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Abstract

This paper is about labeling video frames with action

classes under weak supervision in training, where we have

access to a temporal ordering of actions, but their start

and end frames in training videos are unknown. Following

prior work, we use an HMM grounded on a Gated Recur-

rent Unit (GRU) for frame labeling. Our key contribution

is a new constrained discriminative forward loss (CDFL)

that we use for training the HMM and GRU under weak su-

pervision. While prior work typically estimates the loss on

a single, inferred video segmentation, our CDFL discrimi-

nates between the energy of all valid and invalid frame la-

belings of a training video. A valid frame labeling satisfies

the ground-truth temporal ordering of actions, whereas an

invalid one violates the ground truth. We specify an efficient

recursive algorithm for computing the CDFL in terms of the

logadd function of the segmentation energy. Our evaluation

on action segmentation and alignment gives superior results

to those of the state of the art on the benchmark Breakfast

Action, Hollywood Extended, and 50Salads datasets.†

1. Introduction

This paper presents an approach to weakly supervised

action segmentation by labeling video frames with action

classes. Weak supervision means that in training our ap-

proach has access only to the temporal ordering of actions,

but their ground-truth start and end frames are not provided.

This is an important problem with a wide range of applica-

tions, since the more common fully supervised action seg-

mentation typically requires expensive manual annotations

of action occurrences in every video frame.

Our fundamental challenge is that the set of all possi-

ble segmentations of a training video may consist of mul-

tiple distinct valid segmentations that satisfy the provided

ground-truth ordering of actions, along with invalid seg-

mentations that violate the ground truth. It is not clear how

∗The work was done at the Oregon State University before Peng

Lei joined Amazon. †The code is available at https://github.com/JunLi-

Galios/CDFL.

to estimate loss (and subsequently train the segmenter) over

multiple valid segmentations.

Motivation: Prior work [8, 12, 20, 7, 22] typically uses

a temporal model (e.g., deep neural network, or HMM) to

infer a single, valid, optimal video segmentation, and takes

this inference result as a pseudo ground truth for estimat-

ing the incurred loss. However, a particular training video

may exhibit a significant variation (not yet captured by the

model along the course of training), which may negatively

affect estimation of the pseudo ground truth, such that the

inferred action segmentation is significantly different from

the true one. In turn, the loss estimated on the incorrect

pseudo ground truth may corrupt training by reducing, in-

stead of maximizing, the discriminative margin between the

ground truth and other valid segmentations. In this paper,

we seek to alleviate these issues.

Contributions: Prior work shows that a statistical lan-

guage model is useful for weakly supervised learning and

modeling of video sequences [17, 9, 19, 22, 3]. Follow-

ing [22], we also adopt a Hidden Markov Model (HMM)

grounded on a Gated Recurrent Unit (GRU) [4] for label-

ing video frames. The major difference is that we do not

generate a unique pseudo ground truth for training. Instead,

we efficiently account for all candidate segmentations of a

training video when estimating the loss. To this end, we

formulate a new Constrained Discriminative Forward Loss

(CDFL) as a difference between the energy of valid and in-

valid candidate video segmentations. In comparison with

prior work, the CDFL improves robustness of our train-

ing, because minimizing the CDFL amounts to maximizing

the discrimination margin between candidate segmentations

that satisfy and violate ground truth, whereas prior work

solely optimizes a score of the inferred single valid segmen-

tation. Robustness of training is further improved when the

CDFL takes into account only hard invalid segmentations

whose edge energy is lower than that of valid ones. Along

with the new CDFL formulation, our key contribution is a

new recursive algorithm for efficiently estimating the CDFL

in terms of the logadd function of the segmentation energy.

Our Approach: Fig. 1 shows an overview of our weakly

supervised training of the HMM with GRU that consists of
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Figure 1. Our weakly supervised training: For a training video,

we first estimate candidate segmentation cuts using a Hidden

Markov Model (HMM) grounded on a Gated Recurrent Unit

(GRU), and then build a fully connected segmentation graph

whose paths represent candidate action segmentations (colors

mark different action classes along the paths). Then, we efficiently

compute the Constrained Discriminative Forward Loss (CDFL) in

terms of accumulated energy of all valid and invalid paths in the

graph for our end-to-end training. (best seen in color)

two steps. In the first step, we run a constrained Viterbi al-

gorithm for HMM inference on a given training video so

the resulting segmentation is valid. This initial video seg-

mentation is used for efficiently building a fully connected

segmentation graph aimed at representing alternative can-

didate segmentations. In this graph, nodes represent seg-

mentation cuts of the initially inferred segmentation – i.e.,

video frames where one action ends and a subsequent one

starts – and edges represent video segments between every

two temporally ordered cuts. For improving action bound-

ary detection, we further augment the initial set of nodes

with video frames that are in a vicinity of every cut, as well

as the initial set of edges with corresponding temporal links

between the added nodes. Directed paths of such a fully

connected graph explicitly represent many candidate action

segmentations, beyond the initial HMM’s inference.

