function of the segmentation energy.

Our Approach: Fig. 1 shows an overview of our weakly
supervised training of the HMM with GRU that consists of
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efficient recursive estimation of path energy
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Figure 1. Our weakly supervised training: For a training video,
we first estimate candidate segmentation cuts using a Hidden
Markov Model (HMM) grounded on a Gated Recurrent Unit
(GRU), and then build a fully connected segmentation graph
whose paths represent candidate action segmentations (colors
mark different action classes along the paths). Then, we efficiently
compute the Constrained Discriminative Forward Loss (CDFL) in
terms of accumulated energy of all valid and invalid paths in the
graph for our end-to-end training. (best seen in color)

two steps. In the first step, we run a constrained Viterbi al-
gorithm for HMM inference on a given training video so
the resulting segmentation is valid. This initial video seg-
mentation is used for efficiently building a fully connected
segmentation graph aimed at representing alternative can-
didate segmentations. In this graph, nodes represent seg-
mentation cuts of the initially inferred segmentation — i.e.,
video frames where one action ends and a subsequent one
starts — and edges represent video segments between every
two temporally ordered cuts. For improving action bound-
ary detection, we further augment the initial set of nodes
with video frames that are in a vicinity of every cut, as well
as the initial set of edges with corresponding temporal links
between the added nodes. Directed paths of such a fully
connected graph explicitly represent many candidate action
segmentations, beyond the initial HMM’s inference.

The second step of our training efficiently computes a
total energy score of frame labeling along all paths in the
segmentation graph. Efficiency comes from our novel re-
cursive estimation of the segmentation energy, where we
exploit the accumulative property of the logadd function.
A difference of the accumulated energy of action labeling
along the valid and invalid paths is used to compute the
CDFL. In this paper, we also consider several other loss

formulations expressed in terms of the energy of valid and
invalid paths. The loss is then used for training HMM pa-
rameters and back-propagated to the GRU for end-to-end
training.

For inference on a test video, as in the first step of our
training, we use a constrained Viterbi algorithm to perform
the HMM inference which will satisfy at least one action se-
quence seen in training. Then, we use this initial video seg-
mentation as an anchor for building the segmentation graph
that comprises paths with finer action boundaries. Our out-
put is the MAP path in the graph.

For evaluation, we consider the tasks of action segmen-
tation and action alignment, where the latter provides ad-
ditional information on the temporal ordering of actions
in the test video. For both tasks on the Breakfast Ac-
tion dataset [10], Hollywood Extended dataset [1], and 50-
Salads dataset [24], we outperform the state of the art.

In the following, Sec. 2 reviews related work, Sec. 3 for-
mulates our HMM and Constrained Viterbi for action seg-
mentation, Sec. 4 describes how we construct the segmenta-
tion graph, Sec. 5 specifies our CDFL and related loss func-
tions, and Sec. 6 presents our evaluation.

2. Related Work

This section reviews closely related work on weakly su-
pervised action segmentation and Graph Transformer Net-
works. While a review of fully supervised action segmen-
tation [25, 14, 18, 16] is beyond our scope, it is worth men-
tioning that our approach uses the same recurrent deep mod-
els for frame labeling as in [23, 25, 6]. Also, our approach is
motivated by [11, 19] which integrate HMMs and modeling
of action length priors within a deep learning architecture.

Weakly supervised action segmentation has recently
made much progress [24, 10, 20, 7, 22]. For example, Ex-
tended Connectionist Temporal Classification (ECTC) ad-
dresses action alignment under the constraint of being con-
sistent with frame-to-frame visual similarity [8]. Also, ac-
tion segmentation has been addressed with a convex re-
laxation of discriminative clustering, and efficiently solved
with the conditional gradient (Frank-Wolfe) algorithm [1].
Other approaches use a local action model and a global tem-
poral alignment model that are alternatively trained [12, 20].
Some methods initially predict a video segmentation with
a temporal convolutional network, and then iteratively re-
fine the action boundaries [7]. Other approaches first gen-
erate pseudo-ground-truth labels for all video frames, e.g.,
with the Viterbi algorithm [22], and then train a classifier on
these frame labels by minimizing the standard cross entropy
loss. Finally, [21] addresses a different weakly supervised
setting from ours when the ground truth provides only a set
of actions present without their temporal ordering .