The second step of our training efficiently computes a

total energy score of frame labeling along all paths in the

segmentation graph. Efficiency comes from our novel re-

cursive estimation of the segmentation energy, where we

exploit the accumulative property of the logadd function.

A difference of the accumulated energy of action labeling

along the valid and invalid paths is used to compute the

CDFL. In this paper, we also consider several other loss

formulations expressed in terms of the energy of valid and

invalid paths. The loss is then used for training HMM pa-

rameters and back-propagated to the GRU for end-to-end

training.

For inference on a test video, as in the first step of our

training, we use a constrained Viterbi algorithm to perform

the HMM inference which will satisfy at least one action se-

quence seen in training. Then, we use this initial video seg-

mentation as an anchor for building the segmentation graph

that comprises paths with finer action boundaries. Our out-

put is the MAP path in the graph.

For evaluation, we consider the tasks of action segmen-

tation and action alignment, where the latter provides ad-

ditional information on the temporal ordering of actions

in the test video. For both tasks on the Breakfast Ac-

tion dataset [10], Hollywood Extended dataset [1], and 50-

Salads dataset [24], we outperform the state of the art.

In the following, Sec. 2 reviews related work, Sec. 3 for-

mulates our HMM and Constrained Viterbi for action seg-

mentation, Sec. 4 describes how we construct the segmenta-

tion graph, Sec. 5 specifies our CDFL and related loss func-

tions, and Sec. 6 presents our evaluation.

2. Related Work

This section reviews closely related work on weakly su-

pervised action segmentation and Graph Transformer Net-

works. While a review of fully supervised action segmen-

tation [25, 14, 18, 16] is beyond our scope, it is worth men-

tioning that our approach uses the same recurrent deep mod-

els for frame labeling as in [23, 25, 6]. Also, our approach is

motivated by [11, 19] which integrate HMMs and modeling

of action length priors within a deep learning architecture.

Weakly supervised action segmentation has recently

made much progress [24, 10, 20, 7, 22]. For example, Ex-

tended Connectionist Temporal Classification (ECTC) ad-

dresses action alignment under the constraint of being con-

sistent with frame-to-frame visual similarity [8]. Also, ac-

tion segmentation has been addressed with a convex re-

laxation of discriminative clustering, and efficiently solved

with the conditional gradient (Frank-Wolfe) algorithm [1].

Other approaches use a local action model and a global tem-

poral alignment model that are alternatively trained [12, 20].

Some methods initially predict a video segmentation with

a temporal convolutional network, and then iteratively re-

fine the action boundaries [7]. Other approaches first gen-

erate pseudo-ground-truth labels for all video frames, e.g.,

with the Viterbi algorithm [22], and then train a classifier on

these frame labels by minimizing the standard cross entropy

loss. Finally, [21] addresses a different weakly supervised

setting from ours when the ground truth provides only a set

of actions present without their temporal ordering .

All these approaches base their learning and prediction

on estimating a penalty or probability of labeling individ-
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ual frames. In contrast, we use an energy-based framework

with the following differences. First, in training, we min-

imize the total energy of valid paths in the segmentation

graph rather than optimize labeling probabilities of each

frame. Second, instead of considering a single optimal valid

path in the segmentation graph, we specify a loss function

in terms of all valid paths. Hence, the Viterbi-initialized

training on pseudo-labels of frames [22] represents a spe-

cial case of our training done only for one valid path. In ad-

dition, our loss enforces discriminative training by account-

ing for invalid paths in the segmentation graph. Unlike [3]

that randomly selects invalid paths, we efficiently account

for all hard invalid paths in training. Finally, our training

is not iterative as in [12, 20], and does not require iterative

refinement of action boundaries as in [7].