All these approaches base their learning and prediction
on estimating a penalty or probability of labeling individ-
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ual frames. In contrast, we use an energy-based framework
with the following differences. First, in training, we min-
imize the total energy of valid paths in the segmentation
graph rather than optimize labeling probabilities of each
frame. Second, instead of considering a single optimal valid
path in the segmentation graph, we specify a loss function
in terms of all valid paths. Hence, the Viterbi-initialized
training on pseudo-labels of frames [22] represents a spe-
cial case of our training done only for one valid path. In ad-
dition, our loss enforces discriminative training by account-
ing for invalid paths in the segmentation graph. Unlike [3]
that randomly selects invalid paths, we efficiently account
for all hard invalid paths in training. Finally, our training
is not iterative as in [12, 20], and does not require iterative
refinement of action boundaries as in [7].

Our CDFL extends the loss used for training of the Graph
Transformer Network (GTN) [15, 13, 2, 5]. To the best of
our knowledge, the GTN has been used only for text pars-
ing, and never for action segmentation. In comparison with
the GTN training, we significantly reduce complexity by
building the video’s segmentation graph. Also, while the
loss used for training the GTN accounts for both valid and
invalid text parses, it cannot handle the special case when
valid parses have lower scores than invalid ones. In con-
trast, our CDFL effectively accounts for the energy of valid
and invalid paths, even when valid paths have significantly
lower energy than invalid paths in the segmentation graph.

3. Our Model for Action Segmentation

Problem Setup: For each training video of length T,
we are given unsupervised frame-level features, x1.7 =
[€1,x2,...,x7], and the ground-truth ordering of action
classes a1.y = [a1,as, ..., an], also referred to as the tran-
script. N is the length of the annotation sequence, and a,, is
nth action class in a;.y that belongs to the set of K action
classes, a, € A = {1,2,..., K}. Note that T and N may
vary across the training set, and that there may be more than
one occurrences of the same action class spread out in a1. 5
(but of course a,, # ayp11)-

In inference, given frame features x;.7 of a video, our
goal is to find an optimal segmentation (@, ., lAl: & )» Where
N is the predicted length of the action sequence, and
lAlzN = [[1, Iy, ,[N] includes the predicted number of
video frames [,, occupied by the predicted action a.,.

The Model: We use an HMM to model the posterior dis-
tribution of a video segmentation (a1.y,l1.n) given xi.7
as

plain, Li.n|T1.7)
x p(xr.r|an, li.n)p(linv]arn)p(ay),

= <HP($tan(t))> (H P(ln|an)> plain).

ey

In (1), the likelihood p(z|a) is estimated as

It|Q O(pi(alxt)
p( t| ) p((l) )

where p(alz;) is the GRU’s softmax score for action a € A
at frame ¢, and the prior distribution of action classes p(a) is
an normalized frame frequency of action occurrences in the
training dataset. The likelihood of action length is modeled
as a class-dependent Poisson distribution

(@)

Mo
p(lla) = e, 3)
where )\, is the mean length for class a € A. Finally, the
joint prior p(ai.x) is a constant if the transcript a1.y ex-
ists in the training set; otherwise, p(a1.n) = 0. The same
modeling formulation was well-motivated and used in state
of the art [22].