Our CDFL extends the loss used for training of the Graph

Transformer Network (GTN) [15, 13, 2, 5]. To the best of

our knowledge, the GTN has been used only for text pars-

ing, and never for action segmentation. In comparison with

the GTN training, we significantly reduce complexity by

building the video’s segmentation graph. Also, while the

loss used for training the GTN accounts for both valid and

invalid text parses, it cannot handle the special case when

valid parses have lower scores than invalid ones. In con-

trast, our CDFL effectively accounts for the energy of valid

and invalid paths, even when valid paths have significantly

lower energy than invalid paths in the segmentation graph.

3. Our Model for Action Segmentation

Problem Setup: For each training video of length T ,

we are given unsupervised frame-level features, x1:T =
[x1, x2, ..., xT ], and the ground-truth ordering of action

classes a1:N = [a1, a2, ..., aN ], also referred to as the tran-

script. N is the length of the annotation sequence, and an is

nth action class in a1:N that belongs to the set of K action

classes, an ∈ A = {1, 2, ...,K}. Note that T and N may

vary across the training set, and that there may be more than

one occurrences of the same action class spread out in a1:N

(but of course an 6= an+1).

In inference, given frame features x1:T of a video, our

goal is to find an optimal segmentation (â1:N̂ , l̂1:N̂ ), where

N̂ is the predicted length of the action sequence, and

l̂1:N̂ = [l̂1, l̂2, · · · , l̂N̂ ] includes the predicted number of

video frames l̂n occupied by the predicted action ân.

The Model: We use an HMM to model the posterior dis-

tribution of a video segmentation (a1:N , l1:N ) given x1:T

as

p(a1:N , l1:N |x1:T )
∝ p(x1:T |a1:N , l1:N )p(l1:N |a1:N )p(a1:N ),

=

(

T
∏

t=1

p(xt|an(t))

)(

N
∏

n=1

p(ln|an)

)

p(a1:N ).

(1)

In (1), the likelihood p(xt|a) is estimated as

p(xt|a) ∝
p(a|xt)

p(a)
, (2)

where p(a|xt) is the GRU’s softmax score for action a ∈ A
at frame t, and the prior distribution of action classes p(a) is

an normalized frame frequency of action occurrences in the

training dataset. The likelihood of action length is modeled

as a class-dependent Poisson distribution

p(l|a) =
λl
a

l!
e−λa , (3)

where λa is the mean length for class a ∈ A. Finally, the

joint prior p(a1:N ) is a constant if the transcript a1:N ex-

ists in the training set; otherwise, p(a1:N ) = 0. The same

modeling formulation was well-motivated and used in state

of the art [22].

Constrained Viterbi Algorithm: Given a training

video, we first find an optimal valid action segmentation

(â1:N̂ , l̂1:N̂ ) by maximizing (1) with a constrained Viterbi

algorithm, which ensures that â1:N̂ is equal to the annotated

transcript, â1:N̂ = a1:N . Similarly, for inference on a test

video, we first perform the constrained Viterbi algorithm

against all transcripts {a1:N} seen in training, i.e., ensure

that the predicted â1:N̂ has been seen at least once in train-

ing. Thus, the initial step of our inference on a training or

test video is the same as in [22].

Our key difference from [22], is that we use the initial

(â1:N̂ , l̂1:N̂ ) to efficiently build a fully connected segmenta-

tion graph of the video, as explained in Sec. 4. Importantly,

in training, the segmentation graph is not constructed to find

a more optimal video segmentation that improves upon the

initial prediction. Instead, the graph is used to efficiently

account for all valid and invalid segmentations.

Given a video x1:T and a transcript a1:N , the constrained

Viterbi algorithm recursively maximizes the posterior in (1)

such that the first n action labels of the transcript a1:n =
[a1, ..., an] ⊆ a1:N are respected at time t:

p(a1:n, l̂1:n|x1:t) = max
t′, t′<t

{

p(a1:n−1, l̂1:n−1|x1:t′)

·

(

t
∏

s=t′

p(xs|an(s))

)

· p(ln|an) · p(a1:n)

}

,

(4)

where ln = t − t′. We set p(·|x1:0) = 1, and p(a1:n) = κ,

where κ > 0 is a constant.

4. Constructing the Segmentation Graph

Given a video x1:T , we first run the constrained

Viterbi algorithm to obtain an initial video segmentation

(â1:N̂ , l̂1:N̂ ). For simplicity, in the following, we ignore

the symbol .̂ This initial segmentation is characterized by
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Figure 2. Building the segmentation graph G (best seen in

color). The initial nodes of G represent segmentation cuts bn ob-

tained in the Constrained Viterbi (the predicted action classes are

marked with different colors). Each bn generates additional ver-

tices bn = {vns} representing neighboring video frames within a

window centered at bn (the black rectangles), and corresponding

new edges (vns, vn′
s
′) (the dashed lines) between all temporally

ordered pairs of vertices in G. For clarity, we show only a few

edges. G has exponential many paths, each representing a candi-

date action segmentation.

N + 1 cuts, b1:N+1 = [b1, . . . , bN+1], i.e., video frames

where previous action ends and the next one starts includ-

ing the very first frame b1 and last frame bN+1 at time T .

We use these cuts to anchor our construction of the fully

connected segmentation graph, G = (V, E ,W), where V =
{b1:N+1} is the set of nodes, E is the set of directed edges

linking every two temporally ordered nodes, and W are the

corresponding edge weights.

Some of the estimated cuts in b1:N+1 may be false pos-

itives or may not exactly coincide with the true cuts. To

improve action boundary detection, we augment the ini-

tial V with nodes representing neighboring video frames

of each cut bn within a temporal window of length ∆ cen-

tered at bn, as illustrated in Fig. 2. For the first and last

frames, we set ∆ = 1. Thus, each bn can be viewed as a

hyper-node comprising additional vertices in G, V = {bn =
{vn1, · · · , vni, · · · , vn∆} : n = 1, . . . , N+1}, and accord-

ingly additional edges E = {(vni, vn′i′) : n ≤ n′, i < i′}.

In the following, we simplify notation for vertices vni →
vi ∈ V , and edges (vni, vn′i′) → eii′ = (vi, vi′).

Each edge eii′ is assigned a weight vector wii′ =
[wii′(a)], where wii′(a) is defined as the energy of label-

ing the video segment (vi, vi′) with action class a ∈ A:

wii′(a) =
∑

t∈(vi,vi′ )

− log p(a|xt), (5)

where p(a|xt) is the GRU’s softmax score for action a at

frame t.

G comprises exponentially many directed paths P =
{π}, where each π represents a particular video segmen-

tation. In each π, every edge eii′ gets assigned only one

action class aπii′ ∈ A. Thus, the very same edge with K
different class assignments belongs to K distinct paths in

P . We compute the energy of a path as

Eπ =
∑

e
ii′∈π

wii′(a
π
ii′). (6)

A subset of valid paths PV ⊂ P satisfies the given tran-

script. The other paths are invalid, PI = P \ PV .

In the next section, we explain how to efficiently com-

pute a total energy score of the exponentially many paths in

P for estimating our loss in training.

5. Constrained Discriminative Forward Loss

In this paper, we study three distinct loss functions, de-

fined in terms of a total energy score of paths in G. As there

are exponentially many paths in G, our key contribution is

the algorithm for efficiently estimating their total energy.

Below, we specify our three loss functions ordered by their

complexity. As we will show in Sec. 6, we obtain the best

performance when using the CDFL in training.

5.1. Forward Loss

We define a forward loss, LF, in terms of a total energy

of all valid paths using the standard logadd function as

LF = − log(
∑

π∈PV

exp(−Eπ)), (7)

where energy of a path Eπ is given by (6). As there are ex-

ponentially many paths in PV , we cannot directly compute

LF as specified in (7). Therefore, we derive a novel recur-

sive algorithm for accumulating the energy scores of edges

along multiple paths, as specified below.

We begin by defining the logadd function as

logadd(a, b) = − log(exp(−a) + exp(−b)). (8)

Note that the logadd function is commutative and associa-

tive, so it can be defined on a set S in a recursive manner:

logadd(S) = logadd(S\{x}, x), (9)

where x is an element in S. Therefore, the forward loss

given by (7) can be expressed as

LF = logadd({Eπ : π ∈ PV }). (10)

Below, we simplify notation as LF = logadd(PV ).
We recursively compute the energy score ℓi′(a1:n) of a

path that ends at node i′ and covers first n labels of the

ground truth a1:n = [a1, ..., an] ⊆ a1:N in terms of the

logadd scores ℓi(a1:n−1) of all valid paths that end at node

i, i < i′, and cover first n− 1 labels as

ℓi′(a1:n) = logadd({ℓi(a1:n−1) + wii′(an) : i < i′}).
(11)

To prove (11), suppose that

ℓi(a1:n−1) = logadd({Eπi
: πi ∈ PV })

= − log(
∑

πi∈PV

exp(−Eπi
)), (12)
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Input: G, b1:N+1, a1:N

Output: Forward loss LF = ℓT (a)
1 Initialization: ℓ0(·) = 0 ;

2 for n = 1 to N do

3 for i′ in the neighborhood of bn do

4 ℓi′(a1:n) = ∞;

5 for i in the neighborhood of bn−1 do

6 temp = ℓi(a1:n−1) + wii′(an);
7 ℓi′(a1:n) = logadd(ℓi′(a1:n), temp);

8 end

9 end

10 end

Algorithm 1: Computing the Forward loss LF.