Constrained Viterbi Algorithm: Given a training
video, we first find an optimal valid action segmentation
(@y. 5 lAlzN) by maximizing (1) with a constrained Viterbi
algorithm, which ensures that a . 5 is equal to the annotated
transcript, @,y = ai.n. Similarly, for inference on a test
video, we first perform the constrained Viterbi algorithm
against all transcripts {a.} seen in training, i.e., ensure
that the predicted a5 has been seen at least once in train-
ing. Thus, the initial step of our inference on a training or
test video is the same as in [22].

Our key difference from [22], is that we use the initial
(@y. 55 l 1.7) to efficiently build a fully connected segmenta-
tion graph of the video, as explained in Sec. 4. Importantly,
in training, the segmentation graph is not constructed to find
a more optimal video segmentation that improves upon the
initial prediction. Instead, the graph is used to efficiently
account for all valid and invalid segmentations.

Given a video x;.7 and a transcript a; .y, the constrained
Viterbi algorithm recursively maximizes the posterior in (1)
such that the first n action labels of the transcript a1.,, =
[a1, ..., a,] € aq.n are respected at time ¢:

ot <t

: <H p($b|an(s))> 'p(ln|an) 'p(al:n)} y

s=t’

p(alzn»il:n|$1:t) = max {p(al:n—lail:n—1|$l:t’)

4
where [,, =t —t'. We set p(-|x1.0) = 1, and p(a1.,) = &,
where x > ( is a constant.

4. Constructing the Segmentation Graph

Given a video xy.7, we first run the constrained
Viterbi algorithm to obtain an initial video segmentation
(@y.5,1,.5). For simplicity, in the following, we ignore
the symbol . This initial segmentation is characterized by
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by, time

Figure 2. Building the segmentation graph G (best seen in
color). The initial nodes of G represent segmentation cuts b,, ob-
tained in the Constrained Viterbi (the predicted action classes are
marked with different colors). Each b,, generates additional ver-
tices b, = {vns} representing neighboring video frames within a
window centered at b,, (the black rectangles), and corresponding
new edges (Uns, Upn/s) (the dashed lines) between all temporally
ordered pairs of vertices in G. For clarity, we show only a few
edges. G has exponential many paths, each representing a candi-
date action segmentation.

N + 1 cuts, by.n+1 = [b1,...,bn+1], €., video frames
where previous action ends and the next one starts includ-
ing the very first frame b; and last frame by at time 7.

We use these cuts to anchor our construction of the fully
connected segmentation graph, G = (V, £, W), where V =
{by.n+1} is the set of nodes, & is the set of directed edges
linking every two temporally ordered nodes, and WV are the
corresponding edge weights.

Some of the estimated cuts in by. 1 may be false pos-
itives or may not exactly coincide with the true cuts. To
improve action boundary detection, we augment the ini-
tial ¥V with nodes representing neighboring video frames
of each cut b,, within a temporal window of length A cen-
tered at b, as illustrated in Fig. 2. For the first and last
frames, we set A = 1. Thus, each b,, can be viewed as a
hyper-node comprising additional vertices in G, V = {b,, =
{Un1, "+ yOniy -+ ,onat:in=1,..., N+1}, and accord-
ingly additional edges € = {(vni, vprir) 1 m </, i <@’}
In the following, we simplify notation for vertices v,; —
v; €V, and edges (’Um;, Un/,;/) — ey = (vi, U,;/).

Each edge e;;; is assigned a weight vector w;;; =
[wii (a)], where w;;r(a) is defined as the energy of label-
ing the video segment (v;, v, ) with action class a € A:

wii’(a): Z —logp(a\xt), )

te(viv;r)

where p(a|z;) is the GRU’s softmax score for action a at
frame ¢.

G comprises exponentially many directed paths P =
{m}, where each 7 represents a particular video segmen-
tation. In each m, every edge e;;» gets assigned only one
action class a], € A. Thus, the very same edge with K
different class assignments belongs to K distinct paths in
‘P. We compute the energy of a path as

E’,r = Z ’w“‘/(az—i/). (6)

€,/ €T

A subset of valid paths P C P satisfies the given tran-
script. The other paths are invalid, PY = P\ PV.