Input: G, b1:N+1

Output: logadd(P) = ℓT
1 Initialization: ℓ0 = 0 ;

2 for n = 1 to N do

3 for i′ in the neighborhood of bn do

4 ℓi′ = ∞;

5 for i in the neighborhood of bn−1 do

6 for a ∈ A do

7 ℓi′ = logadd(ℓi′ , ℓi + wii′(a));
8 end

9 end

10 end

11 end

Algorithm 2: Computing the logadd score of all paths

in P , for the discriminative forward loss LDF.

where πi is a path that ends at i with a transcript of a1:n−1.

Then, we have

ℓi′(a1:n) = logadd({ℓi(a1:n−1) + wii′(an) : i < i′}).

= − log(
∑

i<i
′

∑

π
′

i
∈PV

exp(−Eπi
− wii′(an)))

= − log(
∑

π
′

i
∈PV exp(−E

π
′

i

))

= logadd({Eπ
i
′ : πi

′ ∈ PV }).

(13)

where πi′ is a path that ends at i′ with a transcript of a1:n.

For a training video with length T and ground-truth con-

straint sequence a1:N , we define

LF = ℓT (a1:N ). (14)

The recursive algorithm for computing LF is presented in

Alg. 1. It is worth noting that in a special case of Alg. 1,

when we take only the initial segmentation cuts b1:N+1 as

nodes of G (i.e., the window size ∆ = 0), the forward loss

is equal to the training loss used in [22].

5.2. Discriminative Forward Loss

We also consider the Discriminative Forward Loss, LDF,

which extends LF by additionally accounting for invalid

paths in G:

LDF = logadd(PV )− α logadd(P), (15)

where logadd(P) aggregates a total energy of all paths in

G, and α > 0 is a regularization factor that controls the

relative importance of the valid and invalid paths for LDF.

Alg. 2 summarizes our recursive algorithm for computing

logadd(P) in (15), whereas Alg. 1 shows how to compute

logadd(PV ) in (15).

One advantage of LDF over LF is that minimizing LDF

amounts to maximizing the decision margin between the

valid and invalid paths. However, a potential shortcoming

of LDF is that valid paths might have little effect in (15). In

the case, when the energy of valid paths dominates the total

energy of all paths, the former gets effectively subtracted in

(15), and hence has very little effect on learning.

Moreover, we observe that in some cases the back-

propagation of LDF is dominated by the invalid paths. This

can be clearly seen from the following derivation. We com-

pute the gradient ∇LDF as

∇LDF = ∇logadd(PV )− α ∇logadd(P),
= c1

∑

π∈PV exp(−Eπ)∇Eπ

−c2
∑

π∈PI exp(−Eπ)∇Eπ,
(16)

where

c1 =
(1−α)

∑
π∈PV exp(−Eπ)+

∑
π∈PI exp(−Eπ)

(
∑

π∈PV exp(−Eπ))(
∑

π∈P
exp(−Eπ))

,

c2 = α∑
π∈P

exp(−Eπ)
.

(17)

From (16)–(17), we note that in the case of α → 1, the

backpropagation will be dominated by the invalid paths,

whereas there would be no effect for invalid paths in train-

ing if α = 0. Sec. 6 presents how different choices of α
affect our performance.

In the next section, we define the constrained discrimi-

native forward loss to address this issue.

5.3. Constrained Discriminative Forward Loss

We define the CDFL as

LCDF = logadd(PV )− logadd(PIc), (18)

where PIc consists of a subset of invalid paths in G, where

each edge eii′ gets assigned an action class a such that

its weight wii′(a) < wii′(an), where an 6= a is the

pseudo ground truth class for eii′ . This constraint effec-

tively addresses the aforementioned issue when the valid

paths have significantly lower energy than the invalid paths.