In the next section, we explain how to efficiently com-
pute a total energy score of the exponentially many paths in
‘P for estimating our loss in training.

5. Constrained Discriminative Forward Loss

In this paper, we study three distinct loss functions, de-
fined in terms of a total energy score of paths in G. As there
are exponentially many paths in G, our key contribution is
the algorithm for efficiently estimating their total energy.
Below, we specify our three loss functions ordered by their
complexity. As we will show in Sec. 6, we obtain the best
performance when using the CDFL in training.

5.1. Forward Loss

We define a forward loss, L, in terms of a total energy
of all valid paths using the standard logadd function as

Ly = —log( Y exp(—Ex)), ©)

TePV

where energy of a path E; is given by (6). As there are ex-
ponentially many paths in PV, we cannot directly compute
Ly as specified in (7). Therefore, we derive a novel recur-
sive algorithm for accumulating the energy scores of edges
along multiple paths, as specified below.

We begin by defining the logadd function as

logadd(a, b) = — log(exp(—a) + exp(—b)).  (8)

Note that the logadd function is commutative and associa-
tive, so it can be defined on a set S in a recursive manner:

logadd(S) = logadd(S\{z}, z), )

where x is an element in S. Therefore, the forward loss
given by (7) can be expressed as

Lp = logadd({E, : m € PV}). (10)

Below, we simplify notation as Lr = logadd(PV).

We recursively compute the energy score ¢/ (a1.,) of a
path that ends at node ' and covers first n labels of the
ground truth a1.,, = [a1,...,a,] C aj.y in terms of the
logadd scores £;(ay.,—1) of all valid paths that end at node
1,1 < 1/, and cover first n — 1 labels as

by (altn) = logadd({&(alm_l) + Wi (an) 1< ’L/})
1)
To prove (11), suppose that

li(aim_1) = logadd({E, : m; € PV})
= —log( Y exp(~Ex,)),  (12)

7r71€'PV
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Input: G, bi.yy1, a1.n
Output: Forward loss Lg = {7(a)
Initialization: ¢o(-) = 0 ;
forn = 1to N do
for 4’ in the neighborhood of b,, do
Ei’(alzn) = 005
for i in the neighborhood of b,,_1 do
temp = 4i(@1.n—1) + wiir (an);
Lir(a.,) = logadd(¢; (ay.,,), temp);
end
end

o NN R W N -

end

=
>

Algorithm 1: Computing the Forward loss Lg.

Input: G, b;.n41

Output: logadd(P) = {1

Initialization: ¢ = 0 ;

forn = 1to N do

for 4’ in the neighborhood of b,, do

Ei/ = 00,

for i in the neighborhood of b,,_1 do
for a € Ado

‘ Ei’ = logadd(&;/,&; + w4 (a));

end

end

o NN AN R W N -

end

=
>

11 end

Algorithm 2: Computing the logadd score of all paths
in P, for the discriminative forward loss Lpg.

where m; is a path that ends at ¢ with a transcript of a;.,—1.
Then, we have

gi’ (al:n)
_IOg(Z Z exp(—Er, — wiir(an)))
i<i’ w,ePV

—log(X_cpv exp(=E,))

logadd({E, , : 7y € PV}).
" (13)
where 7/ is a path that ends at i’ with a transcript of @1.p,.
For a training video with length 7' and ground-truth con-

straint sequence a1.y, we define

Lg = {r(ar:n). (14)

The recursive algorithm for computing Lg is presented in
Alg. 1. It is worth noting that in a special case of Alg. 1,
when we take only the initial segmentation cuts by.y41 as
nodes of GG (i.e., the window size A = 0), the forward loss
is equal to the training loss used in [22].

logadd({éi(alm_l) + w4 (CL7L) < Zl})

5.2. Discriminative Forward Loss

We also consider the Discriminative Forward Loss, Lpg,
which extends Ly by additionally accounting for invalid
paths in G:

Lpr = logadd(P") — o logadd(P), (15)

where logadd(P) aggregates a total energy of all paths in
G, and o > 0 is a regularization factor that controls the
relative importance of the valid and invalid paths for Lpg.
Alg. 2 summarizes our recursive algorithm for computing
logadd(P) in (15), whereas Alg. 1 shows how to compute
logadd(P") in (15).

One advantage of Lpg over L is that minimizing Lpp
amounts to maximizing the decision margin between the
valid and invalid paths. However, a potential shortcoming
of Lpp is that valid paths might have little effect in (15). In
the case, when the energy of valid paths dominates the total
energy of all paths, the former gets effectively subtracted in
(15), and hence has very little effect on learning.

Moreover, we observe that in some cases the back-
propagation of Lpp is dominated by the invalid paths. This
can be clearly seen from the following derivation. We com-
pute the gradient V Lpg as

VLpr = Vlogadd(PY) — a Vlogadd(P),
= Zﬂ—epV exp(fETr)VEﬂ' (16)
—C2 ) cpr xp(—Er)VEg,
where
- (A1—a) > cpv exp(—Ex)+> p1 exp(—Ex)
1 - (Z.,rep‘/ CXP(_EW))(Zﬂ-gp CXP(_Eﬂ')) ’
Cy = -

2nep xp(—Ex)”
a7

From (16)—(17), we note that in the case of a — 1, the
backpropagation will be dominated by the invalid paths,
whereas there would be no effect for invalid paths in train-
ing if & = 0. Sec. 6 presents how different choices of «
affect our performance.

In the next section, we define the constrained discrimi-
native forward loss to address this issue.

5.3. Constrained Discriminative Forward Loss

We define the CDFL as
Lcpr = logadd(PY) — logadd(P?e), (18)

where PIe consists of a subset of invalid paths in G, where
each edge e;;; gets assigned an action class a such that
its weight w;;(a) < wyy(a,), where a, # a is the
pseudo ground truth class for e;;». This constraint effec-
tively addresses the aforementioned issue when the valid
paths have significantly lower energy than the invalid paths.
Alg. 3 summarizes our recursive algorithm for computing
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Input: G, bi.n+1, a1:n
Output: logadd(P!") = ¢

1 Initialization: ¢y =0 ;

2 forn =1to N do

3 for 4’ in the neighborhood of b,, do

4 fi/ = o0,

5 for 4 in the neighborhood of b,,_1 do
6 for a € Ado

7 temp = /;;

8 if w;; (a) < Wiy (an) then
9 | temp = 4; + wiy (a)

10 end

i £; = logadd(¢;:, temp);

2 end

13 end

4 end

s end

Algorithm 3: Computing the logadd score of a subset
of invalid paths P, for estimating the constrained dis-
criminative forward loss Lcp.

logadd(PZ¢) in (18), whereas Alg. 1 shows how to compute
logadd(PV) in (18).

As Lpr accounts for the invalid paths, Lcpg further ac-
counts for the hard invalid paths. Therefore, the model ro-
bustness is further improved by minimizing Lcpr which
amounts to maximizing the decision margin between the
valid and hard invalid paths.

5.4. Our Computational Efficiency

As summarized in Alg. 1-3, our training first runs the
constrained Viterbi algorithm (see Sec. 3) to get the ini-
tial segmentation cuts with complexity O(T?N) for a video
of length 7" and the ground-truth action sequence of length
N. Then, CDFL efficiently accumulates the energy of both
valid and invalid paths in G’ with complexity O(AZ2K N)
for the neighborhood window size A and the class set
size K. Therefore, our total complexity of training is
O(T?N + A’KN).