Alg. 3 summarizes our recursive algorithm for computing
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Input: G, b1:N+1, a1:N

Output: logadd(PIc

) = ℓT
1 Initialization: ℓ0 = 0 ;

2 for n = 1 to N do

3 for i′ in the neighborhood of bn do

4 ℓi′ = ∞;

5 for i in the neighborhood of bn−1 do

6 for a ∈ A do

7 temp = ℓi;
8 if wii′(a) < wii′(an) then

9 temp = ℓi + wii′(a)
10 end

11 ℓi′ = logadd(ℓi′ , temp);

12 end

13 end

14 end

15 end

Algorithm 3: Computing the logadd score of a subset

of invalid paths PIc , for estimating the constrained dis-

criminative forward loss LCDF.

logadd(PIc) in (18), whereas Alg. 1 shows how to compute

logadd(PV ) in (18).

As LDF accounts for the invalid paths, LCDF further ac-

counts for the hard invalid paths. Therefore, the model ro-

bustness is further improved by minimizing LCDF which

amounts to maximizing the decision margin between the

valid and hard invalid paths.

5.4. Our Computational Efficiency

As summarized in Alg. 1–3, our training first runs the

constrained Viterbi algorithm (see Sec. 3) to get the ini-

tial segmentation cuts with complexity O(T 2N) for a video

of length T and the ground-truth action sequence of length

N . Then, CDFL efficiently accumulates the energy of both

valid and invalid paths in G with complexity O(∆2KN)
for the neighborhood window size ∆ and the class set

size K. Therefore, our total complexity of training is

O(T 2N +∆2KN).
Note that prior work [22] also runs the Constrained

Viterbi with complexity O(T 2N), so relative to theirs

our complexity is increased by O(∆2KN). This addi-

tional complexity is significantly smaller than O(T 2N) as

∆2K ≪ T 2. In our experimental evaluation, we get the

best results for ∆ ≤ 20 frames, whereas video length T can

go to several minutes.

6. Results

Both action segmentation and alignment are evaluated

on the Breakfast Actions [10], Hollywood Extended [1],

and 50Salads [24] datasets. We perform the same cross-

validation strategy as the state of the art, and report our av-

erage results. We call our approach CDFL, trained with loss

given by (18).

Datasets. For all datasets, we use as input the pre-

processed, public, unsupervised frame-level features. The

same frame features are used by [8, 12, 20, 22]. The fea-

tures are dense trajectories represented by PCA-projected

Fisher vectors [11]. Breakfast [10] consists of 1, 712 videos

of people making breakfast with 10 cooking activities. The

cooking activities are comprised of 48 action classes. On

average, every video has 6.9 action instances, and the video

length ranges from a few seconds to several minutes. Hol-

lywood Extended [1] contains 937 video clips from differ-

ent Hollywood movies, showing 16 action classes. Each

clip contains 2.5 actions on average. 50Salads [24] has 50
very long videos showing 17 classes of human manipulative

gestures. On average, each video has 20 action instances.

There are 600, 000 annotated frames.

Evaluation Metrics. We use the following four stan-

dard metrics, as in [1, 7]. The mean-over-frames (Mof) is

the average percentage of correctly labeled frames. To over-

come the potential drawback that frames are dominated by

background class, we compute mean-over-frames without

background(Mof-bg) as the average percentage of correctly

labeled video frames with background frames removed.

Breakfast Mof Mof-bg IoU IoD

OCDC[1] 8.9 - - -

CTC[8] 21.8 - - -

HTK [11] 25.9 - 9.8 -

ECTC [8] 27.7 - - -

HMM/RNN [20] 33.3 - - -

TCFPN [7] 38.4 38.4 24.2 40.6

NN-Viterbi [22] 43.0 - - -

D3TW [3] 45.7 - - -

Our CDFL 50.2 48.0 33.7 45.4

Hollywood Ext Mof Mof-bg IoU IoD

HTK [11] 33.0 - 8.6 -

HMM/RNN [20] - - 11.9 -

TCFPN [7] 28.7 34.5 12.6 18.3

D3TW [3] 33.6 - - -

Our CDFL 45.0 40.6 19.5 25.8

50Salads Mof Mof-bg IoU IoD

CTC[8] 11.9 - - -

HTK [11] 24.7 - - -

HMM/RNN [20] 45.5 - - -

NN-Viterbi [22] 49.4 - - -

Our CDFL 54.7 49.8 31.5 40.4

Table 1. Action segmentation evaluations on Breakfast, Holly-

wood Ext and 50Salads. The dash means no results reported by

prior work.
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GT 

CDFL 

Figure 3. Ground truth action sequence (take cup, spoon powder,

pour milk, stir milk) (top) and our CDFL’s action segmentation

(bottom) on the sample test video P03 stereo01 P03 milk from

Breakfast dataset. The background frames are marked in white.