Note that prior work [22] also runs the Constrained
Viterbi with complexity O(T2N), so relative to theirs
our complexity is increased by O(A2K N). This addi-
tional complexity is significantly smaller than O(T2N) as
A%2K < T?. In our experimental evaluation, we get the
best results for A < 20 frames, whereas video length 7" can
go to several minutes.

6. Results

Both action segmentation and alignment are evaluated
on the Breakfast Actions [10], Hollywood Extended [1],
and 50Salads [24] datasets. We perform the same cross-

validation strategy as the state of the art, and report our av-
erage results. We call our approach CDFL, trained with loss
given by (18).

Datasets. For all datasets, we use as input the pre-
processed, public, unsupervised frame-level features. The
same frame features are used by [8, 12, 20, 22]. The fea-
tures are dense trajectories represented by PCA-projected
Fisher vectors [11]. Breakfast [10] consists of 1, 712 videos
of people making breakfast with 10 cooking activities. The
cooking activities are comprised of 48 action classes. On
average, every video has 6.9 action instances, and the video
length ranges from a few seconds to several minutes. Hol-
lywood Extended [1] contains 937 video clips from differ-
ent Hollywood movies, showing 16 action classes. Each
clip contains 2.5 actions on average. 50Salads [24] has 50
very long videos showing 17 classes of human manipulative
gestures. On average, each video has 20 action instances.
There are 600, 000 annotated frames.

Evaluation Metrics. We use the following four stan-
dard metrics, as in [1, 7]. The mean-over-frames (Mof) is
the average percentage of correctly labeled frames. To over-
come the potential drawback that frames are dominated by
background class, we compute mean-over-frames without
background(Mof-bg) as the average percentage of correctly
labeled video frames with background frames removed.

Breakfast Mof | Mof-bg | IoU | IoD

OCDC[1] 8.9 - -
CTC[8] 21.8 - - -
HTK [11] 259 - 9.8 -

ECTC [8] 277 - - -
HMM/RNN [20] | 33.3 - - -
TCEPN [7] 384 | 384 | 242406
NN-Viterbi [22] | 43.0 - - -
D3TW [3] 45.7 - - -
Our CDFL 502 | 48.0 | 337 | 454

Hollywood Ext | Mof | Mof-bg | IoU | IoD
HTK [11] 33.0 - 8.6 -

HMM/RNN [20] - - 11.9 -
TCFPN [7] 28.7 34.5 12.6 | 18.3
D3TW [3] 33.6 - - -
Our CDFL 45.0 | 40.6 19.5 | 25.8

50Salads Mof | Mof-bg | IoU | IoD
CTCI8] 11.9 - - -
HTK [11] 24.7 - - -
HMM/RNN [20] | 45.5 - - -

NN-Viterbi [22] | 49.4 - - -

Our CDFL 547 | 49.8 | 31.5 | 404

Table 1. Action segmentation evaluations on Breakfast, Holly-
wood Ext and 50Salads. The dash means no results reported by
prior work.
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Figure 3. Ground truth action sequence (take_cup, spoon_powder,

s ) (top) and our CDFL’s action segmentation
(bottom) on the sample test video PO3_stereo01_P03_milk from
Breakfast dataset. The background frames are marked in white.
CDFL may miss the true start and end of some actions, but suc-
cessfully detects the actions.

Window Lp LDF LCDF
Size |Mof|IoD |Mof|IoD |Mof|IoD
30 |43.5/39.4|46.6|40.5|49.4|44.1
20 |44.3|40.9|47.0|41.8|50.2|45.4
10 |43.8]|40.0|46.2|41.3|149.6|44.6
0 43.0(38.7]45.0(40.2|48.5(43.5

Table 2. Mof and IoD evaluations on Breakfast for different neigh-
borhood window sizes and different losses. CDFL with neighbor-
window size of 20 shows the best result.

The intersection over union (IoU) and the intersection over
detection (IoD) are computed as IoU = |GTND|/|GTUD],
and IoD = |GT'ND|/|D| , where |GT| denotes the extent of
the ground truth segment and | D] is the extent of a correctly
detected action segment.