CDFL may miss the true start and end of some actions, but suc-

cessfully detects the actions.

Window LF LDF LCDF

Size Mof IoD Mof IoD Mof IoD

30 43.5 39.4 46.6 40.5 49.4 44.1

20 44.3 40.9 47.0 41.8 50.2 45.4

10 43.8 40.0 46.2 41.3 49.6 44.6

0 43.0 38.7 45.0 40.2 48.5 43.5

Table 2. Mof and IoD evaluations on Breakfast for different neigh-

borhood window sizes and different losses. CDFL with neighbor-

window size of 20 shows the best result.

The intersection over union (IoU) and the intersection over

detection (IoD) are computed as IoU = |GT ∩D|/|GT ∪D|,
and IoD = |GT ∩D|/|D| , where |GT | denotes the extent of

the ground truth segment and |D| is the extent of a correctly

detected action segment.

Training. We train a single-layer GRU with 64 hidden

units in 105 iterations, where for each iteration one training

video is randomly selected. The initial learning rate of 0.01

is decreased to 0.001 at the 60, 000th iteration. The mean

action lengths λa in (3), and the action priors p(a) in (2) are

estimated from the history of pseudo ground truths. Unlike

[22], we do not use the history of pseudo ground truths for

computing loss in the current iteration. Consequently, our

training time per iteration is less than that of [22].

6.1. Action Segmentation

Tab. 1 compares CDFL with the state of the art. From the

table, CDFL achieves the best performance in terms of all

the four metrics. Fig. 3 qualitatively compares the ground

truth and CDFL’s output on an example test video in Break-

fast dataset. As can be seen, CDFL typically misses the

true start or end of actions by only a few frames. In general,

CDFL successfully detects most action occurrences.

Ablation Study for Action Segmentation. Tab. 2 com-

pares our action segmentation performance on Breakfast

when using different sizes of the neighborhood window

placed around the initial segmentation cuts (as explained in

Sec. 4) and different loss functions (as specified in Sec. 5).

From the table, training by accounting for invalid paths in

LDF and LCDF gives better performance than only account-

ing for valid paths in LF. In addition, considering neigh-

boring frames for action boundary refinement within a win-

dow around the initial segmentation cuts gives better perfor-

GT 

LCDF 

LDF 

LF 

Figure 4. Top-down, the rows correspond to ground truth sequence

of actions (pour oil, crack egg, fry egg, put egg2plate) and our

action segmentations with neighbor-window size of 20 on the

sample video P03 cam01 P03 friedegg from Breakfast dataset us-

ing LCDF, LDF and LF, respectively. The background frames are

marked in white. The result for LCDF is the best.

window size α = 0 α = 0.1 α = 0.2 α = 0.3
30 43.5 46.6 38.8 34.0

20 44.3 47.0 40.7 35.5

10 43.8 46.2 41.0 35.4

0 43.0 45.0 39.1 33.5

Table 3. Mof evaluations on Breakfast using LDF in training with

different regularization factors and neighbor-window sizes.

GT 

Win 10 

Win 30 

Win 0 

Win 20 

Figure 5. Ground truth action sequence (pour oil, crack egg,

fry egg, take plate, put egg2plate) (top) and CDFL’s action seg-

mentations using different neighbor-window sizes on the sam-

ple test video P04 webcam02 P04 friedegg from Breakfast. The

background frames are marked in white. The window size of 20
gives the best performance.

mance than taking into account only a single optimal path

in the segmentation graph when the window size is 0. The

best test performance is achieved using LCDF with window

size of 20 in training.

Fig. 5 illustrates the CDFL’s action segmentations on a

sample test video from the Breakfast Action dataset using

different window sizes and LCDF. As can be seen, consid-

ering neighboring frames around the anchor segmentation

improves performance.

Tab. 3 shows how different regularization factors α in

LDF affect our action segmentation on the Breakfast Action

dataset, for different neighbor-window sizes. As expected,

using small α in training tends to give better performance.

The best accuracy is achieved with α = 0.1 and window

size of 20.

6.2. Action Alignment

Tab. 4 shows that CDFL outperforms the state-of-the-

art approaches in action alignment on the three benchmark

6249



Breakfast Mof Mof-bg IoU IoD

ECTC[8] 35.0 - - 45.0

HTK [11] 43.9 - 26.6 42.6

OCDC [1] - - - 23.4

HMM/RNN [20] - - - 47.3

TCFPN [7] 53.5 51.7 35.3 52.3

D3TW [3] 57.0 - - 56.3

Our CDFL 63.0 61.4 45.8 63.9

Hollywood Ext Mof Mof-bg IoU IoD

ECTC[8] - - - 41.0

HTK [11] 49.4 - 29.1 46.9

OCDC [1] - - - 43.9

HMM/RNN [20] - - - 46.3

TCFPN [7] 57.4 36.1 22.3 39.6

NN-Viterbi [22] - - - 48.7

D3TW [3] 59.4 - - 50.9

Our CDFL 64.3 70.8 40.5 52.9

50Salads Mof Mof-bg IoU IoD

Our CDFL 68.0 65.3 45.5 58.7

Table 4. Action alignment evaluations on Breakfast, Hollywood

Ext and 50Salads. The dash indicates that no results reported by

prior work.

GT

CDFL

Figure 6. Ground truth action sequence (StandUp,SitDown, Drive-

Car, OpenDoor, OpenDoor, HugPerson) (top) and our action

alignments (bottom) on the sample video 0261 from Hollywood

Extend. The background frames are marked in white. CDFL typi-

cally achieves a good action alignment.

datasets. Fig. 6 illustrates that CDFL is good at action align-

ment on a sample test video from Hollywood Extended.

Ablation Study for Action Alignment. Tab. 5 presents

our alignment results using different loss functions as spec-

ified in Sec. 5, and different neighbor-window sizes on Hol-

lywood Ext. From the table, training with LDF and LCDF

that account for invalid paths, outperforms our approach

trained with LF. In addition, taking into account neighbor-

ing frames around segmentation cuts of the initial segmen-

tation (i.e., window size is greater than 0) improves perfor-

mance relative to the case when window size is 0. The best

performance is achieved using LCDF with the window sizes

of 6 in training.

Fig. 7 illustrates that CDFL gives good action alignment

results on the sample test video from Hollywood Ext, using

LCDF and window size of 6 in training.

7. Conclusion

We have extended the existing work on weakly super-

vised action segmentation that uses an HMM and GRU for

Window size LF LDF LCDF

8 48.7 49.8 51.6

6 49.3 50.5 52.9
4 49.0 50.0 52.0

2 48.5 49.5 50.7

0 48.7 49.3 49.8

Table 5. IoD evaluations of our approach in action alignment on

Hollywood Extended using different loss functions and different

neighbor-window sizes in training. Using CDFL with neighbor-

window size of 6 shows the best result.

GT

Win 0

Win 2

Win 4

Win 6

Win 8

Figure 7. Ground truth action sequence (OpenDoor, OpenDoor,

OpenCarDoor) (top) and CDFL’s action alignments on the sam-

ple test video 0361 from Hollywood Extended, when trained us-

ing varying window sizes. The background frames are marked in

white. Using CDFL and neighbor-window size of 6 gives the best

results.

labeling video frames by formulating a new energy-based

learning on a video’s segmentation graph. The graph is con-

structed so as to facilitate computation of loss, expressed in

terms of the energy of valid and invalid paths representing

candidate action segmentations. Our key contribution is the

new recursive algorithm for efficiently computing the accu-

mulated energy of exponentially many paths in the segmen-

tation graph. Among the three loss functions that we have

defined, and evaluated, the CDFL – specified to maximize

the discrimination margin between valid and high-scoring

invalid paths – gives the best performance. A comparison

with the state of the art on both action segmentation and ac-

tion alignment tasks, for the Breakfast Action, Hollywood

Extended and 50Salads datasets, supports our novelty claim

that using our CDFL in training gives superior results than

a loss function estimated on a single inferred segmentation,

as done by prior work. Our results on both action segmenta-

tion and action alignment tasks also demonstrate advantages

of considering many candidate segmentations in neighbor-

windows around the initial video segmentation, and maxi-

mizing the margin between all valid and hard invalid seg-

mentations. Our small increase in complexity relative to

that of related work seems justified considering our signifi-

cant performance improvements.
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Segmental spatiotemporal cnns for fine-grained action seg-

mentation. In European Conference on Computer Vision,

pages 36–52. Springer, 2016.
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