Training. We train a single-layer GRU with 64 hidden
units in 105 iterations, where for each iteration one training
video is randomly selected. The initial learning rate of 0.01
is decreased to 0.001 at the 60, 000th iteration. The mean
action lengths A, in (3), and the action priors p(a) in (2) are
estimated from the history of pseudo ground truths. Unlike
[22], we do not use the history of pseudo ground truths for
computing loss in the current iteration. Consequently, our
training time per iteration is less than that of [22].

6.1. Action Segmentation

Tab. 1 compares CDFL with the state of the art. From the
table, CDFL achieves the best performance in terms of all
the four metrics. Fig. 3 qualitatively compares the ground
truth and CDFL’s output on an example test video in Break-
fast dataset. As can be seen, CDFL typically misses the
true start or end of actions by only a few frames. In general,
CDFL successfully detects most action occurrences.

Ablation Study for Action Segmentation. Tab. 2 com-
pares our action segmentation performance on Breakfast
when using different sizes of the neighborhood window
placed around the initial segmentation cuts (as explained in
Sec. 4) and different loss functions (as specified in Sec. 5).
From the table, training by accounting for invalid paths in
Lpr and Lcpr gives better performance than only account-
ing for valid paths in Lg. In addition, considering neigh-
boring frames for action boundary refinement within a win-
dow around the initial segmentation cuts gives better perfor-

Gr [ . |
Lor [ I I |
Lo [ W I |
Le | [ I

Figure 4. Top-down, the rows correspond to ground truth sequence
of actions ( , crack_egg, fry_egg, ) and our
action segmentations with neighbor-window size of 20 on the
sample video P03 _cam01_PO3_friedegg from Breakfast dataset us-
ing Lcpr, Lor and Lr, respectively. The background frames are
marked in white. The result for Lcpr is the best.

window size|a = Olae = 0.1|ae = 0.2|av = 0.3
30 435 | 46.6 38.8 34.0
20 443 | 47.0 40.7 35.5
10 438 | 46.2 41.0 354
0 430 450 39.1 33.5

Table 3. Mof evaluations on Breakfast using Lpr in training with
different regularization factors and neighbor-window sizes.

or [N |
wno| T 200 |
win 10 NN B
win 20 NN B |
win 30/ NN S

Figure 5. Ground truth action sequence ( , crack egg,
fry_egg, , ) (top) and CDFL’s action seg-
mentations using different neighbor-window sizes on the sam-
ple test video PO4_webcam02_P04 friedegg from Breakfast. The
background frames are marked in white. The window size of 20
gives the best performance.

mance than taking into account only a single optimal path
in the segmentation graph when the window size is 0. The
best test performance is achieved using Lcpr with window
size of 20 in training.

Fig. 5 illustrates the CDFL’s action segmentations on a
sample test video from the Breakfast Action dataset using
different window sizes and Lcpg. As can be seen, consid-
ering neighboring frames around the anchor segmentation
improves performance.

Tab. 3 shows how different regularization factors « in
Lpp affect our action segmentation on the Breakfast Action
dataset, for different neighbor-window sizes. As expected,
using small « in training tends to give better performance.
The best accuracy is achieved with o = 0.1 and window
size of 20.

6.2. Action Alignment

Tab. 4 shows that CDFL outperforms the state-of-the-
art approaches in action alignment on the three benchmark
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Breakfast |Mof|Mof-bg|IoU|IoD

ECTC[8] 350 - - |45.0
HTK [11] 439 - [26.6/42.6
OCDC [1] - - - 234

HMM/RNN [20]| - - - 1473
TCFPN [7] |53.5| 51.7 (35.3|52.3
D3TW [3] |57.0] - - 1563

Our CDFL |63.0| 61.4 [45.8/63.9

Hollywood Ext |Mof|Mof-bg|IoU |IoD

ECTC[8] - - - |41.0
HTK [11] 494 - [29.1/46.9
OCDC [1] - - - 1439

HMM/RNN [20]| - - - 1463
TCFPN [7] |57.4| 36.1 |22.3|39.6
NN-Viterbi [22] | - - - |48.7
D3TW [3] |59.4| - - 1509
Our CDFL  |64.3| 70.8 [40.5|52.9

50Salads  |[Mof|Mof-bg|IoU |IoD
Our CDFL  |68.0| 65.3 |45.5/58.7

Table 4. Action alignment evaluations on Breakfast, Hollywood
Ext and 50Salads. The dash indicates that no results reported by
prior work.

6T [T W N N
coFrL[T W I W

Figure 6. Ground truth action sequence ( ,SitDown, Drive-
Car, OpenDoor, OpenDoor, ) (top) and our action
alignments (bottom) on the sample video 026/ from Hollywood
Extend. The background frames are marked in white. CDFL typi-
cally achieves a good action alignment.

datasets. Fig. 6 illustrates that CDFL is good at action align-
ment on a sample test video from Hollywood Extended.

Ablation Study for Action Alignment. Tab. 5 presents
our alignment results using different loss functions as spec-
ified in Sec. 5, and different neighbor-window sizes on Hol-
lywood Ext. From the table, training with Lpg and Lcpg
that account for invalid paths, outperforms our approach
trained with Lg. In addition, taking into account neighbor-
ing frames around segmentation cuts of the initial segmen-
tation (i.e., window size is greater than 0) improves perfor-
mance relative to the case when window size is 0. The best
performance is achieved using Lcpg with the window sizes
of 6 in training.

Fig. 7 illustrates that CDFL gives good action alignment
results on the sample test video from Hollywood Ext, using
Lcpr and window size of 6 in training.

7. Conclusion

We have extended the existing work on weakly super-
vised action segmentation that uses an HMM and GRU for

Window size LF LDF LCDF

8 48.7/49.8/51.6
6 49.350.5|52.9
4 49.0(50.0{52.0
2 48.5149.5/50.7
0 48.7149.3149.8

Table 5. IoD evaluations of our approach in action alignment on
Hollywood Extended using different loss functions and different
neighbor-window sizes in training. Using CDFL with neighbor-
window size of 6 shows the best result.

GT |
Win 0 |
Win 2 |
Win 4 |
Win 6 |
Win 8 |

Figure 7. Ground truth action sequence ( ,
OpenCarDoor) (top) and CDFL’s action alignments on the sam-
ple test video 0361 from Hollywood Extended, when trained us-
ing varying window sizes. The background frames are marked in

white. Using CDFL and neighbor-window size of 6 gives the best
results.

labeling video frames by formulating a new energy-based
learning on a video’s segmentation graph. The graph is con-
structed so as to facilitate computation of loss, expressed in
terms of the energy of valid and invalid paths representing
candidate action segmentations. Our key contribution is the
new recursive algorithm for efficiently computing the accu-
mulated energy of exponentially many paths in the segmen-
tation graph. Among the three loss functions that we have
defined, and evaluated, the CDFL — specified to maximize
the discrimination margin between valid and high-scoring
invalid paths — gives the best performance. A comparison
with the state of the art on both action segmentation and ac-
tion alignment tasks, for the Breakfast Action, Hollywood
Extended and 50Salads datasets, supports our novelty claim
that using our CDFL in training gives superior results than
a loss function estimated on a single inferred segmentation,
as done by prior work. Our results on both action segmenta-
tion and action alignment tasks also demonstrate advantages
of considering many candidate segmentations in neighbor-
windows around the initial video segmentation, and maxi-
mizing the margin between all valid and hard invalid seg-
mentations. Our small increase in complexity relative to
that of related work seems justified considering our signifi-
cant performance improvements.
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